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ABSTRACT

In recent years, the use of pipes made of highigepslyethylene (HDPE) has registered a remarkaidecase
in submersed applications for gas and water digioh. Often, the submersion process is a challepngngineering
problem due to the high curvature to which the pipee submitted, and to the requirement of a neafirdynamic
analysis. Computational systems, which adopt terss beam models, have been employed to predicpiffedines
mechanical behaviour. The latter are more accutaa the former but demand more memory storageaahijh
computational effort. In this work, as a first steywards modeling HDPE submersed pipes, a linescoglastic
geometrically nonlinear beam finite element is fakabed by modifying a geometrically nonlinear trusdement.
Bending stiffness is introduced by means of rotetiosprings between two adjacent bar elements,itkgegnly
translational degrees of freedom. This resultsnireement with 6 degrees of freedom per elemempeoed to 12
degrees of freedom per element for the traditidaer-Bernoulli and Timoshenko beam formulationbeTinternal
force vector and the stiffness matrix are derivsithgithe principle of virtual work. Special caregagen to develop the
exact tangent stiffness matrix so that quadraticveggence rate can be expected in the Newton-Rapssition
process. Linear viscoelastic behaviour is modekdguKelvin-Voigt and Maxwell rheological modelscaa numerical
algorithm to perform the interconversion of the emel parameters between them is applied. Creepplance and
relaxation functions are modeled using Prony sefié& discretization in time is performed usingtbohplicit and
explicit approaches. Results are compared to tite felement commercial software MSC Marc, whosket=Bernoulli
beam element uses cubic interpolation functiongrgtite) and has 12 degrees of freedom per elemergddition to
the excellent agreement of results verified, theppsed element yields a much smaller system oftiemsaand has
potential for great numerical efficiency.

Keywords:Simplified Bending Stiffness. Geometric Nonlinegitiinear Viscoelasticity.

1 INTRODUCTION

Submerged pipelines of high density polyethylen®®P) have been used for water and
sewage transportation since 1960 [1] and more tlycfem gas distribution [2]. The combination of
flexibility and resistance makes HDPE superior tbeo materials for the design of submerged
pipeline systems. The installation is often perfednby progressively flooding of one of its ends.
According to Palacios [3], the advantage of thighud is the time required for installation, the
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major drawback being the control process of subimenshich is a problem due to high curvature
to which the pipe is subjected. Moreover, environtakconditions during the pipes lifetime affect
the loads supported, as well as stresses andsstrain

Computational systems have been used to predictnéehanical behavior of these pipes
through nonlinear dynamic analysis. In general,m@chanical behaviour analyses, truss or beam
models are adopted. A truss model is computatipredléaper, but less accurate and does not take
account of bending stiffness. Instead, a beam moe@lesents satisfactorily problems where
bending stiffness should not be overlooked, butists requires a larger computational effort. Is thi
context, as a first step to simulate the submersioHDPE pipes, this work aims to develop the
formulation of a simplified beam element which Hewer degrees of freedom, but can correctly
calculate the geometrical and material nonline&aki®ur.

Alternatives to simplify the beam model have beeoppsed based on concentrated mass
models. An example is the work of Ghadimi [4], whbbtained the bending moment from the
change of slope between adjacent elements andgidigdy calculated equivalent shearing forces
from the change of bending moment. The present vimrkased on the approach of Low and
Langley [5], in which the bending stiffness is ciolesed by the contribution of a rotational spring
between two adjacent bar elements. These authadanolhe spring rotational stiffness using a
potential energy approach, considering some apmaions. In this work, the expressions for the
internal force vector and tangent stiffness maisixieveloped from the principle of virtual work
(PTV) and its exact linearization (no approximaspnand thus the best possible (quadratic)
convergence rate in the solution method is achieved

Regarding the non-linear solution, implicit and koip approaches are implemented. In the
implicit case, a Newton-Raphson procedure coupledthe Newmark algorithm (average
acceleration) is employed, while in the expliciteahative, central differences are adopted. For
conciseness, only implicit results are shown is #iticle. Explicit results are very similar.

Concerning material behavior, polymers are ofteraratierized as viscoelastic or
viscoplastic, suggesting a combination of viscdosvf typical of fluids, with plastic or elastic
characteristics, typical of solids. Indeed, thellelmge in studying and modeling these materials
comes from the fact that all these three typesdeélized behaviour exist simultaneously in any
relative proportion [2]. Studies show that, at rommperature, HDPE has a nonlinear viscoelastic
behaviour at any stress level [6]. However, asst §tudy to model polymeric tubes, this work has
its focus in linear viscoelasticity, where the migtierheological properties are independent ofsstre
and strain levels, and creep and relaxation funst@re only dependent of time. The derivation of
the function that models linear viscoelasticitythe bending contribution of simplified beam model
is based in the work of Kaliskeand Rothert [7], whoesent a tridimensional viscoelastic
formulation applied to finite element methods asdsigeneralized Maxwell elements.

The implementation of the simplified beam elemergspnted in this work relies on the
modification of the bar element available in pragrATENAS 5.0, which is a code developed for
academic purposes in UDESC by Mufioz-Rojas and thidests. The linear viscoelastic model
adopted for the bending contribution is derivedifrthe generalized Maxwell model. On the other
hand, the axial viscoelastic contribution alreadgspnt in ATENAS is modeled based on the
generalized Kelvin-Voigt model. Thus, an intercasen between Maxwell and Kelvin
viscoelastic properties is needed to ensure cemaistwhen using the input data. This work uses an
interconversion for material functions represenbsd Prony series [8]]. The derivation of the
tangent stiffness for the viscoelastic formulatamopts some approximations and does not lead to
quadratic convergence. At the same time that #isise demands further development, at the present
stage explicit integration in time can already kghly attractive.
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2 ATENAS

The implementation of the simplified beam elementperformed by modifying the bar
element present in program ATENAS 5.0.The formalatused for the geometric nonlinearity in
the existent bar element is based on reference Hltfjough it differs in the sense that it is
completely described using interpolation functi@ml the rotated engineering stress and stress
tensors are adopted as a conjugate pair. Stariomg the principle of virtual work, an expression
for the internal force vector is developed andeitact differentiation yields the tangent stiffness
matrix [12]. Regarding the solution procedure, batplicit and implicit methods are implemented.
In the former, a central differences scheme is usedhe latter, the code employs average
accelerations (Newmark) coupled to the Newton-Raphsethod. The linear viscoelastic model
implemented for the bar element (axial contributienderived from the generalized Kelvin-Voigt
model and its formulation is based on referenc8f4hd [14].

3 SIMPLIFIED BEAM ELEMENTS

In this paper, inspired in the work published bywand Langley [5], bending stiffness is
introduced in the bar element by means of rotatispangs between two adjacent bar elements.
The forces of an equivalent rotational spring aewed directly from the work expression in global
coordinates, thus eliminating the need for tramsfdions between local and global coordinate
systems. Additionally, the formulation can easily bxtended to obtain the consistent stiffness
matrix. However reference [5] assumes some appams to perform the derivatives, which
cause loss of convergence rate in the Newton-Rapm&thod. On the other hand, the present work
develops an exact (consistent) tangent stiffnedsixmaesulting in quadratic convergence rate in
the solution method.

3.1 Bending internal force

Assuming a cable profile initially straight, theah workW;, due to the application of an
angular displaceme at point i is expressed as

1
W; = - M;8;. 1)
The moment-curvature relationship at an arbitranytof the beam is given by
M; = Elk, (2)

where El is the bending stiffnessjs the curvature given by the radius of curvaRire 1/K, and
0; is the bending angle at point i.

Let us take the point i as being located at theenoetween two adjacent bar elements. An
expression for the radius of curvature can be apprated by considering the arc that interpolates
three nodes of the elements, as shown in FiguMofe that the global node i corresponds to the
local node 2 (node corresponding to the rotati@paing) and the elements j and k correspond to
the elements on the left and right to the spriegpectively.

Using trigonometric properties and the law of cesint is possible to equate the expression
of the distance between the vertices 1 and 3, g&teby the triangle formed by the arc center and
vertices 1 and 3, and by the triangle of vertice® and 3. Thus, the relationship between the angle
between element$,) and the radius of curvature is given by
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0; = i (Loj + Lok), (3)

whereL,; andL, are the original lengths of the respective elesi¢rtnd k. From equation 3 the
curvature results in

K= ﬁik) 4)
Figure 1 — Arc between elements to find the cumeaaxpression.
Substituting equation 2 and equation 4 into equatigields
Wi = 2ky8;%, 5)
whereky, is the bending stiffness of the spring
Ky = (6)

B (L0j+L0k)'

Using the principle of virtual work (PTV) and apply a kinematically admissible virtual
displacemendu in equation 5, it comes out that

00;
Ju

20,\ ¥
8Wi = kb i ou = kbei(SU)T (E) . (7)

In order to obtain the derivativ#®;/du, let's first define vectors and s, whose moduli
provide the length of elements j and k, respedtivel

t=x5—xj (8)

s = X3 — X5, )
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Wherex]fS are the global coordinates of node j and the sopptsS emphasizes that this node
numbering corresponds to the nodes 1-3 associatdbet spring. In this case, nodes 1 and 3
correspond to first and last nodes connected tepiieg i, and node 2 corresponds to the spring
node i (Figure 1). Note that the only nonzero ®&imthe matrixd6;/0u are those corresponding
to 08;/0u®, so that all the derivation can be done considednly these terms. Hence, for the
spring at node i,

= [x§ x5 x§I (10)
and

T
Xls( = [xls( yﬁ zﬁ] , k=1,3. (11)

Using the definition of scalar product and diffdrating with respect to the spring
displacement vector, one has

t-s = |t||s| cos(6;) (12)
= (t-5) = == (|t]Is| cos(6))) (13)
44T = |s| cos 6, 21 + [t] cos 8 2 + t]s |acose = (14)
Noting that
t= xg — x1 X21 + u21 (15)

and denoting af the matrix that relates the displacement veatdrto the displacements
corresponding to the first element, |

s
\41
wi
-1 0 0 100 0 0 o]fu
u, =0 -1 0 0 1 0 0 0 Of|lv5]|=I[FluS, (16)
0 0 -1 0 01 0 0 ollw$
u3
v
S
it turns out that
at _ augl _
S T ow [[F]. (17)
In the same way, differentiatirsgvith respect ta®, results in
aS _ augz _
ausS  ouS [G]’ (18)

whereG is the matrix that relates the displacement vestawith the displacements corresponding
to the second element, k.
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Using the definition of the Jacobian, in local e@rcoordinates (now node numbering 1 and
2 correspond to the first and second nodes of elejneand differentiatingt| with respect tai’,

_X1+u1_
Y +vy
— _ _ Z1+W1
It =|x; —x4| =2]j(x)=[-1 0 0 1 0 O] X, + U, (29)
Y, +v,
(7, + W,
alt] _ . 05;(x) duy
s = (,;—uja—u’s—[—1 00 1 0 0lT] (20)
whereT; is the rotation matrix for the element j,
ct ¢2 ¢ 0 0 0 0 0 O]
0O 0 0 0 0 O 0 0O
0O 0 0 0 0 O 0 0 O
T, = : 21
V1o 0 0 ¢ ¢2 ¢ 0 0 0 (21)
0O 0 0 0 0 O 0 0 O
L0 0 0 0 O O 0 O o

andcX is the direction cosine of the local axis 1 (xjhwiespect to the k-th global axis (1, 2 and 3,
corresponding to% y° and 7). Hence,

alt|
w=la —cf ¢ o cf ¢ 00 0] = cfj[F] = [L], (22)
wherecy; andL are the vector and matrix formed by the directiosines for element j.

By analogy, using the definition of the Jacobian lotal element coordinates and
differentiating|s| with respect ta1%, leads to

7]
=100 0 - - - o ¢ cl=cklGl=IN] (23)
wherec, andN are the vector and matrix formed by the directiosines for element k.

Substituting the expressions computed above intenua4, the expression fdB;/0u’ is
obtained as

06; _ 1
ouS  |t||s|sin®;

{s"[F] + t"[G] — (Is|[L] + [|[N]) cos 6;}. (24)
Using the PTV, given by the previous expressionequhtion 7, leads to

§W; = (5u%)TqS = (5u®)Tk,; (aei)T. (25)

aus
In this expression® is the bending internal force vector for eachrsprising the equality
s _ 90;\"
q° = kp; (ﬁ) : (26)

