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ABSTRACT 

In recent years, the use of pipes made of high density polyethylene (HDPE) has registered a remarkable increase 
in submersed applications for gas and water distribution. Often, the submersion process is a challenging engineering 
problem due to the high curvature to which the pipes are submitted, and to the requirement of a nonlinear dynamic 
analysis. Computational systems, which adopt truss and beam models, have been employed to predict the pipelines 
mechanical behaviour. The latter are more accurate than the former but demand more memory storage and a high 
computational effort. In this work, as a first step towards modeling HDPE submersed pipes, a linear viscoelastic 
geometrically nonlinear beam finite element is formulated by modifying a geometrically nonlinear truss element. 
Bending stiffness is introduced by means of rotational springs between two adjacent bar elements, keeping only 
translational degrees of freedom. This results in an element with 6 degrees of freedom per element, compared to 12 
degrees of freedom per element for the traditional Euler-Bernoulli and Timoshenko beam formulations. The internal 
force vector and the stiffness matrix are derived using the principle of virtual work. Special care is taken to develop the 
exact tangent stiffness matrix so that quadratic convergence rate can be expected in the Newton-Raphson solution 
process. Linear viscoelastic behaviour is modeled using Kelvin-Voigt and Maxwell rheological models and a numerical 
algorithm to perform the interconversion of the material parameters between them is applied. Creep compliance and 
relaxation functions are modeled using Prony series. The discretization in time is performed using both implicit and 
explicit approaches. Results are compared to the finite element commercial software MSC Marc, whose Euler-Bernoulli 
beam element uses cubic interpolation functions (Hermite) and has 12 degrees of freedom per element. In addition to 
the excellent agreement of results verified, the proposed element yields a much smaller system of equations and has 
potential for great numerical efficiency. 
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1 INTRODUCTION 

Submerged pipelines of high density polyethylene (HDPE) have been used for water and 
sewage transportation since 1960 [1] and more recently for gas distribution [2]. The combination of 
flexibility and resistance makes HDPE superior to other materials for the design of submerged 
pipeline systems. The installation is often performed by progressively flooding of one of its ends. 
According to Palacios [3], the advantage of this method is the time required for installation, the 
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major drawback being the control process of submersion which is a problem due to high curvature 
to which the pipe is subjected. Moreover, environmental conditions during the pipes lifetime affect 
the loads supported, as well as stresses and strains. 

Computational systems have been used to predict the mechanical behavior of these pipes 
through nonlinear dynamic analysis. In general, for mechanical behaviour analyses, truss or beam 
models are adopted. A truss model is computationally cheaper, but less accurate and does not take  
account of bending stiffness. Instead, a beam model represents satisfactorily problems where 
bending stiffness should not be overlooked, but its use requires a larger computational effort. In this 
context, as a first step to simulate the submersion of HDPE pipes, this work aims to develop the 
formulation of a simplified beam element which has fewer degrees of freedom, but can correctly 
calculate the geometrical and material nonlinear behaviour. 

Alternatives to simplify the beam model have been proposed based on concentrated mass 
models. An example is the work of Ghadimi [4], who obtained the bending moment from the 
change of slope between adjacent elements and subsequently calculated equivalent shearing forces 
from the change of bending moment. The present work is based on the approach of Low and 
Langley [5], in which the bending stiffness is considered by the contribution of a rotational spring 
between two adjacent bar elements. These authors obtain the spring rotational stiffness using a 
potential energy approach, considering some approximations. In this work, the expressions for the 
internal force vector and tangent stiffness matrix is developed from the principle of virtual work 
(PTV) and its exact linearization (no approximations), and thus the best possible (quadratic)  
convergence rate in the solution method is achieved. 

Regarding the non-linear solution, implicit and explicit approaches are implemented. In the 
implicit case, a Newton-Raphson procedure coupled to the Newmark algorithm (average 
acceleration) is employed, while in the explicit alternative, central differences are adopted. For 
conciseness, only implicit results are shown in this article. Explicit results are very similar. 

Concerning material behavior, polymers are often characterized as viscoelastic or 
viscoplastic, suggesting a combination of viscous flow, typical of fluids, with plastic or elastic 
characteristics, typical of solids. Indeed, the challenge in studying and modeling these materials 
comes from the fact that all these three types of idealized behaviour exist simultaneously in any 
relative proportion [2]. Studies show that, at room temperature, HDPE has a nonlinear viscoelastic 
behaviour at any stress level [6]. However, as a first study to model polymeric tubes, this work has 
its focus in linear viscoelasticity, where the material rheological properties are independent of stress 
and strain levels, and creep and relaxation functions are only dependent of time. The derivation of 
the function that models linear viscoelasticity in the bending contribution of simplified beam model 
is based in the work of Kaliskeand Rothert [7], who present a tridimensional viscoelastic 
formulation applied to finite element methods and uses generalized Maxwell elements. 

