
   

 
1 
 

 
Elastodynamic analysis by optimized FEM-BEM iterati ve coupling 

procedures – a frequency domain approach  
 

Delfim Soares Jr. 
Structural Engineering Department 
Federal University of Juiz de Fora 

delfim.soares@ufjf.edu.br 
 

Kleber A. Gonçalves 
Department of Civil Engineering 

Federal University of Rio de Janeiro 
 kleber@coc.ufrj.br 

 
José Claudio de Faria Telles 
Department of Civil Engineering 

Federal University of Rio de Janeiro 
telles@coc.ufrj.br 

 

ABSTRACT 

This paper presents a coupled FEM-BEM strategy for the numerical analysis of elastodynamic problems where 
infinite-domain models and complex heterogeneous media are involved, rendering a configuration in which neither the 
Finite Element Method (FEM) nor the Boundary Element Method (BEM) is most appropriate for the numerical 
analysis. In this case, the coupling of these methodologies is recommended, allowing exploring their respective 
advantages. Here, frequency domain analyses are focused and an iterative FEM-BEM coupling technique is considered. 
In this iterative coupling, each sub-domain of the model is solved separately, and the variables at the common interfaces 
are iteratively renewed, until convergence is achieved. A relaxation parameter is introduced into the coupling algorithm 
and an expression for its optimal value is deduced. Optimal relaxation parameters are computed in order to ensure the 
convergence of the iterative procedure, properly dealing with the frequency domain wave propagation ill-posed 
problem. The iterative FEM-BEM coupling technique allows independent discretizations to be efficiently employed for 
both finite and boundary element methods, without any requirement of matching nodes at the common interfaces. 
Moreover, it leads to smaller and better-conditioned systems of equations (different solvers, suitable for each sub-
domain, may be employed), which do not need to be treated (inverted, triangularized etc.) at each iterative step, 
providing an accurate and efficient methodology. 
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1 INTRODUCTION 

Standard coupling of FEM/BEM procedures can lead to several problems with respect to 
efficiency, accuracy and flexibility. First, the coupled system of equations has a banded symmetric 
structure only in the FEM part, while in the BEM part it is non-symmetric and fully populated. 
Consequently, for its solution, the optimized solvers usually used by the FEM cannot be employed 
anymore, which leads to rather expensive calculations with respect to computer time. Second, quite 
different physical properties may be involved in the coupled model, resulting in bad-conditioned 
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matrices when standard coupling procedures are considered. This may affect the accuracy of the 
methodology, providing misleading results. Third, the standard coupling methodology does not 
allow independent discretization for each sub-domain of the model, requiring matching nodes at 
common interfaces, which drastically affects the flexibility and versatility of the technique.  

In order to evade these drawbacks, iterative coupling procedures have been developed, mostly 
taking into account time domain interacting models [1-3]. Iterative coupling approaches allow BEM 
and FEM sub-domains to be analysed separately, leading to smaller and better-conditioned systems 
of equations (different solvers, suitable for each sub-domain, may be employed). Moreover, a small 
number of iterations is required for the algorithm to converge and the matrices related to the smaller 
governing systems of equations do not need to be treated (inverted, triangularized etc.) at each 
iterative step, providing an efficient methodology. This coupling technique allows independent 
discretizations to be efficiently employed for the boundary and finite element sub-domains, without 
any requirement of matching nodes at the common interfaces. As a matter of fact, in the present 
work, constant boundary elements and linear finite elements are considered, and matching 
functional nodes are never provided in the common interfaces. It is important to observe, however, 
that frequency domain analyses usually give rise to ill-posed problems and, in these cases, the 
convergence of the iterative coupling algorithm can be either too slow or unachievable if no special 
procedure is taken into account. In order to deal with this ill-posed problem and ensure convergence 
of the iterative coupling algorithm, an optimal iterative procedure is adopted here, with optimal 
relaxation parameters being computed at each iterative step. Thus, an expression to compute 
optimal relaxation parameters, which is quite efficient and easy to implement, is provided and 
discussed, being its effectiveness illustrated at the end of the paper, where numerical examples are 
analyzed. In the numerical examples, soil-structure interacting models are discussed, being the 
results of the proposed iterative coupling formulation compared to those of the standard coupling 
technique. As one will observe, the proposed technique is flexible, robust and efficient, allowing a 
quite effective coupling of the finite element and boundary element methods for frequency domain 
elastodynamic analyses. 