6
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it finally results in

q° = {[F]"s + [G]"t = (ISI[L]" + [t|[N]") cos ©;}. (27)

|t||s| smO

3.2 Bending tangent stiffness matrix

Using the spring nodal numbering, the bending tahgéffness matrix for each rotational
spring (order 9) can be defined as

S
s=2 (28)

ous

In order to simplify the presentation of the matlaéoal development, the tangent stiffness
matrix will be separated into two ternks; andk3,

k§ = —([FI"s + [G]"t — (Is|[L1" + [t][N]") cos 8)) 575 (o) (29)
k§ = — — 222 ([F]"s + [G]™t — (Is|[L]" + |t|[N]") cos ;). (30)

[t]|s| sin B; duS

Using differentiation rules, expanding the termd asing expressions previously calculated,
leads to 6 terms of the tangent stiffness matnixech spring

kS = ki, + Kip + K34 + K3 + K3¢q + K32, (32)
where S T
14 = = 0o (33) () (32)
ks = — 2% (%) (js|[L] + [t [N]), (33)
K3a = — g ((FITIG] + [G]"[FD), (34)
ki = — =2 (Is| LI + [elNTD) 225, (35)
Kicy = 222 ([LIT[N] + [N]T[LD), (36)
Kico = ot (|Itll [F1"([F] - ey[L]) + S [G]7([G] — c1K[N])>. (37)

The implementation uses a mapping to relate theigos of the bending stiffness matrix and
internal force vector for each spring to the reipeadegrees of freedom in the global system. To
obtain internal forces and corresponding stiffnesdrices, the contributions of axial and bending
forces are added in their respective global degre&ésedom.
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4 LINEAR VISCOELASTIC MODEL

The derivation of the linear viscoelastic matefiaiction for the simplified beam element is
based on reference [7], which presents a tridinogasiviscoelastic formulation applied to finite
element computations and uses generalized MaxVeslents.

Replacing equation 4 in the moment-curvature matiip (equation 2), results in a
relationship between the moment and angle betweehdam elements,

2EI0;

M; = k,6; = (Lo Lon)

(38)

whereM; is the moment acting on a node, E is the moduletasticity, | is the moment of inertia,
Lo; andLggare the lengths of the elements before and afteée narespectively, ané; is the angle
between the elements. Assuming no change in thsscsection along the axis length and
considering small extensional deformations, thevatemuation results in

Mi = (CiEGi, (39)

21 .
whereC; = mls constant.

From the stress-strain relationship for linear eedastic materials (equation 40), by analogy
to the moment-angle relationship, it comes out that

o(t) = E(t)e, (40)
M;(t)~o(t) (41)
0;~¢, (42)
so that
M;(t) = GE(1)8;. (43)

According to reference [2], linear viscoelastiapn be represented by
o(t) = [JE(t—s) Z2ds. (44)

From this point on, the index representing node omitted in favor of neatness in the text
presentation. The development of the numerical metdets from the integral representation of
linear viscoelasticity (equation 44), using thelagg to the moment

a0(

M(®) = [, CE(t—5) 22 ds, (45)

where
<_H)
E(t—s)=E.+ Z}‘;l Eje P (46)

where m is the number of Maxwell elements. Spliftequation 45 into elastic and viscoelastic
parts results in
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t-—s
M) = fy CE. 22 ds + [, T, ( "i>02§)ds, @7

t-s

M(t) = CE8(t) + X2, [ CE; <o—j>ag<ss>

ds, (48)

M(®) = Me(D) + X2, hy(D), (49)

whereM,(t) is the elastic component of the response. The gb#ie next steps is to obtain an
efficient numerical formulation for the solution tbfe integrah;(t). In analogy to the development
in reference [7], the following recursive formusadbtained

( )

p]

)
hP*! = e\ */hf + CE; -

[67+1 — gn]. (50)

The final equation for the moment considering Iméacoelasticity is given by
MRt = (CEeen+1 + Z]rrzl1 h]_n+1. (51)

In the simplified beam element formulation dedupeelviously, the internal force vector in
each spring is given by

q° = k0=, (52)

ous’

Substituting equation 38 it follows that

Qs =M (53)

6u5

Applying the viscoelastic model, the internal fokaetor associated to the spring at node i is
finally given by

(g5)""" = [CE0m + X, h™] afesr;;il, (54)

Correspondingly, the tangent bending stiffness imat given by differentiation of the
internal force,

g\n+l a(ad)™
(ky) = R (55)

Clearly, in the differentiation afy , ™** is the only variable dependent on displacements.
Thus, replacing equations 54, 50 and 52 in 55d#révative yields the tangent bending stiffness
matrix for the viscoelastic model
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e\ Pj

Pj

wherek® andky are the stiffness matrices for the simplified étaahd viscoelastic beam models,
respectively.

