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ABSTRACT 

The process of mechanical compaction of a sedimentary basin in fully saturated conditions takes place through 
water expulsion from the porous material, thus resulting in grain repacking and volume reduction. The rate of this 
volume reduction is primarily dependent on the amount and rate of sediment accretion and the permeability of the 
sediment material. In absence of tectonic-driven deformation, a deposited sedimentary layer compacts as the excess 
pore-pressure generated by its own weight dissipates progressively. Nevertheless, tectonic loading increases 
substantially the excess pore-pressure gradient, thus accelerating the compaction process. This work is devoted to the 
modeling of purely mechanical compaction of a sedimentary basin. Three phases are concurrently or consecutively 
involved in the latter process: the sediments deposition, its compaction due to gravitational forces and pore-pressure 
dissipation, and deformation induced by extensional and/or compressive tectonic motion. A specific computational 
procedure has been developed to perform numerical simulations in plane strain conditions via the finite element 
method. The poromechanical constitutive law is formulated in the framework of finite irreversible strains, accounting 
for hydromechanical and elasticity-plasticity couplings. Comparisons are made for both cases: gravitational compaction 
only and compaction followed by efforts of tectonic origin. 
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1 INTRODUCTION 

Sedimentary basins are associated with a specific region of the planet crust that was able to 
retain an appreciable amount of sediments originated from destruction of any type of rock. These 
sediments are transported and deposited in different types of environments (continental, marine or 
intermediate), where they are transformed into rock through natural phenomena involving physical 
and chemical processes. 

The study of sedimentary basins is an important issue in the field of geophysics and 
geomechanics that seeks understanding the geological history and reconstructing the 
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poromechanical history of many regions of the planet. The potential applications include petroleum 
exploration, reserve assessment and production. They are important aquifers and a large variety of 
metallic and non metallic minerals can be also found in this kind of geological formation. Detection 
and exploration of all these resources requires sophisticated prediction tools and technical methods, 
which have been developed in many ways along the past decades. Much of this evolution is due to 
the oil industry, where a need for knowledge on the subject of oil reservoirs has led to enormous 
expansion of research on modern sedimentary environments. Today it is possible to make quite 
detailed predictions for the origin of hydrocarbon and water reservoirs from a combination of three-
dimensional seismic reflection profiles, electric log signatures and downhole probes [1]. 

However, the progress in this field has been hampered by the absence of good models to 
describe the rheological behavior of the constituent material of the problem. Since it is a 
multidisciplinary problem, the numerical simulation of all the coupling  phenomena that are 
controlling the basin deformation proves very difficult, leading some authors to give priority to only 
certain components in the formulation of their models. 

In the context of deep oceanic basins, the processes that affect the compaction of sediments 
can be divided into two main groups: mechanical and chemical. Mechanical compaction is mainly 
because of the excess pore-pressure dissipation and deformation imposed by tectonics. A load 
suddenly applied is at first carried by the pore water (as excess pore-water pressure) and gradually 
transferred to the sediment structure. The compaction results from the decrease of pore space 
through grain repacking and the expulsion of water. The speed of this volume reduction is primarily 
dependent on the amount and rate of load application and the permeability of the sediment. The 
mechanical compaction is completed when the excess pore-water pressure is zero and pore-water 
pressure is solely hydrostatic [2]. Chemical compaction involves dissolution-precipitation 
mechanisms, generally induced by stress (intergranular pressure-solution). Nevertheless, it is 
important to note that these are interdependent processes, although mechanical phenomena prevail 
in the upper layers of sedimentary basins, whereas chemical compaction is dominant in the deeper 
layers, where stresses and temperatures are higher [3]. 

