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ABSTRACT 

Many soft biological tissues have the important task of transmitting necessary forces to control movements, hold 

organs in place or ensure a relatively continuous flow of fluids. Examples of these tissues are ligaments, tendons, skin 

and blood vessels. Biological tissues can be seen as composite materials whose constituents are assembled into a 

hierarchical structure. At a macroscopic structural level, the main structural elements of such tissues are the bundles of 

fibers that provide mechanical resistance and viscoelastic anisotropic behavior. This paper intends to extend a 

previously proposed anisotropic viscoelastic model in order to include mechanical damage that may be experimentally 

observed on biological tissues subject to large strains. The material model is based on a variational thermodynamically 

consistent framework, in which a local minimization provides the internal variables updates for each load increment. 

The main advantage of this model is its capability to represent the mechanical behavior of different materials depending 

on the choice or construction of potential functions. Numerical examples are presented in order to illustrate the features 

of the proposed model. 
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1 INTRODUCTION 

In this work is proposed a variational constitutive model appropriate to simulate the 

mechanical behavior of connective soft tissues (e.g. ligaments and tendons) subject to large strains, 

different loading velocities and damage. These soft biological tissues are mainly formed by 

arrangements of collagen fibers embedded in a cellular matrix. This internal structure provides an 

anisotropic mechanical response dependent on the fiber directions as well as a viscosity due to 

interstitial fluid and interaction among fibers. Many models have been proposed to model these 

kinds of materials relating different phenomena (large strains, hyperelasticity, anisotropy, viscosity, 

damage, etc.). Among them, we can mention [1], [2], [3], [4], [5] and [6]. In [7] a variational 

framework for viscoelastic anisotropic materials submitted to finite strain regime is proposed. The 

aim of the present work is to extend that model to include damage behaviors. 

The theoretical framework in which this paper is based and the specific variational model that 

includes viscoelasticity, anisotropy and damage are described in Section 2 and Section 3 

respectively. Section 4 shows some preliminary results using different damage functions proposed 

in literature. Final remarks are enclosed in Section 6. 
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2 VARIATIONAL CONSTITUTIVE MODEL 

Hyperelastic models are based on the existence of a free energy function W which is 

dependent only on the total strain. Then, the first Piola-Kirchhoff stress tensor P is defined as 

 

        (1) 

 

where  is the gradient of deformation and  the Cauchy-Green tensor. 

The stress state of dissipative materials is dependent not only on the total strain but also on 

the strain history. In order to overcome this difficulty an approach based on variational concepts 

was proposed in [8] in which the constitutive problem can be stated analogously to Eq.(1) in an 

incremental way. Variational constitutive models are based on pseudo-hyperelastic potentials where 

the constitutive problem can be stated analogously to a hyperelastic model. In this approach a 

pseudo-potential energy, also called the Incremental Potential, is defined at each load step, 

providing the first Piola-Kirchhoff stress as follows: 

 

      (2) 

 

In this expression,  is the set of external and internal state variables. The elastic 

and inelastic gradients of deformation  and  are obtained from the multiplicative 

decomposition of . The symbol includes all remaining internal variables related to the dissipative 

phenomena. In [8] it is shown that the Incremental Potential may have the expression: 

 

   (3) 

 

where the free energy is conveniently decomposed additively into elastic ( , ) and inelastic 

contributions ( : 

 

      (4) 

 

The strain energy is decomposed additively into elastic and inelastic contributions , and 

, depending on the total value of  on the elastic part  and on the inelastic part  and internal 

variables respectively. is the (pseudo) potential that provides the dependence of the stress on the 

rate (incremental approximation of rate) variables  and . 

The minimization problem (3) identifies the optimal values of and , which define 

the internal variables associated with the new state . Once this minimization problem is solved, 

stresses may be computed by Eq.(2) as in hyperelastic models. Different material models may be 

constructed in this general framework depending on the particular choices and arrangements of 

potentials , ,  and . 
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3 ANISOTROPIC VISCOELASTIC MODEL SUBJECT TO DAMAGE 

The anisotropic viscoelastic damage model proposed here is an extension of the work [7] in 

order to introduce mechanical damage on the fiber-reinforcement. The objective of this inclusion is 

twofold: Firstly, to account for the loss of resistance due to fibers damage that becomes significant 

on finite strains. Secondly, the proposed damage model allows for the representation of the so 

called Mullins effect; according to experimental observations during a load cycle, there exist a loss 

of stiffness at strain levels below the maximum previously attained in a previous cycle. The 

consideration of this phenomenon has an important impact in the capability of the model to 

represent experimental data. 