4.1 Interconversion between viscoelastic functions

The main reason to perform an interconversion ia work is that the viscoelastic model
implemented in ATENAS for the bar element requite=ep constants;Dwhich are associated to
the generalized Kelvin-Voigt model, whereas the pdifled viscoelastic bending contribution
requires relaxation constantg &hich are associated to the generalized Maxwellieh Hence, a
function interconversion is needed so that the dogat data (creep constants) can be internally
converted to represent the same material for elrhemt. The numerical interconversion used in
this work considers linear viscoelastic materiaddiions based on representations via Prony series
[8][10].

4.1.1 Relaxation Modulus from creep compliance

It can be shown that for a unit strain, the reladlup between the relaxation modulus E(t) and
the creep compliance D(t) is given by [8],

t dE(7) _
fO D(t - T) Td‘[ = 1. (57)

The Prony series representation of the relaxatiodutus E(t), is described by

t

E(t) = E + XN, E;eri. (58)

and the Prony series representation of creep cangdiD(t) is given by
-t

D(t) = D, + XN, D, (1 - eT_i> . (59)

In order to obtain the derivative of the relaxatmandule, its representation must include the
sudden application, using the concept of a ung &taction due to the discontinuity at= 0,

E(Y) =H() IEe + 22, Eie(;_it)l' (60)

where H(t) is the Heaviside function.
Using the chain rule of differentiation, whetér) is the Dirac delta function, the derivative is
given by

T

O _ §00) lEe + 2L, Eie(;_i)l + H(t) [ 21 —%e(;’_:)l (61)

dt -
Replacing equations 59 and 61 in equation 57, tesul

10
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-(t-79 -1 -1
fot [De + 3L, D (1 —e T )] {S(T) [Ee +ym Eie("_i>] + H(1) [ m —E—e("_>]} dr=1 (62)

After some algebra, the equations that perform ridaxation modulus interconversion,
having creep compliance as input data, are deschpehe following matrix equation [9]:

AyiE; = By, (63)
where
( —t S\ op /T ot
—De(l—e"i>—i-2j"=1 —Dj(l—e"i>+’—;<eti —e"i> se p; # T
‘E]'— i
A = . (64)
%k ke Tk
—De<1—e"i>+Z]-“=1<—Dj(1—e"i>+%tketi) se pj = T;
and
%
De+§:j“=1 Dj<1_e T )l
Bi=1- . (65)

] De

De, Dy, p (1=1, ..., m)T; =1, ..., n) andy (k =1, ..., p) are known or stipulated variables.

The solution of the system of linear equations &ign 63) requires the collocation method
when p = m and the least squares method when Bk n [

In the case of the collocation methogdshould be adopted &g = at; where, according to
reference [9], the constardi™must assume values between 2 and 5. Outsideathge, numerical
instability problems are likely to occur, resultiimg negative terms in the Prony series for E(t).
Furthermore, a first approximation to the time ¢ants for relaxation modulyg can be obtained
imposingp; equal to the time constants for creep complias.ce

5 VALIDATION AND EXAMPLES
5.1 Tangent stiffness matrix

In this study the exact expression for the bendampent stiffness matrix is developed by
differentiation of the internal force with respetct nodal displacements. A comparison to the
numerical tangent stiffness matrix is made to verff the calculated matrix is correct. The
numerical matrix is calculated using central firdiference, as represented in equation 66,

aq; _ 9i(uj+Au)—q;(uj—Au)
au]' ZAUj

Kij = ) (66)

where the internal forcg; is given by imposing a small displacemantin the degree of freedom
j- The displacement applied must be sufficientlyalreo that the expression results in a derivative
approximation rather than in a secant. On the dtlaed, it must be large enough to avoid large
numerical errors associated to the computer'efgiécision.

Several comparison tests are conducted to compearsvb matrices, showing negligible error
in the elastic case. On the other hand, due to sgpeximations adopted in the derivation of the
viscoelastic tangent stiffness, differences betwberanalytical and numerical matrices occurred.

11
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5.2 Residue convergence rate

If the tangent matrix is obtained by calculating #xact derivative, the implementation of the
NR method should result in quadratic convergenee thee roots. This means that each new residue
should be proportional to the square of the previmne.

Several examples are tested and the residue f&eden each iteration. As expected (in view
of Section 5.1), quadratic convergence is obtaioedll examples for the elastic material model.
Table 1 presents the residue convergence for axdosd step in a typical elastic beam problem
using this formulation. The convergence rate fervhlues in the Table is approximately 2.3.

Table 1 — Residue in each iteration, Newton-Rapsethod.

Iteration Residue

1.00000x1H
9.47359x10
2.16870x108
5.40335%x10
1.9880x10"

GQB|WIN|F

5.3 Simplified beam model — Small displacements

For a first validation of the simplified beam elamhetwo examples involving small
displacements and strains are analyzed. In this, ¢a®nly bending stiffness is considered, the
solution should agree with the Euler-Bernoulli beaguation. Two load cycles are applied
considering damping proportional to the lumped mhsghe first cycle the load is applied quickly
while in the second the load is kept until stahilian of displacements. The accuracy of results is
evaluated, using 10 and 40 elements in each ofedanples. The data for both problems is

presented in Table 2.

Table 2 — Data of examples for the simplified beaodel.

Problem data

Proportional Damping 5
Diameter of the cross-section 60 mm
Density 7860.0 Kg/m3
Young modulus 210.0 x fou/n?

5.3.1 Example 1 - Bi-supported elastic beam

The geometric definition of this example is shownHigure 2. Note that both ends are
constrained in horizontal and vertical directioi$ie entire length of the beam is divided in
elements of equal size, using 10 and 40 elementsro® of 6000N is applied at the mid-length of
the beam, resulting in small displacements.

Due to symmetry, Figure 3(a) shows the verticapldisement at each node only along half
length. The curves show the results obtained thighimplementation developed in this study and
those predicted by Euler-Bernoulli theory. In FR(b), errors relative to the Euler-Bernoulli
equation are presented. Good agreement is found.

12
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| 0.5m | 0.5m 4
[ | |

Figure 2 - Example 1 - Bi-supported elastic beam.

0 25
-0.1 Analytical = 2.25 -
02 - o Atenas 40 B 2 | B
—-#&- Atenas 10

—-0.3 1.75 =
£
‘=04 — 15 0 40 elements -
£ bl
g-05 5125 = 10 elements B
Q =
S 06 - I :
E. -U.!
K]
007+ 0.75 - -

-0.8 0.5 D

-0.9 0.25 =

'1 0 T T T T
0 100 200 300 400 500 0 100 200 300 400 500
X [mm] X [mm]
(a) (b)

Figure 3 - Bi-supported elastic beam, only benditiifness: (a) displacements in y and(b)
errors relative to the Euler-Bernoulli equation.

5.3.2 Example 2 — Clamped beam

The geometric definition of this example is givem Figure 4(a). In order to simulate
adequately the orthogonality of the elastic cunviha clamped end, an additional element (element
zero) with the same length of element 1 is intr@dludn each load step (or time increment) its
coordinates are updated to be symmetrical to thbdee first element, creating a symmetrical point
in node 1, Figure 4(b). This way it is possibleetdorce zero curvature in the clamped end. The
force applied in this problem is 800N.

Figure 5(a) shows the vertical displacement at ewate obtained with the implementation
developed in this study and according to the EBlmoulli theory. In Fig. 5(b), errors relative to
the Euler-Bernoulli equation are presented. Ashia previous example, excellent agreement is
verified.

5.4 Simplified beam model — Large displacements

In this Section, the formulation of the simplifigstam element developed is tested with
respect to large displacements. To this end, axidlbending stiffness are coupled, and the solution

13
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is validated against the commercial finite elemsoftware Msc Marc. Two load cycles are applied
considering damping proportional to the lumped mhsthe first cycle the load is applied quickly,
while in the second the load is kept until stahilian of displacements. The accuracy of results is
analyzed for discretizations using 10 and 40 elésnen each of the examples. The data of the
problems is presented in Table 2.

y

F element zero element 1
element zero
a N\ /
| 1.0m ¥9(3) ya(3)
[
() (b)

Figure 4 - (a) Example 2 — Clamped beam, (b) Modetif clamped boundary condition.