 

2 GOVERNING EQUATIONS 

The frequency domain elastic wave equation for homogenous media is given by: 
 ����� − ����	
��, 
�,
� + ����	���, 
�,

 + �
�� − �
��	���, 
� + ����, 
� = 0 (1) 
 

where 	���, 
�  and ����, 
�  stand for the displacement and the body force distribution 
components, respectively. In Equation (1), �� is the dilatational wave velocity and �� is the shear 
wave velocity, they are given by: ��� = �� + 2��/� and ��� = �/�, where �  is the mass density and �  and �  are the Lamé’s constants. � stands for viscous damping related parameters. Equation (1) 
can be obtained from the combination of the following basic mechanical equations (proper to model 
heterogeneous media): 
 ��
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where ��
��, 
� and ��
��, 
� are, respectively, stress and strain tensor components, and ��
 is the 
Kronecker delta ���
  =  1, for � = $ and ��
  =  0, for �≠$� . Equation (2a) is the momentum 
equilibrium equation; Equation (2b) represents the constitutive law of the linear elastic model and 
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Equation (2c) stands for kinematical relations. The boundary conditions of the elastodynamic 
problem are given by: 
 	���, 
� = 	(���, 
� for � ∈ Γ+        (3a) ,���, 
� = ��
��, 
�-
��� = ,̅���, 
� for � ∈ Γ�     (3b) 

 
where the prescribed values are indicated by over bars, ,���, 
� denotes the traction vector along 
the boundary and -
��� stands for the components of the unit outward normal vector.  

 

3 BOUNDARY ELEMENT MODELLING 

The BEM integral equation related to the elastodynamic model is given by: 
 ��
�/�	
�/, 
� = 0 	�
∗ ��; /, 
�,
��, 
� 345 − 0 ,�
∗ ��; /, 
� 	
��� 34 +5 6���; /, 
� (4) 
 

where ��
�/�  depends on geometric aspects, 6���; /, 
�  stands for possible domain integral 
contributions (such as body sources) and the terms 	�
∗ ��; /, 
�  and ,�
∗ ��; /, 
�  represent the 
fundamental displacement and traction, respectively (X is the field point and ξ is the source point). 
For a two-dimensional approach, the fundamental solutions can be found at [4].  

By introducing spatial approximations for the variables of the model into the integral 
Equation (4), the following system of equations can be obtained, once proper numerical treatment is 
considered [4]: 

 78�
� = 9�
�:�
� − ;�
�8�
� + <�
�      (5) 
 

where 7, 9  and ;  are influence matrices, <  is a vector related to domain integrals and 8 and : 
are displacement and traction vectors, respectively, at frequency 
. After considering the boundary 
conditions of the problem (translating all the known variables to the right-hand-side of Equation 
(5), and the unknown fields to the left-hand-side), the BEM responses for the elastic model can be 
computed for the given frequency 
. 
 

4 FINITE ELEMENT MODELLING 

The integral weak-form of the governing equations at section 2 can be written as: 
 −
� 0 ����	���, 
�=�����3>? + �
 0 ����	���, 
�=�����3>? +
+ 0 ��
��, 
�=�����,
3>? + 0 ����, 
�=�����3>? − 0 ,���, 
�=�����34 = 05@  (6) 

 
where =����� stands for a weight function, which is assumed to have null values in the essential 
boundary (i.e., =����� = 0 for � A 4+).  

By introducing spatial approximations for the variables of the model into the integral 
Equation (6), and by adopting these approximations to define the specified weight functions 
(Galerkin Method), the following system of equations can be obtained, once proper numerical 
treatment is considered [5-6]: 

 −
�B8�=� + �
78�
� + C8�
� = D�
�      (7) 
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where B, 7 and C stand for the mass, damping and stiffness matrix of the model, respectively, and 8 and D stand for the nodal displacement and force vector, respectively. Matrices B, 7 and C are 
computed taking into account the first, second and third terms in Equation (6), respectively, 
whereas vector D is computed taking into account the last two terms in the l.h.s. of Equation (6) (for 
the stiffness matrix computation, equations (2b-c) are employed to relate the stress tensor with the 
displacement vector). After considering the boundary conditions of the problem, the FEM responses 
for the elastodynamic model can be computed for the given frequency 
 , taking into account 
Equation (7). 