The inclusion of fibers is performed following concepts shown in [9] by an additive 

decomposition of energies: 

 

          (5) 

 

where,  was proposed in [10] and accounts for the isotropic response of the material, while  

is related to the fiber contribution subject to mechanical damage. 

The fiber-reinforcement contribution proposed in [7] is modified to take into account the 

mechanical damage. Figure 1 shows a rheological representation of the addition (5) in which both 

the isotropic and the fiber contributions are connected in parallel, reacting independently of each 

other for the same total strain. The additive decomposition in Eq.(5) states that the incremental 

potential of the isotropic matrix and that of the fibers are uncoupled. The same happens for the 

elastic and Maxwell branches of the fiber contribution. Each branch depends on the given strain 

increment over and the constitutive response of the composite comes only from the additive 

constitutive response of each component, which is clearly illustrated in Figure 1. Moreover, this 

model considers that fibers are continuously distributed in the isotropic ground substance (matrix) 

[9] and therefore, no distinction is made on the size or length of them. 

 

 
 

Figure 1: Rheological model 
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3.1 Isotropic Incremental Potential 

As mentioned above, the incremental potential used in this work is exactly that proposed 

in [10] and correspond to the rheological representation of Figure 1. The gradient of deformation is 

decoupled into volumetric and isochoric parts with . The isochoric part allows 

also for a multiplicative separation into elastic and viscous contributions: . With these 

hypotheses, the free energy  is defined as 

 

    (6) 

 

Potential  and , associated to the first branch of Figure 1, account for the elastic strain 

energy accumulated due to total isochoric and volumetric quantities  and , respectively. The 

potentials , and  are assumed to be isochoric functions of the Cauchy tensors ,  and of the 

viscous stretching by means of their respective eigenvalues , and , i.e., 

,  and .The viscous stretching 

 is defined by  

 

       (7) 

 

The viscous flow is assumed to be isochoric by means of the following constrains on the 

spectral components of : 

 

    (8) 

 

 
 

 
 

From these definitions, it is shown in [10] that at each time increment , the isotropic 

Incremental Potential in Eq.(3) takes the form 

 

  (9) 

 

subject to the set of constrains (Eq.8) that keeps the viscous stretching isochoric where: 

 

       (10) 

 

The minimization of (9) with respect to is analytically performed, while the minimization 

with respect to leads to a system of four nonlinear optimality conditions. If Newton method is 

chosen to solve it, the solution provides the stress tensor calculated by the classic “hyperelastic-

like” expression and the symmetric analytical tangent modulus needed for the global equilibrium 

problem. Detailed of the model and all mathematical operations are found in[10]. 
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3.2 Anisotropic Viscoelastic Damage Incremental Potential 

The corresponding Incremental Potential for anisotropic viscoelastic damage behavior  

follows the same structure proposed in [7] and can be schematically represented in the second part 

of the Figure 1. Due to anisotropic contribution of fibers, the response depends not only on the 

Cauchy tensor , but also on the structural tensor , where  is the unit vector defining 

the fiber direction. This dependence in the present case is related to the invariant [1]: 

 

        (11) 

 

and has the particular physical meaning of the quadratic stretch  in the direction of the fiber. 

Other possible invariants were here avoided to keep the model as simple as possible and also due to 

the difficulties associated to material parameter identification. The second branch of the fiber 

contribution in Figure 1 is associated to the decomposition of the total elongation  into elastic and 

viscous contributions . The logarithmic strains related to the elongations and viscous 

stretching are defined as usual: 

 

     (12) 

 

The incremental evolution of the viscous stretch is obtained using the exponential mapping 

proposed in [10] that allows us to write  

 

     (13) 

 

The novelty of this work is the inclusion of two new internal variables  and  related to 

damage, modifying the free energy accumulated by the reinforcement. The free energy of the fibers 

involves two terms of the form 

 

   (14) 

 

Finally, the dissipative function takes the form: 

 

       (15) 

 

and completes the model providing with the necessary information to define the evolution of 

internal variables ,  and . 

Substituting all former potentials in (3) and rearranging terms, the anisotropic incremental 

potential associated to fibers takes the expression: 

 

          (16) 
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where 

 

     (17) 

 

(18) 

 

such that 

 

     (19) 

 

    (20) 

 

     (21) 

 

As mentioned, fibers are assumed to contribute in strain energy only for positive stretching. 