0 | | | | 35
Analytical o 40 elements

-0.25 o Atenas 40 | 34 +

0.5 1 m Atenas 10 L m 10 elements
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Figure 5—-Clamped elastic beam, just bending comqusnéa) displacements in y and
(b) errors relative to the Euler-Bernoulli equation

5.4.1 Example 1 - Bi-supported elastic beam

The geometric definition of this example is depicte Figure 2. The entire length is divided
into 10 and 40 equal elements.

Considering only half length due to symmetry, Fegafa) shows the vertical displacement at
each node. Results are obtained according to #sept implementation in program ATENAS and
to the commercial code Msc Marc. A point load &8N applied at the mid-length of the beam
leads to displacements that require a nonlineamgéac analysis. The Euler-Bernoulli analytical
solution is no longer satisfactory in this caseteNihhat compared to the results provided by Msc
Marc, the errors obtained are smaller than 1.1%e(@ents) and 0.3% (40 elements).
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5.4.2 Example 2 — Clamped beam

The geometric definition of this example is presenin Figure 4. Figure 7(a) shows the
vertical displacement at each node obtained aawgrdi the formulation proposed in this work and
to the commercial software Msc Marc. A point loafl £40x1d N is applied, leading to
displacements that require a nonlinear geometiatyais.

Figure 7(b) shows that, in comparison to the resgiten by Msc Marc, the error obtained is
smaller than 4% and 3.5% next to the boundary ¢mmdand around 1% and 0.25% in the last
node, for discretizations with 10 and 40 elemergspectively. The boundary condition region has
larger errors due to the larger curvature in tleggimborhood.
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Figure 6 - Bi-supported elastic beam: (a) displaasi®iin y and (b) errors relative to Msn
Marc.
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Figure 7— Clamped elastic beam:(a) displacementsaimd (b) errors relative to Msc Marc.
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5.5 Transient analysis

The same examples studied for the static analysesa@dopted to evaluate the transient
response obtained when using the simplified beardemadrhe displacements obtained via the
present formulation are compared to those obtairsguly the commercial finite element software
Msc Marc.

The data of the problems is presented in Tablex@p for damping information, which is
not considered in this Section.

5.5.1 Example 1 - Bi-supported elastic beam

The geometric definition of this example is showrFigure 2. The entire length of the beam
is divided into 40 equal elements. A force ofN0is applied in ramp up to 18, with time
increments of 10s. Next the force is kept constant and the vissbielaesponse is evaluated at
time increments of 2.68x78.

Figure 8(a) depicts a graph showing the verticapldicement at the node where the load is
applied against time. The results obtained in ATENAnd Msc Marc are displayed, showing
excellent agreement.

5.5.2 Example 2 — Clamped elastic beam

The geometric definition of this example is givarFigure 4. The entire length is divided into
40 equal elements. In this example the force idiegpn a ramp from zero to O with time
increments of 10s. Thereafter, time increments of 5.34%19 are applied keeping the force
constant. The same incrementation is adopted irc lsiad ATENAS.

Figure 8(b) shows the vertical displacement at ldsdled node versus time obtained in
ATENAS and Marc. Good agreement of results is oletchi
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Figure 8 - Comparison between ATENAS and Marc.i{a)ipported beam and(b) clamped
beam.
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5.6 Simplified beam model with linear viscoelasticity

After validating the simplified beam model for stadnd transient elastic analyses including
geometric nonlinearity, the viscoelastic formulatiproposed in Section 4 is evaluated using the
commercial finite element software Msc Marc as nafiee again. Once more, a clamped and a bi-
supported example are studied, now including melteate dependence. For both cases, two load
cycles are imposed. In the first cycle the loadgplied quickly (10s). In the second cycle, force is
kept constant until stabilization of displacements.

The input constants for the Prony series corresgorttie generalized Kelvin-Voigt model
and refer to examples studied by Brinson and Brinsaeference [10]. These constants represent a
linear viscoelastic polymer and are shown in Tahl&elvin-Voigt model constants are used as
input data because the bar element previously aMailin ATENAS adopted this mechanical
analogy. As the implemented viscoelastic bendingrdaution is based on the generalized Maxwell
model, the constants are converted by the methscribed in Section 4.1.1. The values obtained
are presented in Table 3. The interconversion plareeconsiders a collocation coefficient equal to
3,andp =T1.