The implementation of the simplified beam element presented in this work relies on the 
modification of the bar element available in program ATENAS 5.0, which is a code developed for 
academic purposes in UDESC by Muñoz-Rojas and his students. The linear viscoelastic model 
adopted for the bending contribution is derived from the generalized Maxwell model. On the other 
hand, the axial viscoelastic contribution already present in ATENAS is modeled based on the 
generalized Kelvin-Voigt model. Thus, an interconversion between Maxwell and Kelvin 
viscoelastic properties is needed to ensure consistence when using the input data. This work uses an 
interconversion for material functions represented by Prony series [8]]. The derivation of the 
tangent stiffness for the viscoelastic formulation adopts some approximations and does not lead to 
quadratic convergence. At the same time that this issue demands further development, at the present 
stage explicit integration in time can already be highly attractive.  
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2 ATENAS 

The implementation of the simplified beam element is performed by modifying the bar 
element present in program ATENAS 5.0.The formulation used for the geometric nonlinearity in 
the existent bar element is based on reference [11], although it differs in the sense that it is 
completely described using interpolation functions and the  rotated engineering stress and stress 
tensors are adopted as a conjugate pair. Starting from the principle of virtual work, an expression 
for the internal force vector is developed and its exact differentiation yields the tangent stiffness 
matrix [12]. Regarding the solution procedure, both explicit and implicit methods are implemented. 
In the former, a central differences scheme is used. In the latter, the code employs average 
accelerations (Newmark) coupled to the Newton-Raphson method. The linear viscoelastic model 
implemented for the bar element (axial contribution) is derived from the generalized Kelvin-Voigt 
model and its formulation is based on references [13] and [14]. 

3 SIMPLIFIED BEAM ELEMENTS 

In this paper, inspired in the work published by Low and Langley [5], bending stiffness is 
introduced in the bar element by means of rotational springs between two adjacent bar elements. 
The forces of an equivalent rotational spring are derived directly from the work expression in global 
coordinates, thus eliminating the need for transformations between local and global coordinate 
systems. Additionally, the formulation can easily be extended to obtain the consistent stiffness 
matrix. However reference [5] assumes some approximations to perform the derivatives, which 
cause loss of convergence rate in the Newton-Raphson method. On the other hand, the present work 
develops an exact (consistent) tangent stiffness matrix, resulting in quadratic convergence rate in 
the solution method. 

 
3.1 Bending internal force 

Assuming a cable profile initially straight, the strain work W�, due to the application of an 
angular displacement θ� at point i is expressed as 

 

 W� = ��M�θ�. (1) 

 
The moment-curvature relationship at an arbitrary point of the beam is given by 
 
 M� = EIκ, (2) 
 

where EI is the bending stiffness, κ is the curvature given by the radius of curvature R = 1 κ� , and θ� is the bending angle at point i. 
Let us take the point i as being located at the node between two adjacent bar elements. An 

expression for the radius of curvature can be approximated by considering the arc that interpolates 
three nodes of the elements, as shown in Figure 1. Note that the global node i corresponds to the 
local node 2 (node corresponding to the rotational spring) and the elements j and k correspond to 
the elements on the left and right to the spring, respectively. 

Using trigonometric properties and the law of cosines, it is possible to equate the expression 
of the distance between the vertices 1 and 3, generated by the triangle formed by the arc center and 
vertices 1 and 3, and by the triangle of vertices 1, 2 and 3. Thus, the relationship between the angle 
between elements (θ�) and the radius of curvature is given by 
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 θ� = ��� �L�� + L���, (3) 

 
where L�� and L�� are the original lengths of the respective elements j and k. From equation 3 the 
curvature results in 

 

 κ = ������������. (4) 

 

 

Figure 1 – Arc between elements to find the curvature expression. 

 
Substituting equation 2 and equation 4 into equation 1 yields 
 

 W� = �� k θ��, (5) 

 
where k  is the bending stiffness of the spring 

 

 k = �!"���������. (6) 

 
Using the principle of virtual work (PTV) and applying a kinematically admissible virtual 

displacement	δ% in equation 5, it comes out that 
 

 δW� = k θ� &��&% δ% = k θ�'δ%() *&��&%+). (7) 

 
In order to obtain the derivative ∂θ� ∂%⁄ , let's first define vectors t and s, whose moduli 

provide the length of elements j and k, respectively, 
 
 . = /01 − /31 (8) 
 
 4 = /51 − /01, (9) 
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where /�1 are the global coordinates of node j and the superscript S emphasizes that this node 
numbering corresponds to the nodes 1-3 associated to the spring. In this case, nodes 1 and 3 
correspond to first and last nodes connected to the spring i, and node 2 corresponds to the spring 
node i  (Figure 1). Note that the only nonzero terms in the matrix ∂θ� ∂%⁄  are those corresponding 
to ∂θ� ∂%1⁄ , so that all the derivation can be done considering only these terms. Hence, for the 
spring at node i, 
 
 /1 = 6/31 /01 /517) (10) 
and 

 /81 = 9x�1 y�1 z�1=),				k = 1, 3. (11) 
 

Using the definition of scalar product and differentiating with respect to the spring 
displacement vector, one has 

 
 . ∙ 4 = |.||4| cos'θ�( (12) 
 

 
&&%D '. ∙ 4( = &&%D '|.||4| cos'θ�(( (13) 

 

 4) &.&%D + .) &4&%D = |4| cos θ� &|.|&%D + |.| cos θ� &|4|&%D + |.||4| &E�F��&�� &��&%D. (14) 

 
Noting that 
 
 . = /01 − /31 = G031 + %031 . (15) 
 

and denoting as H  the matrix that relates the displacement vector %1  to the displacements 
corresponding to the first element,  j  

 %031 = I−1 0 0 1 0 0 0 0 00 −1 0 0 1 0 0 0 00 0 −1 0 0 1 0 0 0K

LM
MM
MM
MM
MM
Nu�1v�1w�1u�1v�1w�1uR1vR1wR1ST

TT
TT
TT
TT
U

= 6H7%1, (16) 

it turns out that 

 
&.&%S = &%03S&%S = 6H7. (17) 

 
In the same way, differentiating s with respect to %1, results in 
 

 
&4&%S = &%50S&%S = 6W7,  (18) 

 
where W is the matrix that relates the displacement vector %1 with the displacements corresponding 
to the second element, k. 
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Using the definition of the Jacobian, in local element coordinates (now node numbering 1 and 
2 correspond to the first and second nodes of element j), and differentiating |.| with respect to %1, 

 

 |.| = |/0 − /3| = 2J�'/( = 6−1 0 0 1 0 07
LM
MM
MNX� + u�Y� + v�Z� +w�X� + u�Y� + v�Z� +w�ST

TT
TU
 (19) 

 

 
&|.|&%] = 2 &^�'/(&%� &%�&%] = 6−1 0 0 1 0 079_`= (20) 

 
where _` is the rotation matrix for the element j,  

 

 _` =
LM
MM
MNc�
� c�� c�R 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 c�� c�� c�R 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0ST

TT
TU
, (21) 

 
and c�� is the direction cosine of the local axis 1 (x) with respect to the k-th global axis (1, 2 and 3, 
corresponding to xG,  yG  and zG). Hence, 

 

 
&|.|&%] = 6−c�� −c�� −c�R c�� c�� c�R 0 0 07 = a3b) 6H7 = 6c7, (22) 

 
where a3b and c are the vector and matrix formed by the direction cosines for element j. 

By analogy, using the definition of the Jacobian in local element coordinates and 
differentiating |4| with respect to %1, leads to 

 

 
&|4|&%] = 60 0 0 −c�� −c�� −c�R c�� c�� c�R7 = a38) 6W7 = 6ℕ7 (23) 

 
where a38 and ℕ are the vector and matrix formed by the direction cosines for element k. 

Substituting the expressions computed above in equation 14, the expression for ∂θ� ∂%1⁄  is 
obtained as 

 

 
&��&%] = − �|.||4| F�e�� f4_6H7 + ._6W7 − '|4|6c7 + |.|6ℕ7( cos θ�g. (24) 

 
Using the PTV, given by the previous expression and equation 7, leads to 
 

 δW� = 'δ%1()h1 = 'δ%1()k θ� *&��&%]+). (25) 

 
In this expression h1 is the bending internal force vector for each spring. Using the equality 
 

 h1 = k θ� *&��&%]+), (26) 
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it finally results in 
 

 h1 = − �i��|.||4| F�e�� f6H7)4 + 6W7). − '|4|6c7) + |.|6ℕ7)( cos θ�g. (27) 

 
3.2 Bending tangent stiffness matrix 

Using the spring nodal numbering, the bending tangent stiffness matrix for each rotational 
spring (order 9) can be defined as 