 

5 COUPLING PROCEDURES 

In order to enable the coupling between the BEM and the FEM sub-domains of the model, an 
iterative procedure is employed here, which performs a successive renewal of the relevant variables 
at the common interfaces. The proposed approach is based on the imposition of prescribed 
displacement at the BEM sub-domain and of prescribed nodal forces at the FEM sub-domain. Since 
the two sub-domains are analysed separately, the relevant systems of equations are formed 
independently, before the iterative process starts, and are kept constant for each frequency along the 
iterative process. The separate treatment of the two sub-domains allows independent discretizations 
to be used on both parts, without any special requirement of matching nodes along the common 
interfaces. Thus, the coupling algorithm can be presented for a generic case, in which the interface 
nodes may not match, allowing exploiting this benefit of the iterative coupling formulation. 

To ensure and/or to speed up convergence, a relaxation parameter λ is introduced in the 
iterative coupling algorithm. The effectiveness of the iterative process is strongly related to the 
selection of this relaxation parameter, since an inappropriate selection for λ can significantly 
increase the number of iterations in the analysis or, even worse, make convergence unfeasible. At 
the end of the section, an optimal relaxation parameter is calculated, taking into account the coupled 
BEM-FEM frequency-domain formulation. 

 
5.1 Iterative coupling procedures 

Initially, in the EFG iterative step of the FEM-BEM coupling, the FEM sub-domain is analysed 

and the structure displacements at the common interfaces 8H I����
�  (subscript J  indicates the 
common interface, whereas f and b indicates finite and boundary element sub-domains, 

respectively) are computed, as described in section 4. In this case, 8H I����
� is evaluated taking 

into account prescribed nodal forces at the common interfaces DI���H , which are provided from the 
previous iterative step (in the first iterative step, null prescribed nodal forces are considered). Once 8H I����
�  is computed, it is applied to evaluate the essential boundary conditions that are 

prescribed at the common interfaces of the BEM sub-domains. More precisely, 8H I����
� is used to 
compute BEM displacements, as indicated below: 

 8K I��LM��
� = 0 NO�� − �KPQ � R���3Γ 8H I����
�H      (8)
 

 
where N stands for a matrix representation of the Dirac's Delta function, employed here just to 
properly indicate the computation of the variables at the BEM nodes �K , and R��� stands for the 
BEM or FEM interpolation functions, according to the subscript � or S, respectively. 
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To better describe the proposed FEM-BEM coupling methodology, Figure 1 illustrates its 
application for the case of constant boundary elements and linear triangular finite elements.  

 
 

 
 

Figure 1: Detail of a portion of the FEM-BEM interface when linear triangular finite elements 
and constant boundary are used. In the figure, $ − 1, $ and $ + 1 are FEM interface nodes, while � and � + 1 are BEM nodes. Displacements at BEM node � can be computed by interpolation of 

FEM displacements at nodes $ − 1 and $ (Equation (8)); FEM nodal force in j can be calculated by 
integration of the traction along boundaries Γ
T+,
 and Γ
,
L+, using Equation (10) and considering 

FEM linear and BEM piecewise constant shape functions along these boundaries. 
 
 
As previously discussed, in this work, relaxation parameters are considered in order to ensure 

and/or to speed up the convergence of the iterative process. Thus, the displacements 8K I��LM� that 
are calculated by Equation (8) are actualized as follow: 

 8K I��L+��
� = ��� 8K I��LM��
� + �1 − �� 8K I����
�      (9) 
 

where λ stands for the relaxation parameter. 
Once the BEM displacements at the common interfaces are computed, the BEM sub-domains 

can be analyzed, as described in section 3. As a consequence, the BEM tractions at the common 

interfaces are evaluated :I��L+�K , allowing the computation of the natural boundary conditions that 
are prescribed at the FEM sub-domains at the next iterative step. This is carried out as indicated 
below: 

 DI��L+�H �
� = 0 RH O��� RK ���3Γ :I��L+��
�KPQ      (10) 

 

Once DI��L+�H �
� is computed, the algorithm goes on to the next iterative step, repeating all 
the above described procedures, until convergence is achieved.  

As it is illustrated in section 6, a proper selection for λ at each iterative step is extremely 
important for the effectiveness of the iterative coupling procedure. In order to obtain an easy to 
implement, efficient and effective expression for the relaxation parameter computation, in the next 
sub-section optimal λ values are deduced.   

 

BEM 

model

FEM 

model

Common interface

i

i+1

j

j-1
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5.2 Optimal relaxation parameter  

In order to evaluate an optimal relaxation parameter, the following square error functional is 
minimized here:  

 S��� = U 8K I��L+���� − 8K I������U�
       (11) 

 
where 8IK  stands for the BEM prescribed values at the common interfaces. 

Taking into account the relaxation of the prescribed values for the (k+1) and (k) iterations, 
Equations (12a) and (12b) may be written, based on the definition in Equation (9): 

 8K I��L+� = ��� 8K I��LM� + �1 − �� 8K I���      (12a) 8K I��� = ��� 8K I��LMT+� + �1 − �� 8K I��T+�      (12b) 
 
Substituting Equations (12) into Equation (11) yields: 
 

 S��� = VW���X��LM� + �1 − �� X���WV� = 

= ���� VWX��LM�WV� + 2��1 − ���X��LM�, X���� + �1 − �� � VWX���WV�
   (13) 

  
where the inner product definition is employed (e.g.,�X, X� = ‖X‖� ) and new variables, as 
defined in Equation (14),  are considered. 
 X��LM� = 8K I��LM� − 8K I��LMT+�        (14) 

 
To find the optimal � that minimizes the functional S���, Equation (13) is differentiated with 

respect to � and the result is set to zero, as described below: 
 � UX��LM�U� + �1 − 2�� �X��LM� , X���� + �� − 1� UX���U� = 0   (15) 
 
Re-arranging the terms in equation (15), yields: 
 

� = �X�Z� ,X�Z�TX�Z[\��
UX�Z�TX�Z[\�U@          (16) 

 
which is an easy to implement expression that provides an optimal value for the relaxation 
parameter � , at each iterative step. This expression requires a low computational cost, when 
compared to other alternatives that can be found in the literature (see, for instance, [7]). 

Additionally, one should keep in mind that the computed relaxation parameter is a complex 
number, since the problem is formulated in the frequency domain. This complex number 
computation could be ranged (e.g., imposing |�| ≤ 1), but the authors have observed that faster 
convergence is usually achieved in the iterative process if a non-restricted relaxation parameter 
selection, provided by Equation (16), is considered. Moreover, although the authors found that the 
iterative process is relatively insensitive to the value of the relaxation parameter used for the first 
step, in all the cases discussed here, a real value of � = 0.5 is considered. 
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6 NUMERICAL ANALYSES 

In order to illustrate the performance and potentiality of the discussed techniques, two 
application examples are considered here, corresponding to a circular ring-shaped structure 
involved by an infinite soil domain. Different material properties, as well as prescribed 
load/displacement configurations, are considered in the analyses. 

 
6.1 Ring-shaped structure inside an infinite elastic domain  

Consider a circular homogeneous ring-shaped elastic inclusion, inside a homogeneous and 
infinite elastic environment (see Figure 2a). The external environment has a density of 7,85 ×103 kg/m3, Young's modulus of 20,58 ×1010 N/m2 and Poisson's ratio of 0.2 (no damping is 
considered). This elastic material allows dilatational and shear waves to travel at 5397,17 m/s and 3305,08 m/s, respectively. The circular inclusion has an external radius of 3.0 m and an internal 
radius of 2.0 m and is made of the same elastic material of the external domain.  

 
 

 

 
 

 

 

 

 

(a) (b) (c) 
 

Figure 2: (a) sketch of the model; (b) FEM discretization; (c) BEM discretization. 
 

 
The external environment is discretized by boundary elements distributed uniformly along the 

common interface (straight boundary elements with constant interpolation functions are adopted); 
the ring structure is modeled by using linear triangular finite elements. Fundamental harmonic 
displacements are prescribed at the internal cavity of the ring structure, which are acquired by 
considering a horizontal Dirac’s delta force acting at the centre of the cavity. Thus, the analytical 
solution for the problem is known and it is provided by the model's fundamental solutions. 

First, the external environment is modeled using 40 boundary elements, while a total of 210 
elements (40 nodes at the interface) are considered at the finite element mesh. The corresponding 
FEM and BEM discretizations are illustrated in Figure 2b and 2c, respectively.  