The basic models of mechanical compaction are still based on phenomenological 
relationships relating porosity to effective vertical stress. The concept of porosity versus Terzaghi’s 
effective stress dependence has been early introduced by Hubbert and Rubey [4] and later by Smith 
[5]. These ideas have been widely adopted and implemented in numerical finite element models 
that have yielded valuable contributions to the understanding of the evolution of sedimentary 
basins. Interestingly noting, Gibson [6] can be considered one of the pioneer works that introduced 
consolidation theory for analyzing sediment compaction. The fundamental assumptions of the latter 
work were: constant sedimentation rate, a single lithology, constant sediment properties and 
Therzaghi’s small strain consolidation theory. The approach was mainly applied to the analysis of 
consolidation in shallow soil deposits. 

On the other hand, the lateral movements induced by tectonic events influence strongly the 
formation of sedimentary basins. The rate and manner as the tectonic plates move relatively to each 
other govern many aspects of the geodynamic environment of sedimentary basins [7]. As regards 
the speed of the tectonic plates motion, Cloetingh et al. [8] pointed out that 10 mm/yr is a 
characteristic velocity of oceanic lithospheres, while Assaad [9] indicated that the average 
movement rate of tectonic plates is around 1 to 2 mm/yr currently. 

Few works have been recently dedicated to theoretical or numerical modeling of these 
phenomena. Zhao et al. [10] developed a finite element model to simulate the fluid rock interaction 
in pore-fluid saturated hydrothermal sedimentary basins. A numerical model was proposed in [11] 
that aimed to simulate the distribution of seafloor geotechnical parameters during the growth of a 
seismically active continental margin.  
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Disregarding the chemical aspects, the present work is devoted to purely mechanical 
modeling of compaction in sedimentary basins by means of numerical simulations performed in a 
two-dimensional setting. The finite element approach is developed to simulate the sediments 
deposition and the mechanical processes involved during the formation of a sedimentary basin in a 
saturated environment. One of the major difficulties involving this kind of simulation is connected 
with the occurrence of large change in porosity throughout the compaction process. The coupled 
nature of the deformation problem may be understood as follows: large strains modify the 
microstructure, which leads to a change in the poromechanical properties of the sediment material 
and thus affecting the basins response. This behavior requires that the poromechanical constitutive 
law be formulated in the framework of finite irreversible strains, so the key components for the 
model are the hydromechanical and elasticity-plasticity couplings. Another specificity of the 
present problem is that sedimentary basins simulations deal with open material systems. A finite 
element technique developed in [12], which is specifically devised for simulating the processes of 
sediment accretion, is adopted in the present analysis. 

Particular emphasis is given to the investigation of tectonic-driven deformation in 
sedimentary basins caused by extensional and compressive movements. The simulations are 
performed reasoning on a rectangular geometrical model that is intended to represent an oceanic 
trench created by pre-depositional divergent tectonics. Then, sediment accumulation occurs over 
tens of millions of years. After the period of deposition and compaction of the sediments resulting 
from gravitational forces and pore-pressure dissipation, tectonic movements are applied on the sides 
of the basin. The sedimentary rock is modeled as a fully saturated poroelastoplastic material 
undergoing large strains. 

2 GOVERNING EQUATIONS 

At the macroscopic scale, a porous medium can be viewed as the superposition of a solid 
continuum related to the deformable skeleton and a fluid phase occupying the porous space. In this 
approach, the amount of fluid content within an infinitesimal volume of porous material dΩt is 
represented by the porosity. The Lagrangian porosity φ  is defined by the ratio between the fluid 
volume in the current configuration (represented by the superscript f) and the initial total volume, 

0
f

tdΩ dΩφ = , while the Eulerian porosity ϕ  quantifies the fluid content with respect to the current 
total volume, f

t tdΩ dΩϕ = . 
Therefore, in order to define the poromechanical problem under isothermal and quasi-static 

conditions, two field equations referring to momentum and mass balance over the space where the 
problem takes place must be specified. By considering the balance of linear momentum, the 
equilibrium equation for the porous continuum can be obtained: 

 0=+ gρσdiv  (1) 

where σ is the Cauchy total stress tensor, g is the acceleration of gravity and ρ is the porous 
material density, defined by the Eulerian porosity, the fluid density ρf and the grain density ρs: 

 ( ) sf ρρρ ϕϕ −+= 1  (2) 

The second field equation is the fluid mass balance (3), function of the filtration vector q 
defined by Darcy’s law (4), where J is the Jacobian of the transformation, p is the pore-pressure and 
k is the permeability tensor (in case of isotropy, k = k1). 

 ( ) ( ) 0=+ qJdiv
dt
d ff ρφρ  (3) 
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 ( )gρp.kq f+∇−=  (4) 

The problem is completely defined only when the geometry and the values of all 
corresponding fields are specified at the initial moment. For the boundary conditions in the current 
configuration t, partitions of the boundary ∂Ωt of the geometrical domain Ωt are introduced. The 
directions in which the boundary conditions are applied are defined by the unit normal vector n and 
two perpendicular directions. The data are indicated by the superscript d. Let ξ be the total 
displacement vector of a skeleton particle, T be the stress vector and ei be the unit director vectors 
for the coordinate system (i = 1,2,3). 

For the mechanical boundary conditions, let STi and Sξi be the parts of ∂Ωt where the ith 
component of the stress and displacement vectors are imposed. Expressions below must be 
satisfied, where ( ) d

iii TTe.n.σ ==  on STi, and d
i ξe.ξ =  on Sξi. 

 t
iTi SS Ω∂=∪ ξ   ∅=∩ iTi SS ξ  (5) 

For the hydraulic boundary conditions, let SW and SP be the parts of ∂Ωt where the normal 
component of the fluid mass flux and the fluid pressure are imposed, respectively. We have: 

 W P
tS S∪ = ∂Ω   W PS S∩ =∅  (6) 

where dwn.w =  on SW, and dpp =  on SP. 
The macroscopic equations of state of a fully saturated poroelastoplastic material generally 

assume a total independence of the elastic properties with respect to the plastic behavior. However, 
in the context of large strains, such an assumption is clearly questionable as the large macroscopic 
plastic strains are associated with an irreversible evolution of the microstructure, which is 
responsible for variations of the macroscopic elastic properties of the porous medium [13]. 

The idea of the constitutive model here presented consists in associate the evolution of the 
elastic and hydraulic properties of the porous material to its variation of porosity, which is 
associated to the plastic part of the Jacobian of the transformation. We shall refer to this 
phenomenon as elasticity–plasticity coupling. 

Let us consider a representative elementary volume (r.e.v.) of the porous medium subjected to 
a stress state σ and pore-pressure p. Removing this load applied to the initial configuration dΩ0, the 
actual volume dΩt transforms to a residual configuration dΩu. This transformation between dΩt and 
dΩu is referred to as the elastic part. The variation of the elastic porosity and the plastic porosity are 
defined as: 

 
u

f
u

f
tel

dΩ

dΩdΩ −
=φ   

0

0

dΩ

dΩdΩ ff
up
−

=φ  (7) 

If Fel is the gradient of the homogenous geometric transformation of a skeleton particle 
between dΩu and dΩt, and Fp is the gradient of the homogenous geometric transformation of a 
skeleton particle between dΩ0 and dΩu, the gradient F is given by: 

 pel F.FF =  (8) 

The plastic part of the Jacobian of the transformation Jp being defined as 
p

u
p FdetdΩdΩJ == 0 ,  the variation of porosity is described as follows: 

 elpp J φφφφ +=− 0   (9) 
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Figure 1 illustrates the decomposition of the gradient F and the variation of porosity 
experienced by the porous material. 

 
Figure 1: decomposition of the gradient of transformation and variation of porosity. 

The elastic part of the transformation between dΩu and dΩt is assumed infinitesimal, 1elF ≈ . 
The state equations for linear elasticity are simply given according to Biot’s theory for isotropic 
materials: 

 : el

~
σ = C ε Bp−   (10) 

 ( ): elelp M B εφ= −   (11) 

where elε  stands for the infinitesimal elastic strain associated with the elastic sequence elF ,  
B  and M are respectively the Biot tensor and Biot modulus, and 

~
C  is the fourth order tensor of the 

drained elastic moduli: 

 ( )2 / 3 1 1 2 1
~~

C K ⊗= − +µ µ   (12) 

The main difference with the usual Biot’s theory lies in the fact that the state variables elε  and 
elφ  are here defined with respect to the unstressed configuration. So as the porous medium deforms 

reducing its porosity, the evolution of the elastic properties (the bulk and shear moduli of the porous 
material, K and µ) are evaluated by the Hashin-Shtrikman upper bounds [14], function of the bulk 
and shear moduli of the solid phase ks and µs as well as of the Eulerian porosity ϕ : 

 ( ) ( )
ss

ss

k
kK

µϕ
ϕµϕ

43
14
+
−

=  (13) 

 ( ) ( )( )
( ) ( )ϕµϕ

µϕµϕµ
12869

891
+++

+−
= ss

sss

k
k  (14) 
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Under isotropy conditions, classical results of poroelasticity indicate that: 

                               1B b=   with  ( ) ( )
sk

Kb ϕϕ −= 1   and  ( )
( )

sk
b

M
ϕϕ

ϕ
−

=
1  (15) 

The effects of microstructural changes on the evolution of the permeability coefficient of the 
porous medium k may be modeled by means of the Kozeny–Carman formula: 

 1k k=    with  ( ) ( )
( )23

0

2
0

3

0 1
1

ϕφ
φϕ

ϕ
−

−
= kk  (16) 

In the framework of finite poroplasticity, considering the evolution of the poromechanical 
properties, the macroscopic rate equations of state take the following rate form [13]: 

 ( ) 1
e

pJ e e e e

~ ~ ~

D σ´
σ´ σ´ .Ω Ω.σ´ C : d d C : C : σ´

Dt
−= + − = − +  (17) 

 ( ) ( )1tr tr
p

p e
p ~

Mp M b d d p Mb C : σ´
J M

φ φ −⎛ ⎞−
= − − + + −⎜ ⎟

⎝ ⎠
 (18) 

where eσ´ σ Bp= +  is the Biot effective stress, Ω  is the spin tensor and ( ){ }1.pp p

sym
d F F

−
=  

is the plastic strain rate. 
Introducing the plastic potential G(σ´) which depends on σ and p through the Terzaghi 

effective stress 1pσσ́ += , where χ  is a non-negative plastic multiplier: 

 
σ́
Gχd p

∂
∂

=  (19) 

The plastic model used here is the modified Cam-Clay model [15]. The plastic flow rule is 
associated. The yield surface f is function of the deviatoric stress tensor s and the mean effective 
stress p´ defined as: 

 ( )1
3
1 σtrσs −=   ( )σ́trp´

3
1

=  (20) 

The plastic criterion is then: 

 ( ) ( )ccsc pp´p´Ms:s´,pσf ++= 2

2
3  (21) 

where csM  is the slope of the critical state line and cp  is the consolidation pressure, which 
represents the hardening parameter of the considered model. Its evolution with the volume plastic 
strains is the hardening law. The latter has been derived from a micromechanics-based reasoning 
developed in Barthélémy et al. [16]: 

 ( ) 0

0

1ln 1
ln

p co
c p

pp J
J
φ

φ
−⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (22) 

As observed in Deudé et al. [17], the main advantage of the above hardening law with respect 
to classical ones lies in the fact that it avoids the development of negative porosities under high 
isotropic compression. 
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3 FINITE ELEMENT DISCRETIZATION 

Assessment of the poromechanical state requires the determination of the temporal evolution 
of the geometric transformation as well as the pore-pressure changes. This shall be achieved by 
solving the boundary value problem defined by the set of governing equations together with the 
constitutive and complementary equations. The particularity of large strains is that all equations 
actually refer to the mechanical system in its current configuration, which is a priori unknown. The 
finite element procedure used for assessing the evolution of stresses, pore pressures and strains in 
the porous medium under consideration will be outlined hereafter. Full details are provided in 
Bernaud et al. [13]. 

The analysis is based on the implementation of the updated Lagrangian scheme [18]. This 
approach is based on the same procedures used by total Lagrangian formulations, but instead of 
being referred to the initial configuration, all static and kinematic variables are referred to the last 
calculated configuration, say at time t . The unknown variables are then updated in each step time 

t∆ . The displacement U  of the skeleton particles between t  and t t+ ∆  is defined as 

 t t tU x x+∆= −  (23) 

where tx  (resp. t tx +∆ ) denotes the coordinate of the particle at time t  (resp. t t+ ∆ ).  The pore 
pressure difference at points similar within the skeleton transformation between t  and t t+ ∆  is 

 ( ) ( )t t tP p x p x+∆= −  (24) 

The discretized form of the problem is obtained from weak formulation of the equilibrium 
and fluid mass balance equations at time t t+ ∆ . Six-nodes triangles are used for geometry 
discretization (figure 2). A piecewise quadratic polynomial function is adopted to approximate the 
displacement, while piecewise linear function is adopted for pore-pressure variations. 

The resulting system is given below, where KIJ are the global stiffness sub-matrices and FI the 
global force sub-vectors. U and P are the nodal displacements and pore-pressure difference, 
respectively. For a single element, KUU is a 12×12 matrix, KPU is 12×3, KUP 3×12 and KPP 3×3, 
resulting in a 15×15 stiffness matrix. 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

P

U

PPUP

PUUU

F
F

P
U

KK
KK

 (25) 

It is emphasized that, for a given configuration at time t , the system above is highly non-
linear due to the physical non-linearities (plasticity) and geometrical non-linearities (large strains). 
In particular, vectors UF  and PF  depend on the unknowns U and P. An iterative method is 
adopted for solving this system by implementing an appropriate algorithms until it is satisfied up to 
a required tolerance. 

One specificity of the problem lies in the fact that a sedimentary basin is an open system due 
to the continuous accretion of material at the top of the basin during sedimentation phase. This 
requires an appropriate technique to overcome the difficulty of dealing with an open system in the 
context of finite element method. For this purpose, the activation/deactivation method [12] inspired 
from tunnel engineering is used to simulate the accretion process. In the framework of such method, 
the real open material system is simulated as fictitious closed one. 
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Figure 2: Schematic geometry of the basin and the finite element characteristics. 

Figure 2 illustrates the basin construction problem, where L0 corresponds to the sea level and 
H(t) corresponds to the top of the sediment layer. The evolution in time of the latter must of course 
correspond to that of the real system. If ρ(z,t) represents the mass density of the sedimented 
material, the total sediment mass per unit area provided from the initial moment 0t =  is equal to 
the mass of the vertical column with unit cross section of equation (26): 

 ( )∫=
H(t)

d dzz,tρ(t)M
0

 (26) 

Based on this reasoning, the height of a given layer of sediments deposited between the times 
t = 0 and t = T can be defined using equation (27), where ρ0(t) is the sediments initial density at the 
corresponding time t. 

 ( )∫=
T

d dt
tρ
(t)M

H
0 0

 (27) 

In fact, H represents the thickness of the layer that was deposited in the basin up to time T if 
the deposited material was rigid. However, while sediments layers are being applied, the already 
deposited layers are in compaction process. The simulation of the accretion phase takes place 
subdividing the sedimentation period into n subintervals [ti-1, ti] with t0 = 0 and Ttn = . During the 
time increment 1∆ −−= iii ttt , the addition of sediments corresponds to a height of ∆H: 

 
( )
( )∫

−

=
i

i

t

t

d
i dt

tρ
tM

∆H
1 0

 (28) 

Before sediment deposition, all finite element layers constituting the system are attributed the 
sea water properties. For every advanced subinterval ∆t, the properties of a corresponding layer 
with thickness ∆H are changed in conjunction with the hydraulic and elastic properties of the 
deposited material. This process starts at the bottom of the basin (z = 0) and continues upwards 
until the accretion phase ends. 
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4 COMPUTATIONAL RESULTS 

The sedimentary basin considered in the numerical simulation is formed during 
60 millions yearsT = (duration of accretion phase). In addition, the rate of sediment accretion is 

constant and equal to 94.34 10 kg/sdM −= ×  per unit area, corresponding to 100 m of sediment 
thickness per million years in unloaded conditions. In absence of compaction, that is if the sediment 
material were rigid, the total thickness of the basin would be 6 km at t T=  (end of accretion 
phase).  

The simulations of the sedimentary basin are performed considering three distinct phases 
defined as follows. Phase (1): corresponds to sediment deposition (formation of the basin) that 
extends from 0t =  and t T= . Phase (2): compaction exclusively due to gravitational forces and 
pore-pressure dissipation. Phase (3):  lateral movement induced by extensional or compressive 
tectonic events. 

The initial geometry of the basin is sketched in Figure 3. It consists in a rectangular block of 
24 km long by 6 kmH =  thick. Owing to the symmetry with respect to the vertical plane, only the 
half part of the geometrical domain is discretized into finite elements. The finite element mesh 
consists in 7200 triangular elements regularly distributed along 120 horizontal layers, each layer 
being divided into 60 elements. The mesh corresponds to 14701 total nodes. 

The model data are: initial material density 3 3
0 1.37 10 kg/mρ = × , initial porosity 0 0.72φ =  

(taken from [19]), initial Young modulus 3
0 10 MPaE = , initial Poisson’s ratio 0 0.33ν = , initial 

Biot coefficient 0 0.9715b = , initial Biot modulus 5
0 1.392 10 MPaM = × , coefficient slope of the 

critical state line 1.2csM = , initial permeability 10 -1 2 -1
0 10 MPa m sk −= , initial consolidation 

pressure 1.5 MPacop = , sea water density 3 310 kg/mfρ = . 

 
Figure 3: basin configuration. 
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The boundary conditions applied to geometric domain are: 
z = H(t) (upper surface): 

 ( )( )0
f

zT ρ g L H t e= − −  ( )( )tHLgρp f −= 0  (29) 

z = 0 (basin basement): 

                . 0zξ e =   . 0zq e =   (30) 

x = 12 km (basin side): 

                . 0xξ e =   . 0xq e =   (31) 

The above boundary conditions are completed by symmetry conditions at plane 0x = . 
4.1 Gravitational compaction 

Figure 4 illustrates the compaction law of the sedimentary basin along phases (1) and (2). As 
it can be seen, the thickness of the basin is about H = 4212 m at the end of accretion phase (T = 60 
millions years), which represents a compaction level of 30%. At t = 60T, the thickness of the basin 
is almost stabilized with H = 2633 m, corresponding to 56% compaction level. Based on this 
compaction law, five different ages of the basin have been chosen to apply laterally-induced 
tectonic deformations (i.e., phase (3)). The selected basin ages are indicated in Figure 4 and given 
in Table 1 together with corresponding basin thickness. 

 
Figure 4: Compaction law of the sedimentary basin. 

Case  Height (m)  Age (myr) 

1  3750  85 
2  3500  135 
3  3250  230 
4  3000  440 

5  2750  1140 

Table 1: selected cases. 
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Before presenting the simulation of tectonic sequences, some results related to phases (1) and 
(2), which correspond to oedometric compaction, shall be analyzed hereafter. The pore-pressure 
profile is displayed in figure 5 for each referred case. The hydrostatic pore-pressure profile is drawn 
as well. It can be seen that although case t = 60T is nearly asymptotic in relation to its compaction 
history (figure 4), the pore-pressure profile is still far from hydrostatic. The Kozeny-Carman 
formula used to quantify the evolution of the permeability coefficient indicates that 0→k  when 

0→ϕ . This explains the long time required for total dissipation of excess pore-pressure in the 
lower layers of the basin, i.e. the time required to attain the asymptotic state of the basin. 

 
Figure 5: Pore-pressure profiles during gravitational compaction. 

The porosity profiles are shown in figure 6. As expected, younger sedimentary basins present 
higher porosities along their height, since excess pore-pressure is continuously dissipated in course 
of time, leading the sediment layer to compaction as the fluid is expelled from the porous material. 
The t 60T=  case porosity in the lower layers vary from 7% to 17%. These small values explain the 
difficulty to continue its gravitational compaction as commented above, since the permeability in 
these layers are 10 to 100 times lower than its initial value. 
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Figure 6: Porosity profiles during gravitational compaction. 

In classical analysis of soil mechanics, an important parameter is the coefficient of earth 
pressure Kp, defined as the ratio between the horizontal and vertical effective stresses 

VH σσKp ´/´= . This parameter is often considered constant along the depth of a basin. Its 
estimation allows access to the horizontal effective stress profiles based on the vertical effective 
stress obtained from traditional analysis of one-dimensional calculations. Indeed, the obtained 
values of Kp coefficient before tectonic motion are constant for all cases along basins depth, except 
within a thin crust located near the upper surface of the basin as can be seen in figure 7. 
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Figure 7: Profiles of coefficient Kp  during gravitational compaction. 

4.2 Tectonic sequences 

For each one of the five selected ages, a tectonic loading is applied by imposing at 0t T=  a 
lateral movement to the basin. In each case, the geometry and hydromechanical fields (stress, pore 
pressure, porosity and associated poromechanical parameters) resulting from phases (1) and (2) are 
considered as the initial configuration and state of the basin when starting the tectonic loading. The 
hydromechanical boundary conditions are showed in Figure 8. The lateral right-hand side (resp. 
left-side) is subjected to a constant horizontal velocity xV e  (resp. xV e− ). We restrict the analysis 
to a prescribed velocity magnitude 1 mm / yearV = , which falls within the category of slow 
tectonics. The lateral displacement is applied using time increment of 1 yeart∆ = . 

Tectonic sequences have been simulated in the five cases defined in Table 1.  For each case, 
the total lateral displacement applied to the basin before the numerical failure of the plasticity 
algorithm was equal to 1200 m± . This means that the total duration of tectonic sequences is about 
1.2  million of years. 
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Figure 8: Geometrical model and boundary conditions for tectonic simulations. 

The first observation made from the numerical simulations is that the configurations reached 
by the basins at the end of tectonic sequences are almost the same for all considered cases of 
extensional solicitation. The same can be said for all case of compressive solicitation. However, the 
final configurations in extensional or compressive solicitation are distinct.  Hence, for sake of 
clearness, only the results related to the case 1 will be presented in the sequel. It is recalled that the 
case 1 is defined by a tectonic loading starting at 0 =85T  Myr and associated to an initial basin 
thickness 0( )=3750 mH T . 

Figure 9 shows the thickness of the basin versus time for 0 0t 1.2 MyrT T≤ ≤ + . An important 
feature raised from the numerical simulations is that the lateral solicitation strongly affects the 
velocity of the compaction process in both extensional and compressive situations. As a matter of 
fact, after 1.2 million of years the basin compacted only 10 m under gravitational compaction, while 
after the same period it compacted more than 1500 m under extensional lateral motion and more 
than 1200 m under compressive lateral motion. 

The distribution of pore-pressure along the right side of the basin after 1.2  Myr is displayed 
in Figure 10 for the case 1. The compressive tectonic motion led to a substantial increase in the 
pore-pressure profile, reaching about 20 MPa of excess pore-pressure in the basin basement, while 
the extensional tectonic accelerated the process of dissipation of the excess pore-pressure. 
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Figure 9: Influence of tectonic lateral motion on the compaction law. 