 

 81 = &h]
&%]. (28) 

 
In order to simplify the presentation of the mathematical development, the tangent stiffness 

matrix will be separated into two terms, 831 and 801, 
 

 831 = −'6H7)4 + 6W7). − '|4|6c7) + |.|6ℕ7)( cos θ�( &
&%] * �i��|.||4| F�e��+. (29) 

 

 801 = − �i��|.||4| F�e��
&
&%] '6H7)4 + 6W7). − '|4|6c7) + |.|6ℕ7)( cos θ�(. (30) 

 
Using differentiation rules, expanding the terms and using expressions previously calculated, 

leads to 6 terms of the tangent stiffness matrix for each spring 
 
 81 = 83j1 + 83k1 + 80j1 + 80k1 + 80l31 + 80l01 , (31) 
 

where 

 83j1 = �i
F�e�� 'sin θ� − θ� cos θ�( *&��&%]+

) *&��&%]+, (32) 

 

 83k1 = − �i��|.||4| *&��&%]+
) '|4|6c7 + |.|6ℕ7(, (33) 

 

 80j1 = − �i��|.||4| F�e�� '6H7)6W7 + 6W7)6H7(, (34) 

 

 80k1 = − �i��|.||4| '|4|6c7) + |.|6ℕ7)( &��&%], (35) 

 

 80l31 = �i�� E�F��|.||4| F�e�� '6c7)6ℕ7 + 6ℕ7)6c7(, (36) 

 

 80l01 = �i�� E�F��|.||4| F�e�� o|4||.| 6H7)�6H7 − a3b6c7� + |.|
|4| 6W7)'6W7 − a3p6ℕ7(q. (37) 

 
The implementation uses a mapping to relate the positions of the bending stiffness matrix and 

internal force vector for each spring to the respective degrees of freedom in the global system. To 
obtain internal forces and corresponding stiffness matrices, the contributions of axial and bending 
forces are added in their respective global degrees of freedom.  
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4 LINEAR VISCOELASTIC MODEL 

The derivation of the linear viscoelastic material function for the simplified beam element is 
based on reference [7], which presents a tridimensional viscoelastic formulation applied to finite 
element computations and uses generalized Maxwell elements. 

Replacing equation 4 in the moment-curvature relationship (equation 2), results in a 
relationship between the moment and angle between the beam elements, 

 

 M� = krθ� = �!"�����������, (38) 

 
where M� is the moment acting on a node, E is the modulus of elasticity, I is the moment of inertia, L�� and L��are the lengths of the elements before and after node i, respectively, and θ� is the angle 
between the elements. Assuming no change in the cross section along the axis length and 
considering small extensional deformations, the above equation results in  

 
 M� = ℂ�Eθ�, (39) 

 

where ℂ� = �"���������is constant. 

From the stress-strain relationship for linear viscoelastic materials (equation 40), by analogy 
to the moment-angle relationship, it comes out that  

 
 σ't( = E't(εE (40) 
 
 M�'t(~σ't( (41) 
 
 θ�~εE (42) 
 

so that 
 M�'t( = ℂ�E't(θ�. (43) 
 
According to reference [2], linear viscoelasticity can be represented by  
 

 σ't( = x E't − s( &y'F(&F ds.{|  (44) 

 
From this point on, the index representing node i is omitted in favor of neatness in the text 

presentation. The development of the numerical model starts from the integral representation of 
linear viscoelasticity (equation 44), using the analogy to the moment 

 

 M't( = x ℂE't − s( &�'F(&F ds,{|  (45) 

 
where 

 E't − s( = E} +∑ E�eo���D�� q����  (46) 
 
where m is the number of Maxwell elements. Splitting equation 45 into elastic and viscoelastic 
parts results in 
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 M't( = x ℂE} &�'F(&F ds + x ∑ ℂE�eo���D�� q &�'F(&F ds����{| ,{|  (47) 

 

 M't( = ℂE}θ't( + ∑ x ℂE�eo���D�� q &�'F(&F ds{|���� , (48) 

 
 M't( = M}'t( + ∑ h�'t(���� , (49) 
 

where M}'t( is the elastic component of the response. The goal of the next steps is to obtain an 
efficient numerical formulation for the solution of the integral h�'t(. In analogy to the development 
in reference [7], the following recursive formula is obtained 

 

 h�e�� = eo�∆���qh�e + ℂE� ��}o�∆���q∆���
6θe�� − θe7. (50) 