Figure 3 illustrates the displacements computed at point A (see Figure 2a), taking into account 
the proposed iterative coupling procedure, considering a frequency range from 100 to 5000 Hz. 
Analytical answers and results computed taking into account a standard FEM-BEM direct coupling 
methodology are also depicted in Figure 3, for comparison. As one can observe, the results 
provided by these different approaches are in good agreement. It is important to highlight that the 
coupled FEM-BEM results get closer to the analytical answers as the discretization of the model is 
refined.  
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(a) 
 

(b) 

Figure 3: Vertical displacements at point A: (a) real part; (b) imaginary part. 
 

 
As a matter of fact, the convergence of the proposed technique is analyzed next, taking into 

account independent discretizations (and, as a consequence, no matching nodes at the common 
interface) for the FEM and the BEM. In order to do so, 4 discretizations for the BEM sub-domain 
and 4 discretizations for the FEM sub-domain are focused, as described in Table 1 (as one may 
observe, Meshes 2 are those depicted in Figure 2). These different discretizations are combined 
among each other and the errors that arise (taking into account the analytical answer of the model) 
are depicted in Figure 4. Three combinations are considered here, the first one considers the FEM 
mesh 4 (i.e., 160 nodes on the FEM common interface) combined with all the focused BEM 
meshes. This combination is referred here as "FEM 160 - BEM". The second combination considers 
the BEM mesh 4 (i.e., 160 nodes on the BEM common interface) combined with all the focused 
FEM meshes. This combination is referred here as "BEM 160 - FEM".  Finally, standard node to 
node combinations (i.e., considering matching nodes at the common interface) of the BEM and 
FEM meshes are also considered, and this combination is referred here as "node - node". 

 
 

Table 1: Discretizations for the BEM and FEM sub-domains. 
 

BEM 
straight constant elements 

FEM 
triangular linear elements 

Mesh 1: 20 elements Mesh 1: 162 elements (20 elements at the interface) 
Mesh 2: 40 elements Mesh 2: 210 elements (40 elements at the interface) 
Mesh 3: 80 elements Mesh 3: 726 elements (80 elements at the interface) 
Mesh 4: 160 elements Mesh 4: 3436 elements (160 elements at the interface) 

 

 
The relative errors depicted in Figure 4 are computed as follows:  
 

E = n  ∑ [�W qr s W�T�W qt s W�]@  vwsxy ∑ �W qt s W�@vwsxy         (17) 

  
where U{�  stands for the computed numerical displacement at point A and frequency �, U|�  stands 
for the analytical answer at the same point and frequency, and nf is the total number of frequencies 
considered in the analysis. 
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(a) 
 

(b) 

Figure 4: (a) convergence analysis (error x discretization); 
(b) efficiency analysis (error x CPU time). 

 

 
As one can observe in Figure 4a, convergence is achieved, even considering non-matching 

nodes at the common interface. As it can be further observed in Figure 4a, the "BEM 160 / FEM" 
and the "node / node" curves are very close, indicating that, in this case, a small amount of 
boundary elements are sufficient to properly discretize the model. On the other hand, better results 
are obtained considering the "FEM 160 / BEM" combination, which was expected, since refined 
FEM discretizations can better represent the prescribed boundary conditions of the model, 
providing more accurate analyses.   

In Figure 4b, the computed errors are plotted against the CPU times of the analyses. As one 
can observe, considering matching nodes at the common interface, the iterative coupling procedure 
is usually more efficient than the standard direct coupling procedure (i.e., for a given CPU time of 
analysis, more accurate results can be obtained by the iterative procedure; or, for a given accuracy 
level, faster analyses can be provided by the iterative procedure). Moreover, as described in Figure 
4a, once proper discretizations are considered for each sub-domain of the model, even more 
efficient analyses may be achieved, highlighting the importance of a coupling procedure that allows 
flexible and independent discretizations of the involved sub-domains, taking into account non-
matching nodes at the common interfaces.  