In the examples presented in this Section, theifipecass of the beam is 7.339¥1kg/m’
and the cross section is circular with a diamet&Oomm.

Table 3 - Prony Constants of a linear viscoelgstigmer.

T Creep Compliance| Relaxation Modulus
[s] [mm?/N] [N/mm?]
D= 0.10x10° E. = 5000.0

0.6 0.207x10 1971.06

6 0.318x1d 1598.30

60 0.231x1d 837.07

210 0.166x10 393.55

600 0.569x10 120.49
2100 0.996x18 24.20
6000 0.425x18 10.39
60000 0.236x16 5.92
600000 0.200x10 5.02

5.6.1 Example 1 - Bi-supported viscoelastic beam

The geometric definition of this example is depicta Figure 2. The entire length of the
beam is divided into 40 equal elements. In thisvgxa the force is applied in a ramp from zero to
10* N, with time increments of10s. Thereafter, the force is kept constant and timeements of
8.35x10"s are imposed. The same incrementation is adopt&@ENAS and Marc.

Figure 9(a) shows the vertical displacement atcér@ral node (where the load is applied)
versus time, obtained via both programs.

5.6.2 Example 2 — Clamped viscoelastic beam

The geometric definition of this example is disgdyin Figure 4. The entire length of the
beam is divided into 40 equal elements. The fas@pplied in a ramp from zero to 100 N with time
increments of 18s. Thereafter, the force is kept constant and fiimseements of 7.51x1%are
imposed. The same incrementation is used in ATERAGMarc.

Figure 9(b) shows the vertical displacement atasenode (where the load is applied) versus
time, obtained in both programs.
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Figure 9 shows that excellent agreement betweenNdEand Msc Marc is achieved in both
examples, for clamped and bi-supported beams.
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Figure 9 - (a) Displacement of central node by fibiesupported beam, (b) Displacement of
the last node by time, clamped beam.

6 CONCLUSIONS

Aiming at the analysis of submerged HDPE pipeliespnlinear simplified beam element is
developed. The formulation retains only transladlategrees of freedom (three degrees of freedom
per node in a 3D analysis), and is able to simutateectly the geometric and material nonlinear
behavior of a traditional Euler-Bernoulli beam et Bending stiffness is introduced via
rotational springs between two adjacent geomelyicain-linear bar elements. The expression for
the internal force vector and tangent stiffnessrima developed from the principle of virtual work
(PTV).

In implicit problems with a large number of elenen@and degrees of freedom), the
computational cost is dominated by solving the &éqna system. Therefore, as the beam model
developed has half the degrees of freedom thakulex-Bernoulli and Timoshenko beam elements
(which have three translational and three rotatidegrees of freedom per node), the implemented
code has potential to result in greater computatiefficiency. In explicit problems, no system of
equations has to be solved and there is greatansatye.

The presented work details the derivation of thes@ient tangent stiffness matrix for the
elastic model, which is obtained by the exact daten of the internal force derivative. As a
consequence, quadratic convergence is achieveldeiiNewton-Raphson method. The analytical
tangent stiffness matrix is also compared to thege¢at matrix obtained by central finite
differences, proving equality between them.

The simplified beam element is initially tested siiering small displacements. For the
simulation of a bi-supported beam, using forty edats, the error relative to elastic line is in the
order of 0.5%, and for the clamped beam the edonsot exceed 1.0%.
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Adopting large displacements, excellent agreeménesults is also observed. The errors

relative to software Msc Marc, for the bi-supportexhm with forty elements are lower than 0.3%.
For the clamped beam, excluding the boundary cammditegion, the errors are in the order of
0.25%. The transient behavior is also evaluatethiming a behavior very similar to that obtained
by Msc Marc.

A linear generalized Maxwell viscoelastic model developed for bending stiffness

contribution in the simplified beam element. Tramsiresults match very closely those provided by
the software Msc Marc.

This implementation allows the analysis of varidyges of polymers, however, modeling

HDPE demands continuity of the research to inclhul@linear viscoelasticity.
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