 
The final equation for the moment considering linear viscoelasticity is given by 
 
 Me�� = ℂE}θe�� + ∑ h�e������ . (51) 
 
In the simplified beam element formulation deduced previously, the internal force vector in 

each spring is given by 
 

 h1 = k θ &�&%]. (52) 

 
Substituting equation 38 it follows that 
 

 h1 = M &�&%]. (53) 

 
Applying the viscoelastic model, the internal force vector associated to the spring at node i is 

finally given by 
 

 �h�1�e�� = 9ℂE}θe�� + ∑ h�e������ = &����&�%]����, (54) 

 
Correspondingly, the tangent bending stiffness matrix is given by differentiation of the 

internal force, 
 

 �8�1�e�� = &�h�]����&�%]���� (55) 

 
 Clearly, in the differentiation of h�1  , θ��� is the only variable dependent on displacements. 
Thus, replacing equations 54, 50 and 52 in 55, the derivative yields the tangent bending stiffness 
matrix for the viscoelastic model 
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 �8�1�e�� = �ℂE} + ∑ ℂE� ��}o�∆���q∆���
���� � ��� '81(e�� (56) 

 
where 81 and 8�1  are the stiffness matrices for the simplified elastic and viscoelastic beam models, 
respectively. 

 
4.1 Interconversion between viscoelastic functions 

The main reason to perform an interconversion in this work is that the viscoelastic model 
implemented in ATENAS for the bar element requires creep constants Di, which are associated to 
the generalized Kelvin-Voigt model, whereas the simplified viscoelastic bending contribution 
requires relaxation constants Ej, which are associated to the generalized Maxwell model. Hence, a 
function interconversion is needed so that the code input data (creep constants) can be internally 
converted to represent the same material for each element. The numerical interconversion used in 
this work considers linear viscoelastic material functions based on representations via Prony series 
[8][10]. 

 
4.1.1 Relaxation Modulus from creep compliance 

It can be shown that for a unit strain, the relationship between the relaxation modulus E(t) and 
the creep compliance D(t) is given by [8], 

 

 x D't − τ( �!'�(�� dτ{| = 1. (57) 

 
The Prony series representation of the relaxation modulus E(t), is described by  
 

 E't( = E} + ∑ E�e�������� .  (58) 
 

and the Prony series representation of creep compliance D(t) is given by 
 

 D't( = D} +∑ D� �1 − e���������  . (59) 

 
In order to obtain the derivative of the relaxation module, its representation must include the 

sudden application, using the concept of a unit step function due to the discontinuity at � = 0,  
 

 E't( = H't( �E} + ∑ E�e���������� �, (60) 

where H(t) is the Heaviside function. 
Using the chain rule of differentiation, where �'�( is the Dirac delta function, the derivative is 

given by 
 

 
�!'{(�� = δ'τ( �E} + ∑ E�e���������� � + H'τ( �∑ − !��� e���������� �. (61) 

 
Replacing equations 59 and 61 in equation 57, results in 
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 x �D} + ∑ D� o1 − e�'���(�� qe��� �{| �δ'τ( �E} + ∑ E�e����� ����� � + H'τ( �∑ − !��� e����� ����� �  dτ = 1 (62) 

 
After some algebra, the equations that perform the relaxation modulus interconversion, 

having creep compliance as input data, are described by the following matrix equation [9]: 
 
 A��E� = B�, (63) 

where 

 A�� =
£¤
¥
¤¦ −D} o1 − e����� q + ∑ �−D� o1 − e����� q + ��§������ oe

����� − e����� q� 				se	ρ� ≠ τ�e���
−D} o1 − e����� q + ∑ o−D� o1 − e����� q + §��� t�e

����� qe��� 																										se	ρ� = τ�
ª  (64) 

 
and 

 B� = 1 − «§¬�∑ §����}����� ���� ®
§¬ . (65) 

 D}, D�, ρ� (i = 1, ..., m), τ� (j = 1, ..., n) and t� (k = 1, ..., p) are known or stipulated variables. 
The solution of the system of linear equations (equation 63) requires the collocation method 

when p = m and the least squares method when p> n [8]. 
In the case of the collocation method, t� should be adopted as t� = aτ� where, according to 

reference [9], the constant "a" must assume values between 2 and 5. Outside this range, numerical 
instability problems are likely to occur, resulting in negative terms in the Prony series for E(t). 
Furthermore, a first approximation to the time constants for relaxation modulus ρ� can be obtained 
imposing ρ� equal to the time constants for creep compliance τ�. 
5 VALIDATION AND EXAMPLES 

5.1 Tangent stiffness matrix 

In this study the exact expression for the bending tangent stiffness matrix is developed by 
differentiation of the internal force with respect to nodal displacements. A comparison to the 
numerical tangent stiffness matrix is made to verify if the calculated matrix is correct. The 
numerical matrix is calculated using central finite difference, as represented in equation 66, 

 

 K�� = &±�&²� = ±��²��∆²��±��²��∆²��∆²� , (66) 

 
where the internal force q� is given by imposing a small displacement ∆u in the degree of freedom 
j. The displacement applied must be sufficiently small so that the expression results in a derivative 
approximation rather than in a secant. On the other hand, it must be large enough to avoid large 
numerical errors associated to the computer's finite precision. 

