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ABSTRACT 

Phenomena like strain localization in hyperelastic materials are intrinsically nonlinear and are related to the loss 
of ellipticity of the Hessian of the strain energy function. Solutions of the associated nonlinear problems are usually not 
known. Analytical methods, such as homogenization methods, and numerical methods, such as the Finite Element 
Method, are used to search for approximate solutions to these problems, which may lose ellipticity at large enough 
deformations. In this case, an approximate solution may not correspond to a stable and, therefore, realistic solution of 
the nonlinear problem. Other solutions that are stable may bifurcate from this approximate solution. The class of 
problems considered in this work involves bilaminates with distinct hyperelastic phases that alternate periodically. The 
materials of these phases are such that no stability issues are expected to occur. The bilaminates are in equilibrium and 
are subjected to prescribed deformations on their boundaries. A tangent second-order homogenization method is used in 
the literature to gain insight on the effective behavior of the hyperelastic laminates. Solutions of the corresponding 
homogenized problems, called principal solutions, are found and a stability analysis is performed, which shows that the 
principal solutions may bifurcate into stable solutions at sufficiently large deformations. These results seem to indicate 
that the overall behavior of a laminate may be unstable even when the behavior of each underlying constituent is not. In 
this work, we simulate numerically the behavior of bilaminates in the above class by imposing the same boundary 
conditions used elsewhere in the literature. By comparing principal and approximate numerical solutions, we find that 
both solutions are indistinguishable for small deformations and are quite different for large deformations. The 
implications of these results are still under investigation.  This research finds applications in various fields of 
engineering, which include the development of new materials with lamellar microstructure. 
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1 INTRODUCTION 

In [1] the problem of a bilaminate in equilibrium without body force subjected to prescribed 
deformation on its boundary is considered. The bilaminate is composed of distinct hyperelastic 
phases that alternate periodically. The authors use a second-order homogenization method 
developed by [2] to obtain a principal solution to this problem and investigate the onset of 
macroscopic instabilities by analyzing the loss of strong ellipticity of an effective stored energy 
function of the bilaminate evaluated at the principal solution.  
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In this paper we consider a bilaminate in equilibrium in the absence of body force subject to 

both a state of plane strain and pure shear imposed on its boundary. Although the procedure of 
analysis is general, we restrict our attention to the compressible Neo-Hookean material model that 
is implemented in the finite element package ANSYS 10.01

 

. We use the theoretical framework 
presented by [1] and authors cited therein to obtain analytical results for the effective medium. In 
particular, we obtain a principal solution that renders the system of governing differential equations 
non-elliptic for a large enough deformation prescribed on the boundary. Our analytical results are 
analogous to analytical results obtained by [1] in the analysis of a bilaminate made of a different 
compressible Neo-Hookean material. We then use the finite element package ANSYS 10.0 to find 
an approximate solution to the bilaminate problem. The numerical results obtained from this 
solution are in very good agreement with the analytical results for small deformations and are quite 
different for large deformations, indicating that the solution found via ANSYS may be an 
approximation of a secondary solution that bifurcates from the principal solution. 

In Section 2 we present some preliminaries about kinematics of large deformation, governing 
equilibrium equations, and formulation of the boundary value problem of interest in this work. In 
Section 3 we define the bilaminate and, using the tangent second-order homogenization method, 
present some expressions that represent its macroscopic behavior. In Section 4 we introduce the 
compressible Neo-Hookean material model implemented in ANSYS 10.0, present the analytical 
expression for the average deformation gradient of the effective medium, and use this expression to 
obtain the angle of lamination of the bilaminate in its deformed configuration. In the final part of 
Section 4 we present graphs for the angle of lamination of the bilaminate in its deformed 
configuration that were obtained from both the analytical expression and computational results from 
ANSYS 10.0. In Section 5 we present some concluding remarks. 

 

2 PRELIMINARIES 

Let 3⊂   be the undistorted reference configuration of a body and let 3: →x   be a 
deformation field acting on the body. We have that ( )x X  is the position of the particle ∈X   
relative to a fixed frame   in 3

 .   The displacement field associated with the deformation x  is 
defined by  ( ) ( )= −u X x X X .  In a rectangular Cartesian coordinate system fixed at the origin, we 
write  iX , ix , and iu  for the components of these vector fields. The deformation gradient is then 
given by  

 grad grad ,≡ = +F x 1 u       ,i i
ij ij

j j

x uF
X X

δ∂ ∂
= = +
∂ ∂

   , 1, 2,3,i j =  (1) 

where 3grad : →  is the gradient operator for vector fields, with  being the set of second-
order tensors, 1  is the identity tensor, and ijF and ijδ  are the components of F  and 1 , respectively.  

 
The body is in equilibrium in the absence of body force, which means that  

 div ,=P 0       0 in ,ij

j

P
X
∂

=
∂

    1, 2,3,i =  (2) 

where 3div : →  is the divergence operator for tensor fields, : →P   is the first Piola-
Kirchhoff stress tensor, ijP  are the components of P , and the usual summation convention over 

                                                 
1 ANSYS 10.0 is a software of Ansys Inc., PA, USA. 
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repeated indices is used  throughout this work.  
 
The body is hyperelastic and heterogeneous, so that P  is the derivative of a stored strain 

energy density function :W × →    at F  for a material point ∈X  , that is,  

 ( ), ,DW=P F X       ( ), , ,ij
ij

P
F

W∂
= ∈

∂
F X F        ,∈X        , 1, 2,3.i j =  (3) 

If ( ),DW ