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ABSTRACT

This paper presents a coupled FEM-BEM strategyHfernumerical analysis of elastodynamic problemereh
infinite-domain models and complex heterogeneoudianare involved, rendering a configuration in whiteither the
Finite Element Method (FEM) nor the Boundary Elem&fethod (BEM) is most appropriate for the numedrica
analysis. In this case, the coupling of these nulugies is recommended, allowing exploring thespective
advantages. Here, frequency domain analyses aneddand an iterative FEM-BEM coupling techniqueassidered.
In this iterative coupling, each sub-domain of thedel is solved separately, and the variableseatdmmon interfaces
are iteratively renewed, until convergence is agdte A relaxation parameter is introduced intodbapling algorithm
and an expression for its optimal value is dedu@gatimal relaxation parameters are computed inrot@ensure the
convergence of the iterative procedure, properlglidg with the frequency domain wave propagatidrpdsed
problem. The iterative FEM-BEM coupling technigu®was independent discretizations to be efficiertiyployed for
both finite and boundary element methods, withowt eequirement of matching nodes at the commorrfattes.
Moreover, it leads to smaller and better-conditibrsgstems of equations (different solvers, suitdbleeach sub-
domain, may be employed), which do not need torbated (inverted, triangularized etc.) at eachatiee step,
providing an accurate and efficient methodology.

Keywords. Elastodynamics; Frequency Domain; Iterative CouplRelaxation Parameter.

1 INTRODUCTION

Standard coupling of FEM/BEM procedures can leaddweral problems with respect to
efficiency, accuracy and flexibility. First, thewgaed system of equations has a banded symmetric
structure only in the FEM part, while in the BEMrpd is non-symmetric and fully populated.
Consequently, for its solution, the optimized sadvesually used by the FEM cannot be employed
anymore, which leads to rather expensive calculatigith respect to computer time. Second, quite
different physical properties may be involved ie ttoupled model, resulting in bad-conditioned
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matrices when standard coupling procedures areidemesl. This may affect the accuracy of the
methodology, providing misleading results. Thirbe tstandard coupling methodology does not
allow independent discretization for each sub-donadithe model, requiring matching nodes at
common interfaces, which drastically affects tlexifility and versatility of the technique.

In order to evade these drawbacks, iterative coggdrocedures have been developed, mostly
taking into account time domain interacting mod#i8]. Iterative coupling approaches allow BEM
and FEM sub-domains to be analysed separatelyingaol smaller and better-conditioned systems
of equations (different solvers, suitable for eaah-domain, may be employed). Moreover, a small
number of iterations is required for the algorittorconverge and the matrices related to the smaller
governing systems of equations do not need to degetd (inverted, triangularized etc.) at each
iterative step, providing an efficient methodologyhis coupling technique allows independent
discretizations to be efficiently employed for th@undary and finite element sub-domains, without
any requirement of matching nodes at the commarfattes. As a matter of fact, in the present
work, constant boundary elements and linear firstements are considered, and matching
functional nodes are never provided in the commmberfaces. It is important to observe, however,
that frequency domain analyses usually give risdl4mosed problems and, in these cases, the
convergence of the iterative coupling algorithm bareither too slow or unachievable if no special
procedure is taken into account. In order to detl this ill-posed problem and ensure convergence
of the iterative coupling algorithm, an optimalréaBve procedure is adopted here, with optimal
relaxation parameters being computed at each iiteratep. Thus, an expression to compute
optimal relaxation parameters, which is quite &fit and easy to implement, is provided and
discussed, being its effectiveness illustratedhatend of the paper, where numerical examples are
analyzed. In the numerical examples, soil-strucinteracting models are discussed, being the
results of the proposed iterative coupling formolatcompared to those of the standard coupling
technique. As one will observe, the proposed tegimis flexible, robust and efficient, allowing a
quite effective coupling of the finite element dmalindary element methods for frequency domain
elastodynamic analyses.

2 GOVERNING EQUATIONS

The frequency domain elastic wave equation for hggnous media is given by:
p(cgd — cHu;(X, w) j; + pciu (X, w) j; + (w?p — iwv)w; (X, w) + b;(X, w) = 0 (1)

where u;(X,w) and b;(X,w) stand for the displacement and the body forceribligton
components, respectively. In Equation )js the dilatational wave velocity amdis the shear
wave velocity, they are given by = (1 + 2u)/p andc? = u/p, wherep is the mass density and
A andu are the Lamé’s constantsstands for viscous damping related parametersatifou(1)
can be obtained from the combination of the follagvbasic mechanical equations (proper to model
heterogeneous media):

0;;(X,w) ; + (PN w? —iwv(X) )u;(X, ) + b;(X,w) =0 (2a)
03 (X, w) = A(X)6j& (X, w) + 2u(X) & (X, w) (2b)
& (X, w) = (1/2)(w X, w) ; + w; (X, w) ;) (2¢c)

whereo;; (X, w) ande;;(X, ) are, respectively, stress and strain tensor coensnand; is the
Kronecker delta(s;; = 1,fori =jandé;; = 0,foriz) . Equation (2a) is the momentum
equilibrium equation; Equation (2b) representsdbaestitutive law of the linear elastic model and
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Equation (2c) stands for kinematical relations. Tdwndary conditions of the elastodynamic
problem are given by:

(X, w) =u;(X,w) forX €T} (3a)
7;,(X, w) = 0;;(X, 0)n;(X) = 7;(X,w) for X € T, (3b)

where the prescribed values are indicated by oses, ©y(X, w) denotes the traction vector along
the boundary and; (X) stands for the components of the unit outward @abrractor.

3 BOUNDARY ELEMENT MODELLING

The BEM integral equation related to the elastodyicanodel is given by:

Cij(f)uj(f» w) = f]" u;j(X; f:w)Tj(X.w) ar — f]" T;j(XJ ¢, w) uj(X) ar +¢;(X; ¢, w) (4)

where ¢;;(¢) depends on geometric aspedgX; ¢, w) stands for possible domain integral
contributions (such as body sources) and the tefy(&; ¢, w) andt;;(X; ¢, w) represent the
fundamental displacement and traction, respecti@€lig the field point and is the source point).
For a two-dimensional approach, the fundamentaitwis can be found at [4].

By introducing spatial approximations for the vates of the model into the integral
Equation (4), the following system of equations barobtained, once proper numerical treatment is
considered [4]:

CU(w) =G(w)T(w) — Hw)U(w) + S(w) (5)

whereC, G andH are influence matrices, is a vector related to domain integrals &dndT

are displacement and traction vectors, respectiatlfrequency. After considering the boundary
conditions of the problem (translating all the kmowariables to the right-hand-side of Equation
(5), and the unknown fields to the left-hand-sideg BEM responses for the elastic model can be
computed for the given frequenay

4 FINITE ELEMENT MODELLING

The integral weak-form of the governing equationsegtion 2 can be written as:

—w? [, p(Xw;(X, @)Wy (X)d2 + iw [, vX)u; (X, 0Iwy (X)d2 +
+ [, 0y (X, 0wy (X), ;A2 + [ by(X, 0)wy (X)d2 — frz 7;(X, @)wy (X)dl' = 0 (6)

wherew;;, (X) stands for a weight function, which is assumedhdwe null values in the essential
boundary (i.e.w;,(X) = 0 for X € I}).

By introducing spatial approximations for the vates of the model into the integral
Equation (6), and by adopting these approximatitmslefine the specified weight functions
(Galerkin Method), the following system of equasocan be obtained, once proper numerical
treatment is considered [5-6]:

—wMU(W) + iwCU(w) + KU(w) = F(w) (7
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whereM, C andK stand for the mass, damping and stiffness mafrtkeomodel, respectively, and

U andF stand for the nodal displacement and force vecempectively. Matriced, C andK are
computed taking into account the first, second #mdl terms in Equation (6), respectively,
whereas vectaF is computed taking into account the last two teimtbe I.h.s. of Equation (6) (for
the stiffness matrix computation, equations (2lar@ employed to relate the stress tensor with the
displacement vector). After considering the bougaanditions of the problem, the FEM responses
for the elastodynamic model can be computed fordiven frequencyv, taking into account
Equation (7).

5 COUPLING PROCEDURES

In order to enable the coupling between the BEM taedFEM sub-domains of the model, an
iterative procedure is employed here, which per®ansuccessive renewal of the relevant variables
at the common interfaces. The proposed approachased on the imposition of prescribed
displacement at the BEM sub-domain and of presdnitmelal forces at the FEM sub-domain. Since
the two sub-domains are analysed separately, tleward systems of equations are formed
independently, before the iterative process startd,are kept constant for each frequency along the
iterative process. The separate treatment of thest-domains allows independent discretizations
to be used on both parts, without any special requent of matching nodes along the common
interfaces. Thus, the coupling algorithm can besg@méed for a generic case, in which the interface
nodes may not match, allowing exploiting this bérafthe iterative coupling formulation.

To ensure and/or to speed up convergence, a riglaxparametei. is introduced in the
iterative coupling algorithm. The effectivenesstioé iterative process is strongly related to the
selection of this relaxation parameter, since amppmopriate selection fok can significantly
increase the number of iterations in the analysi®wen worse, make convergence unfeasible. At
the end of the section, an optimal relaxation patams calculated, taking into account the coupled
BEM-FEM frequency-domain formulation.

5.1 Iterative coupling procedures

Initially, in the k" iterative step of the FEM-BEM coupling, the FEMbsdpomain is analysed
and the structure displacements at the commonfacts fUEk)(w) (subscript! indicates the
common interface, whereabé and b indicates finite and boundary element sub-domains,
respectively) are computed, as described in seetiom this caserEk)(w) is evaluated taking
into account prescribed nodal forces at the commtanfaces ngk), which are provided from the
previous iterative step (in the first iterativegstaull prescribed nodal forces are consideredieOn
fUEk)(w) is computed, it is applied to evaluate the esakriibundary conditions that are

prescribed at the common interfaces of the BEMdwiinains. More preciselyﬁUfk) (w) is used to
compute BEM displacements, as indicated below:

bng-M)((U) _ fr, 8T(X — ,X) ;N(X)dT ngk)(a)) (8)

whereé stands for a matrix representation of the Dirdydta function, employed here just to

properly indicate the computation of the variatdéshe BEM nodes X, andN(X) stands for the
BEM or FEM interpolation functions, according tetbubscripb or f, respectively.
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To better describe the proposed FEM-BEM couplinghodology, Figure 1 illustrates its
application for the case of constant boundary efgmand linear triangular finite elements.

Common interface

Figure 1: Detail of a portion of the FEM-BEM intade when linear triangular finite elements
and constant boundary are used. In the figurel, j andj + 1 are FEM interface nodes, while
i andi + 1 are BEM nodes. Displacements at BEM nédan be computed by interpolation of
FEM displacements at nodgs- 1 andj (Equation (8)); FEM nodal force jrcan be calculated by
integration of the traction along boundarigs, ; andT; ;.,, using Equation (10) and considering
FEM linear and BEM piecewise constant shape funstelong these boundaries.

As previously discussed, in this work, relaxati@mgmeters are considered in order to ensure

and/or to speed up the convergence of the itergtigeess. Thus, the displacemeglsf"”) that
are calculated by Equation (8) are actualized #swo

YU (@) = () U (W) + (1 - 1) U9 (0) (9)

wherel stands for the relaxation parameter.
Once the BEM displacements at the common interfacesomputed, the BEM sub-domains
can be analyzed, as described in section 3. Amisequence, the BEM tractions at the common

interfaces are evaluateﬂ'gk“), allowing the computation of the natural boundemyditions that
are prescribed at the FEM sub-domains at the nerdtive step. This is carried out as indicated
below:

FIED(@) = [, NTOO R NOOAD T () 4o

Once fF§k+1)(w) is computed, the algorithm goes on to the nexdilitee step, repeating all
the above described procedures, until convergenaehieved.

As it is illustrated in section 6, a proper selectifor A at each iterative step is extremely
important for the effectiveness of the iterativaugiing procedure. In order to obtain an easy to
implement, efficient and effective expression foe telaxation parameter computation, in the next
sub-section optimal values are deduced.
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5.2 Optimal relaxation parameter

In order to evaluate an optimal relaxation parameie following square error functional is
minimized here:

2
f =105 - o) (11)
where , U, stands for the BEM prescribed values at the comimenfaces.
Taking into account the relaxation of the presatibvalues for thekt+1) and k) iterations,
Equations (12a) and (12b) may be written, basetthemlefinition in Equation (9):

LU = ) P 41— 2 ,u® (12a)
pUI = Q) U+ (1= 2) U (12b)

Substituting Equations (12) into Equation (11) gl
) = [[WeD + 1 = woo||* =
= (12) ||w<k+l>||2 +22(1 = D) (WED, W) 4 (1 - 1) 2 ||w<k>||2 (13)

where the inner product definition is employed (€l/, W) = ||W||?) and new variables, as
defined in Equation (14), are considered.

W = U = ) aa)

To find the optimall that minimizes the function#l(1), Equation (13) is differentiated with
respect tol and the result is set to zero, as described below:

AWED|? 4 (1 = 22) (WD, w®) + 4 - 1) [w®|* =0 (15)
Re-arranging the terms in equation (15), yields:

w& W) _pyk+d)
= - (16)
o -wies]

which is an easy to implement expression that pes/ian optimal value for the relaxation
parameterl, at each iterative step. This expression requirdew computational cost, when
compared to other alternatives that can be fourtdariterature (see, for instance, [7]).

Additionally, one should keep in mind that the cartgal relaxation parameter is a complex
number, since the problem is formulated in the desgy domain. This complex number
computation could be ranged (e.g., impogibig< 1), but the authors have observed that faster
convergence is usually achieved in the iterativec@ss if a non-restricted relaxation parameter
selection, provided by Equation (16), is consideMdreover, although the authors found that the
iterative process is relatively insensitive to tladue of the relaxation parameter used for the firs
step, in all the cases discussed here, a real eélue- 0.5 is considered.
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6 NUMERICAL ANALYSES

In order to illustrate the performance and potdihieof the discussed techniques, two
application examples are considered here, correlspgnto a circular ring-shaped structure
involved by an infinite soil domain. Different matd properties, as well as prescribed
load/displacement configurations, are considerdtieranalyses.

6.1 Ring-shaped structureinside an infinite elastic domain

Consider a circular homogeneous ring-shaped elastlasion, inside a homogeneous and
infinite elastic environment (see Figure 2a). Théemal environment has a density 785 x
103 kg/m3, Young's modulus 020,58 x1010 N/m2 and Poisson's ratio 6f2 (no damping is
considered). This elastic material allows dilatasiband shear waves to traveb897,17 m/s and
3305,08 m/s, respectively. The circular inclusion has an endéradius of 3.0 m and an internal
radius of 2.0 m and is made of the same elastienmaabf the external domain.

BEM

(a) (b) (€)
Figure 2: (a) sketch of the model; (b) FEM disa@ation; (c) BEM discretization.

The external environment is discretized by bounadeynents distributed uniformly along the
common interface (straight boundary elements withstant interpolation functions are adopted);
the ring structure is modeled by using linear widar finite elements. Fundamental harmonic
displacements are prescribed at the internal cadfitthe ring structure, which are acquired by
considering a horizontal Dirac’s delta force actaighe centre of the cavity. Thus, the analytical
solution for the problem is known and it is provdday the model's fundamental solutions.

First, the external environment is modeled usingbdOndary elements, while a total of 210
elements (40 nodes at the interface) are considdréuk finite element mesh. The corresponding
FEM and BEM discretizations are illustrated in Fg@b and 2c, respectively.

Figure 3 illustrates the displacements computqubatt A (see Figure 2a), taking into account
the proposed iterative coupling procedure, consigea frequency range frod00 to 5000 Hz.
Analytical answers and results computed taking atcount a standard FEM-BEM direct coupling
methodology are also depicted in Figure 3, for cangon. As one can observe, the results
provided by these different approaches are in gogdement. It is important to highlight that the
coupled FEM-BEM results get closer to the analytmeswers as the discretization of the model is
refined.
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(a) (b)
Figure 3: Vertical displacements at point A: (gglneart; (b) imaginary part.

As a matter of fact, the convergence of the progpdsehnique is analyzed next, taking into
account independent discretizations (and, as aecoiesice, no matching nodes at the common
interface) for the FEM and the BEM. In order tosinp 4 discretizations for the BEM sub-domain
and 4 discretizations for the FEM sub-domain amu$ed, as described in Table 1 (as one may
observe, Meshes 2 are those depicted in Figurd@t®se different discretizations are combined
among each other and the errors that arise (takiogaccount the analytical answer of the model)
are depicted in Figure 4. Three combinations aresidered here, the first one considers the FEM
mesh 4 (i.e., 160 nodes on the FEM common inteyfaoenbined with all the focused BEM
meshes. This combination is referred here as "FEM-BEM". The second combination considers
the BEM mesh 4 (i.e., 160 nodes on the BEM commmberfiace) combined with all the focused
FEM meshes. This combination is referred here &VIEL60 - FEM". Finally, standard node to
node combinations (i.e., considering matching naatethe common interface) of the BEM and
FEM meshes are also considered, and this combmigtieeferred here as "node - node".

Table 1: Discretizations for the BEM and FEM sulmains.

BEM FEM
straight constant elements triangular linear elements
Mesh 1: 20 elements Mesh 1: 162 elements (20 elements at the interface)
Mesh 2: 40 elements Mesh 2: 210 elements (40 elements at the interface)
Mesh 3: 80 elements Mesh 3: 726 elements (80 elements at the interface)
Mesh 4: 160 elements Mesh 4: 3436 elements (160 elements at the in&yfac

The relative errors depicted in Figure 4 are comegats follows:

. J 22,1 've D~(1 '0a PP a

(| a )

where ‘U, stands for the computed numerical displacemepoiat A and frequency, ‘U, stands
for the analytical answer at the same point angluieacy, anaf is the total number of frequencies
considered in the analysis.
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Figure 4: (a) convergence analysis (exdiscretization);
(b) efficiency analysis (errot CPU time).

As one can observe in Figure 4a, convergence ie\aih even considering non-matching
nodes at the common interface. As it can be furtibserved in Figure 4a, the "BEM 160 / FEM"
and the "node / node" curves are very close, itidigathat, in this case, a small amount of
boundary elements are sufficient to properly digsoeethe model. On the other hand, better results
are obtained considering the "FEM 160 / BEM" conaliion, which was expected, since refined
FEM discretizations can better represent the pisesatr boundary conditions of the model,
providing more accurate analyses.

In Figure 4b, the computed errors are plotted ajdhe CPU times of the analyses. As one
can observe, considering matching nodes at the comnterface, the iterative coupling procedure
is usually more efficient than the standard di@mipling procedure (i.e., for a given CPU time of
analysis, more accurate results can be obtaindtebiterative procedure; or, for a given accuracy
level, faster analyses can be provided by thetitergprocedure). Moreover, as described in Figure
4a, once proper discretizations are consideredeémh sub-domain of the model, even more
efficient analyses may be achieved, highlightingithportance of a coupling procedure that allows
flexible and independent discretizations of theolaed sub-domains, taking into account non-
matching nodes at the common interfaces.

In order to further analyze the performance ofitemtive coupling algorithm, the evolution
of the optimal relaxation parameter and the coretrecg of the iterative process are briefly
illustrated in Figure 5. In Figure 5a, the totalamts of iterative steps necessary for convergence
are depicted, for each frequency, considering gatia discretizations illustrated in Figure 2. For
comparison, results are also depicted consideriognatant relaxation parameter value of 0.5. As
one can observe, for higher frequencies (above B&)0convergence is not achieved.if 0.5 is
adopted, highlighting the importance of expressf@f) for the effectiveness of the iterative
coupling analysis. Moreover, for a constant value= 1.0, convergence is never achieved
considering the entire adopted frequency rangehdurillustrating the importance of relaxation
parameters in the iterative coupling technique.Flgure 5b, the evolution of the optimally
computed relaxation parameters (expression (16)jllastrated, taking into accound = 5000 Hz.