Several comparison tests are conducted to compare the two matrices, showing negligible error 
in the elastic case. On the other hand, due to some approximations adopted in the derivation of the 
viscoelastic tangent stiffness, differences between the analytical and numerical matrices occurred. 
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5.2 Residue convergence rate  

If the tangent matrix is obtained by calculating the exact derivative, the implementation of the 
NR method should result in quadratic convergence near the roots. This means that each new residue 
should be proportional to the square of the previous one.  

Several examples are tested and the residue is verified in each iteration. As expected (in view 
of Section 5.1), quadratic convergence is obtained for all examples for the elastic material model. 
Table 1 presents the residue convergence for a given load step in a typical elastic beam problem 
using this formulation. The convergence rate for the values in the Table is approximately 2.3. 

 

Table 1 – Residue in each iteration, Newton-Rapson method. 

Iteration  Residue 

1 1.00000×100 
2 9.47359×10-1 
3 2.16870×10-2 
4 5.40335×10-6 
5 1.9880×10-14 

 
5.3 Simplified beam model – Small displacements 

For a first validation of the simplified beam element, two examples involving small 
displacements and strains are analyzed. In this case, if only bending stiffness is considered, the 
solution should agree with the Euler-Bernoulli beam equation. Two load cycles are applied  
considering damping proportional to the lumped mass. In the first cycle the load is applied quickly 
while in the second the load is kept until stabilization of displacements. The accuracy of results is 
evaluated, using 10 and 40 elements in each of the examples. The data for both problems is 
presented in Table 2. 

 

Table 2 – Data of examples for the simplified beam model. 

 

 
5.3.1 Example 1 - Bi-supported elastic beam 

The geometric definition of this example is shown in Figure 2. Note that both ends are 
constrained in horizontal and vertical directions. The entire length of the beam is divided in 
elements of equal size, using 10 and 40 elements. A force of 6000N is applied at the mid-length of 
the beam, resulting in small displacements. 

Due to symmetry, Figure 3(a) shows the vertical displacement at each node only along half 
length. The curves show the results  obtained with the implementation developed in this study and 
those predicted by Euler-Bernoulli theory. In Fig. 3(b), errors relative to the Euler-Bernoulli 
equation are presented. Good agreement is found. 

 

Problem data 

Proportional Damping 5 
Diameter of the cross-section 60 mm 

Density 7860.0 Kg/m³ 
Young modulus 210.0 × 109 N/m2 
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Figure 2 - Example 1 - Bi-supported elastic beam. 

 
 

 
                                             (a)                                                                            (b) 

Figure 3 - Bi-supported elastic beam, only bending stiffness: (a) displacements in y and(b) 
errors relative to the Euler-Bernoulli equation. 

 
5.3.2 Example 2 – Clamped beam 

The geometric definition of this example is given in Figure 4(a). In order to simulate 
adequately the orthogonality of the elastic curve at the clamped end, an additional element (element 
zero) with the same length of element 1 is introduced. In each load step (or time increment) its 
coordinates are updated to be symmetrical to those of the first element, creating a symmetrical point 
in node 1, Figure 4(b). This way it is possible to enforce zero curvature in the clamped end. The 
force applied in this problem is 800N. 

Figure 5(a) shows the vertical displacement at each node obtained with the implementation 
developed in this study and according to the Euler-Bernoulli theory. In Fig. 5(b), errors relative to 
the Euler-Bernoulli equation are presented. As in the previous example, excellent agreement is 
verified. 

 
5.4 Simplified beam model – Large displacements 

In this Section, the formulation of the simplified beam element developed is tested with 
respect to large displacements. To this end, axial and bending stiffness are coupled, and the solution 
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is validated against the commercial finite element software Msc Marc. Two load cycles are applied 
considering damping proportional to the lumped mass. In the first cycle the load is applied quickly, 
while in the second the load is kept until stabilization of displacements. The accuracy of results is 
analyzed for discretizations using 10 and 40 elements in each of the examples. The data of the 
problems is presented in Table 2. 