In order to further analyze the performance of the iterative coupling algorithm, the evolution 
of the optimal relaxation parameter and the convergence of the iterative process are briefly 
illustrated in Figure 5. In Figure 5a, the total amounts of iterative steps necessary for convergence 
are depicted, for each frequency, considering the spatial discretizations illustrated in Figure 2. For 
comparison, results are also depicted considering a constant relaxation parameter value of 0.5. As 
one can observe, for higher frequencies (above 2500 Hz), convergence is not achieved if λ = 0.5 is 
adopted, highlighting the importance of expression (16) for the effectiveness of the iterative 
coupling analysis. Moreover, for a constant value λ = 1.0, convergence is never achieved 
considering the entire adopted frequency range, further illustrating the importance of relaxation 
parameters in the iterative coupling technique. In Figure 5b, the evolution of the optimally 
computed relaxation parameters (expression (16)) are illustrated, taking into account  
 = 5000 Hz. 
As one can observe, its evolution is quite complex since it is based on residuals computed at 
consecutive iterative steps. 
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(a) 
 

(b) 

Figure 5: (a) convergence of the iterative procedure; (b) evolution of the optimal relaxation 
parameter when  
 = 5000 Hz. 

  
 

6.2 Concrete tunnel surrounded by soil  

Consider, once again, a circular homogeneous ring-shaped elastic structure, inside a 
homogeneous and infinite soil environment. The external environment has a density of 1900 kg/m}, Lamé constant μ =  2.5 × 10+� N/m� and Poisson's ratio of 0.35 (no damping). The tunnel 
structure is made of concrete and has an external radius of 3.0 m and an internal radius of 2.0 m. It 
has a density of 2500 kg/m}, Young's modulus of 2.5 × 10+� N/m� and Poisson's ratio of 0.2 (no 
damping). The structure is loaded as indicated in Figure 6a, i.e., the load is applied at the bottom of 
the concrete ring internal cavity, with constant amplitude of 850 kN/m. The corresponding FEM 
and BEM discretizations are illustrated in Figure 2b and 2c, respectively. In Figures 6b and 6c, the 
computed deformation of the tunnel is illustrated, considering 
 = 500 Hz. 

 
 

 
 

(a) 
 

(b) (c) 

Figure 6: (a) sketch of the model; and (scaled) deformation of the tunnel for 
 = 500 Hz: (b) real 
part; (c) imaginary part. 

 

 
Figure 7 illustrates the displacements computed at point A (see Figure 6a), taking into account 

the proposed iterative and a standard direct FEM-BEM coupling procedure, considering a 
frequency range from 10 to 500 Hz. As one can observe, the results provided by these different 
approaches are once again in good agreement, indicating that the iterative solution is converging to 
the right solution.  
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(a) 
 

(b) 

Figure 7: Vertical displacements at point A: (a) real part; (b) imaginary part. 
 

 
In Figure 8a, the total amounts of iterative steps necessary for convergence are depicted, 

taking into account the selected frequency range. As one can note, for all tested frequencies, 
convergence occurred with a relatively small amount of iterations, with no more than 25 iterations 
being necessary at any of the tested frequencies. It is important to highlight that, for the present 
application, for λ = 0.5 and λ = 1.0, convergence is never achieved considering the entire adopted 
frequency range, further illustrating the importance of optimal relaxation parameters in the iterative 
coupling technique. In Figure 8b, the evolution of the optimally computed relaxation parameters 
(expression (16)) are illustrated, taking into account 
 = 430 Hz. 

 
 

 

 
 

 

 

(a) 
 

(b) 

Figure 8: (a) convergence of the iterative procedure; (b) evolution of the optimal relaxation 
parameter when 
 = 430 Hz. 

  

 

7 CONCLUSIONS 

A FEM-BEM iterative coupling algorithm was discussed here to analyze elastodynamic 
models, taking into account frequency domain formulations. In order to deal with this ill-posed 
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problem, optimal relaxation parameters were introduced into the iterative coupling analyses, 
enabling convergence at a relative low number of iterative steps. An efficient and easy to 
implement expression to compute the optimal relaxation parameters was discussed and tested, 
providing an effective and robust iterative coupling procedure.  

The use of iterative coupling approaches enables the separated analysis of different sub-
domains, leading to better conditioned, smaller and easier to deal with systems of equations, as well 
as independent definitions of nodal points along distinct sub-domains, allowing non-matching 
nodes on common interfaces to be easily considered. In section 6 several results were presented, 
illustrating the versatility and effectiveness of the proposed procedure.  

As a matter of fact, the present methodology represents an important step forward in the 
analyses of wave propagation in frequency domain problems considering iterative coupling 
procedures, which are well-known ill-posed problems, specially taking into account sub-domains 
governed by different physical properties and discretized by different numerical techniques. 
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