 
Figure 10: Pore-pressure profile along the right side of the basin after 1.2 Myr  tectonic loading. 

Figures 11 and 12 present respectively the porosity and coefficient Kp along the right side of 
the basin. Even induced by distinct driven mechanisms, the expulsion of pore-fluid in both cases led 
to a significant decrease in the sediment layer porosity, reaching the quasi total closure of pores 
near the basin basement. Regarding coefficient Kp of earth pressure, it turns out that this coefficient 
is uniform along the basin thickness for the extensional case, similarly to what has been observed 
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under purely gravitational compaction (phases (1) and (2)). In contrast, the distribution along the 
basin thickness is quite disturbed for the compressive case. 

 
Figure 11: Porosity profile along the right side of the basin after 1.2 Myr  tectonic loading. 

 
Figure 12:  Profile of coefficient Kp  along the right side of the basin after 1.2 Myr  tectonic loading. 
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5 CONCLUSIONS 

Starting from the constitutive model developed by Bernaud et al. [13] in the context of finite 
poroplasticity, three important phases involved in the mechanical processes of a sedimentary basin 
formation were simulated: the sediments accretion phase, its compaction due to gravitational forces 
and pore-pressure dissipation, and the deformations imposed by compressive and extensional 
tectonics. 

From the numerical point of view, the finite element model has been applied to the simulation 
within a 2D setting of both gravitational compaction and tectonic-induced deformation. The 
behavior of the basin during the phases of sediment accretion and pore pressure dissipation is first 
investigated. Starting from the configuration reached by the basin at a given age, tectonic sequences 
have been then applied to the basin. The tectonic sequences are simulated by applying to the basin 
lateral extensional or compressive displacements.    

Even though the numerical simulations have been performed in the particular situation of 
slow tectonics, some important features that are connected with the induced deformation are 
emphasized. It is worth noting that the objective of this preliminary analysis is only to investigate 
the feasibility of the 2D modeling and not to provide quantitative insights in the basin deformation 
under tectonic loading. 

At this stage, some fundamental questions arise regarding the theoretical aspects and the 
numerical modeling. First, the frictionless boundary condition considered at the basin basement is 
not very realistic, leading to a more deformable block. A more realistic model for the interface 
between the basin and the rock basement such as the Coulomb friction law should be implemented. 
Second, the shape quality of the mesh elements resulting from compaction (vertical stretching) 
between 0t =  and 0t T=  that corresponds to the beginning of the tectonic loading phase is rather 
low: due to oedometric contraction, the elements become thin with high aspect ratio. This is clearly 
a possible source of numerical inaccuracies and can lead to non convergence of the non-linear 
algorithm. Third, regarding the simulation of deep oceanic basins, a more comprehensive model 
should take into account intergranular pressure-solution (IPS) mechanisms, since chemical 
compaction represents a major mechanism of deformation in the lower layers of this type of 
sedimentary basins. Fourth, it is also intended to perform simulations with fractured basins, since 
they occur in most real cases of sedimentary basins. 

One should be cautious regarding the conclusions drawn from the numerical simulation since 
only very slow tectonics have been considered. It is likely that fast tectonics will induce high pore 
pressure within the basin. The later will thus deform under undrained-like conditions, which in turn 
lead rapidly to substantial increase in the effective stresses controlling the yield failure. Actually 
this kind of analysis requires a more robust algorithm to deal with the high non-linear problem. 

Finally, several issues remain to be addressed on both theoretical and computational 
viewpoints. In first line, the development of an efficient numerical tool implementing robust 
algorithms specifically devised for handling finite poroplasticity problems and parallel computing 
that allows dealing with high number of degrees of freedom that are involved in a 3D modeling is in 
progress. 
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