 

 
                                                    (a)                                                                     (b) 

Figure 4 - (a) Example 2 – Clamped beam, (b) Modeling of clamped boundary condition. 

 
 

 
                                              (a)                                                                           (b) 

Figure 5–Clamped elastic beam, just bending components: (a) displacements in y and            
(b) errors relative to the Euler-Bernoulli equation. 

 
 

5.4.1 Example 1 - Bi-supported elastic beam 

The geometric definition of this example is depicted in Figure 2. The entire length is divided 
into 10 and 40 equal elements.  

Considering only half length due to symmetry, Figure 6(a) shows the vertical displacement at 
each node. Results are obtained according to the present implementation in program ATENAS and 
to the commercial code Msc Marc. A point load of 6.0×105N applied at the mid-length of the beam 
leads to displacements that require a nonlinear geometric analysis. The Euler-Bernoulli analytical 
solution is no longer satisfactory in this case. Note that compared to the results provided by Msc 
Marc, the errors obtained are smaller than 1.1% (10 elements) and 0.3% (40 elements). 
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5.4.2 Example 2 – Clamped beam 

The geometric definition of this example is presented in Figure 4. Figure 7(a) shows the 
vertical displacement at each node obtained according to the formulation proposed in this work and 
to the commercial software Msc Marc. A point load of 4.0×104 N is applied, leading to 
displacements that require a nonlinear geometric analysis. 

Figure 7(b) shows that, in comparison to the results given by Msc Marc, the error obtained is 
smaller than 4% and 3.5% next to the boundary condition and around 1% and 0.25% in the last 
node, for discretizations with 10 and 40 elements, respectively. The boundary condition region has 
larger errors due to the larger curvature in that neighborhood. 

 
 

 
                                             (a)                                                                           (b) 

Figure 6 - Bi-supported elastic beam: (a) displacements in y and (b) errors relative to Msn 
Marc. 

 

 
                                             (a)                                                                            (b) 

Figure 7– Clamped elastic beam:(a) displacements in y and (b) errors relative to Msc Marc. 
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5.5 Transient analysis 

The same examples studied for the static analyses are adopted to evaluate the transient 
response obtained when using the simplified beam model. The displacements obtained via the 
present formulation are compared to those obtained using the commercial finite element software 
Msc Marc.  

The data of the problems is presented in Table 2, except for damping information, which is 
not considered in this Section. 

 
5.5.1 Example 1 - Bi-supported elastic beam 

The geometric definition of this example is shown in Figure 2. The entire length of the beam 
is divided into 40 equal elements. A force of 106N is applied in ramp up to 10-5s, with time 
increments of 10-7s. Next the force is kept constant and the viscoelastic response is evaluated at 
time increments of  2.68×10-5s. 

Figure 8(a) depicts a graph showing the vertical displacement at the node where the load is 
applied against time. The results obtained in ATENAS and Msc Marc are displayed, showing 
excellent agreement.  

 
5.5.2 Example 2 – Clamped elastic  beam 

The geometric definition of this example is given in Figure 4. The entire length is divided into 
40 equal elements. In this example the force is applied in a ramp from zero to 105 N with time 
increments of 10-7s. Thereafter, time increments of 5.34×10-6 s are applied keeping the force 
constant. The same incrementation is adopted in Marc and ATENAS. 

Figure 8(b) shows the vertical displacement at the loaded node versus time obtained in 
ATENAS and Marc. Good agreement of results is obtained. 

 

 

                                 (a)                                                                            (b) 

Figure 8 - Comparison between ATENAS and Marc. (a)bi-supported beam and(b) clamped 
beam. 
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5.6 Simplified beam model with linear viscoelasticity 

After validating the simplified beam model for static and transient elastic analyses including 
geometric nonlinearity, the viscoelastic formulation proposed in Section 4 is evaluated using the 
commercial finite element software Msc Marc as reference again. Once more, a clamped and a bi-
supported example are studied, now including material rate dependence. For both cases, two load 
cycles are imposed. In the first cycle the load is applied quickly (10-5s). In the second cycle, force is 
kept constant until stabilization of displacements. 

The input constants for the Prony series correspond to the generalized Kelvin-Voigt model 
and refer to examples studied by Brinson and Brinson in reference [10]. These constants represent a 
linear viscoelastic polymer and are shown in Table 3. Kelvin-Voigt model constants are used as 
input data because the bar element previously available in ATENAS adopted this mechanical 
analogy. As the implemented viscoelastic bending contribution is based on the generalized Maxwell 
model, the constants are converted by the method described in Section 4.1.1. The values obtained 
are presented in Table 3. The interconversion procedure considers a collocation coefficient equal to 
3, and ρ = τ.  