As one can observe, its evolution is quite comp@ace it is based on residuals computed at
consecutive iterative steps.
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Figure 5: (a) convergence of the iterative proceg(ly) evolution of the optimal relaxation
parameter whenw = 5000 Hz.

6.2 Concretetunnel surrounded by soil

Consider, once again, a circular homogeneous haged elastic structure, inside a
homogeneous and infinite soil environment. The regleenvironment has a density 18100 kg/
m3, Lamé constant = 2.5 x 101° N/m? and Poisson's ratio 6f35 (no damping). The tunnel
structure is made of concrete and has an exteadals of 3.0 m and an internal radius of 2.0 m. It
has a density 500 kg/m3, Young's modulus dt.5 x 101° N/m? and Poisson's ratio 6f2 (no
damping). The structure is loaded as indicatedgur€ 6a, i.e., the load is applied at the bottdm o
the concrete ring internal cavity, with constantpéitnde of 850 kN/m. The corresponding FEM
and BEM discretizations are illustrated in Figuleahd 2c, respectively. In Figures 6b and 6c, the
computed deformation of the tunnel is illustrateshsideringo = 500 Hz.

4.4531e-07 - - 2.3558e-08
- 4.2129-07 2
- 3.9727e-07
- 3.7325e-07
- 3.4923e-07
- 3.2521e-07
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- 2771 7e-07
2531507
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623e-08

- 2.2156e-08
2 1688¢-08
2.1221e-08

L 20754008

2.0286e-08
1.9819¢-08
1.9352e-08

BEM

(b) (c)

Figure 6: (a) sketch of the model; and (scaledywhedtion of the tunnel fap = 500 Hz: (b) real
part; (c) imaginary part.

Figure 7 illustrates the displacements computqubatt A (see Figure 6a), taking into account
the proposed iterative and a standard direct FEN#BEoupling procedure, considering a
frequency range fror0 to 500 Hz. As one can observe, the results provided by thidéerent
approaches are once again in good agreement, iimgichat the iterative solution is converging to
the right solution.

10
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Figure 7: Vertical displacements at point A: (agglneart; (b) imaginary part.

In Figure 8a, the total amounts of iterative stepsessary for convergence are depicted,
taking into account the selected frequency range.oAe can note, for all tested frequencies,
convergence occurred with a relatively small amafriterations, with no more than 25 iterations
being necessary at any of the tested frequendiés.itportant to highlight that, for the present
application, fork = 0.5 and\x = 1.0, convergence is never achieved considehaghtire adopted
frequency range, further illustrating the importamé optimal relaxation parameters in the iterative
coupling technique. In Figure 8b, the evolutiontleé optimally computed relaxation parameters
(expression (16)) are illustrated, taking into aodaw = 430 Hz.

T T T T T T T T T T T T
21 I 1 i il

——Real
T 1,0 - Imag| -
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0,4

Number of Iterations
N
Optimized parameter

84
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44
T T T T T T -0'2 T T T T T
0 100 200 300 400 500 Q 5 10 15 20 25
frequency (Hz) Iteration

Figure 8: (a) convergence of the iterative proceg(l) evolution of the optimal relaxation
parameter whemw = 430 Hz.

7 CONCLUSIONS

A FEM-BEM iterative coupling algorithm was discudsbere to analyze elastodynamic
models, taking into account frequency domain foatiahs. In order to deal with this ill-posed
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problem, optimal relaxation parameters were intoeduinto the iterative coupling analyses,
enabling convergence at a relative low number efattve steps. An efficient and easy to
implement expression to compute the optimal relaraparameters was discussed and tested,
providing an effective and robust iterative couglprocedure.

The use of iterative coupling approaches enablesstdparated analysis of different sub-
domains, leading to better conditioned, smaller eaxsler to deal with systems of equations, as well
as independent definitions of nodal points alongtiitt sub-domains, allowing non-matching
nodes on common interfaces to be easily considdénesection 6 several results were presented,
illustrating the versatility and effectiveness loé tproposed procedure.

As a matter of fact, the present methodology regmssan important step forward in the
analyses of wave propagation in frequency domaioblpms considering iterative coupling
procedures, which are well-known ill-posed problesyecially taking into account sub-domains
governed by different physical properties and diszed by different numerical techniques.
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