To this aim, it is assumed that 

 

 (22) 

 

Finally,  and  are proposed to be homogeneous functions of degree one of  and  

respectively. This characteristic turns the response of the model (stress) independent of rates in 

damage. Rate dependence on this variable may however be included later without any theoretical 

difficulty, if needed. Finally, an exact penalization for negative damage rates (increments), is 

included as follows: 

 

  (23) 

 

From this definition, it is possible to see that functions  and  play the role of 

thermodynamic forces conjugated to  and , since 

 

      (24) 

Expressions (17) and (18) need the evaluation of the dissipative functions (and their 

derivatives) at an intermediate time , where  is an algorithmic parameter that influences the 

precision and convergence of model, such that . Then, the classical midpoint-rule is used: 

 

       (25) 

 

       (26) 
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During computations, however, specific values for and are needed. It is possible to show 

that convenient optimal values for the algorithmic parameters are obtained by the following 

expressions: 

 

       (27) 

 

      (28) 

 

3.3 Material Models 

Once the general constitutive framework is defined by expressions (9) and (17, 18), different 

particular models can be obtained depending on the specific expressions for the potentials. 

For the isotropic contribution (9), different classical hyperelastic laws, like the Neo-Hookean, 

Mooney-Rivlin, Ogden and Hencky models, can be used for potentials , and . The Hencky 

expressions are of the type 

 

    (29) 

 

while Ogden expressions are written as 

 

  (30) 

 

       (31) 

 

Symbols , , , , , , , and are material parameters to be identified. More 

details on this issue are found in [10]. 

For the reinforcement contribution given by (17, 18), different functions of hyperelastic fiber-

materials are found in the literature. In this paper we use that shown in [1]: 

 

       (32) 

 

Identical potential is used for the elastic term . For the dissipative potential  the 

quadratic Henky-type law (29) showed to be adequate. 

Finally, a key issue in the present context is the appropriate expression for the damage laws 

 and present in (23). In the present case, the function is related to the energy 

released by a variation in damage, which is the classical interpretation in damage models. Within 

this approach, a simple but effective choice is: 
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          (33) 

 

where  and  are material parameters. 

4 RESULTS 

In order to verify the ability of the proposed model to represent the viscoelastic-damage 

behavior, two uniaxial strain controlled tests are presented. Since the anisotropic behavior was 

extensively investigated in [7], here only the damage effect on the fiber direction is presented. The 

formulation proposed in this work was implemented in the commercial software MatLab 

(Mathworks, Natick, MA). The material parameters presented in Table 1 do not have any 

correlation with real materials and have been chosen to test the capabilities of the model. 

Two uniaxial strain-controlled tests were performed. The first of them use Eq.(17) only, 

which represents a single anisotropic elastic-damage branch of the rheological model (see Figure 1). 

The other was performed using Eq.(18) only, which account for the behavior of the viscous elastic-

damage branch of Figure 1. The history of the applied strain and the resulting stress-strain curves 

are presented in Figs. 2-3. In Figure 2 it is possible to see the stress softening in subsequent cycles 

due to damage (simulation of the Mullins effect). As expected, each new loading follows the same 

path of the previously unloading until reaching the highest strain of the previous cycle. In addition, 

for conveniently large strain values, a clear damage is observed causing a pronounced drop of stress 

values.  

 

 

Figure 2: Stress response of the elasto-damage fiber contribution 

 

Furthermore, it is clearly seen in Figure 3 the characteristic rate dependency of the viscous 

elastic-damage branch. In this case, besides the reproduction of the Mullins-like phenomenon, it is 

visible a hysteretic behavior within each cycle. 
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Figure 3: Stress response of the viscoelastic damage fiber contribution 

 

Table 1: Material parameters 

Potential Model Parameter 

 Holzapfel MPa;    

 Eq. (33) 50 MPa;    

 Holzapfel MPa;    

 

Hencky MPa/s-1 

 Eq. (33) 50 MPa;    

 

5 CONCLUSIONS 

The main objective of this work that consists on extending a previous viscoelastic model for 

fiber-reinforced viscoelastic materials to include damage was achieved. Preliminary numerical 

results show that the addition of two new damage-like internal variables turns the model capable of 

representing the well-known Mullins effect as well as the stress-drop at high strains. Moreover, 

these phenomena are consistently coupled with the viscoelastic behavior typically found in soft 

biological tissues. Again, it is worth repeating that present examples have the goal of verifying the 

ability of the proposed approach to follow expected qualitative behaviors. The use of experimental 

tests in order to perform the identification of material parameters is the subject of ongoing work. 
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