In the examples presented in this Section, the specific mass of the beam is 7.339×106 kg/m3 

and the cross section is circular with a diameter of 30 mm. 
 

Table 3 - Prony Constants of a linear viscoelastic polymer. 

τ 
[s] 

Creep Compliance 
[mm2/N] 

Relaxation Modulus 
[N/mm2] 

 De = 0.10×10-3 Ee = 5000.0 
0.6 0.207×10-4 1971.06 
6 0.318×10-4 1598.30 
60 0.231×10-4 837.07 
210 0.166×10-4 393.55 
600 0.569×10-5 120.49 
2100 0.996×10-6 24.20 
6000 0.425×10-6 10.39 
60000 0.236×10-6 5.92 
600000 0.200×10-6 5.02 

 
5.6.1 Example 1 - Bi-supported viscoelastic beam 

The geometric definition of this example is depicted in Figure 2. The entire length of the 
beam is divided into 40 equal elements. In this example the force is applied in a ramp from zero to 
104 N, with time increments of10-5 s. Thereafter, the force is kept constant and time increments of 
8.35×10-4 s are imposed. The same incrementation is adopted in ATENAS and Marc.  

Figure 9(a) shows the vertical displacement at the central node (where the load is applied) 
versus time, obtained via both programs. 

 
5.6.2 Example 2 – Clamped viscoelastic beam 

The geometric definition of this example is displayed in Figure 4. The entire length of the 
beam is divided into 40 equal elements. The force is applied in a ramp from zero to 100 N with time 
increments of 10-5s. Thereafter, the force is kept constant and time increments of 7.51×10-4sare 
imposed. The same incrementation is used in ATENAS and Marc. 

Figure 9(b) shows the vertical displacement at the last node (where the load is applied) versus 
time, obtained in both programs.  
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Figure 9 shows that excellent agreement between ATENAS and Msc Marc is achieved in both 
examples, for clamped and bi-supported beams.  

 

 
                                           (a)                                                                            (b) 

Figure 9 - (a) Displacement of central node by time, bi-supported beam, (b) Displacement of 
the last node by time, clamped beam. 

 

6 CONCLUSIONS 

Aiming at the analysis of submerged HDPE pipelines, a nonlinear simplified beam element is 
developed. The formulation retains only translational degrees of freedom (three degrees of freedom 
per node in a 3D analysis), and is able to simulate correctly the geometric and material nonlinear 
behavior of a traditional Euler-Bernoulli beam element. Bending stiffness is introduced via 
rotational springs between two adjacent geometrically non-linear bar elements. The expression for 
the internal force vector and tangent stiffness matrix is developed from the principle of virtual work 
(PTV). 

In implicit problems with a large number of elements (and degrees of freedom), the 
computational cost is dominated by solving the equations system. Therefore, as the beam model 
developed has half the degrees of freedom than the Euler-Bernoulli and Timoshenko beam elements 
(which have three translational and three rotational degrees of freedom per node), the implemented 
code has potential to result in greater computational efficiency. In explicit problems, no system of 
equations has to be solved and there is greater advantage. 

The presented work details the derivation of the consistent tangent stiffness matrix for the 
elastic model, which is obtained by the exact calculation of the internal force derivative. As a 
consequence, quadratic convergence is achieved in the Newton-Raphson method. The analytical 
tangent stiffness matrix is also compared to the tangent matrix obtained by central finite 
differences, proving equality between them.  

The simplified beam element is initially tested considering small  displacements. For the 
simulation of a bi-supported beam, using forty elements, the error relative to elastic line is in the 
order of 0.5%, and for the clamped beam the errors do not exceed 1.0%. 
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Adopting large displacements, excellent agreement of results is also observed. The errors 
relative to software Msc Marc, for the bi-supported beam with forty elements are lower than 0.3%. 
For the clamped beam, excluding the boundary condition region, the errors are in the order of 
0.25%. The transient behavior is also evaluated, obtaining a behavior very similar to that obtained 
by Msc Marc. 

A linear generalized Maxwell viscoelastic model is developed for bending stiffness 
contribution in the simplified beam element. Transient results match very closely those provided by 
the software Msc Marc. 

This implementation allows the analysis of various types of polymers, however, modeling 
HDPE demands continuity of the research to include non-linear viscoelasticity. 
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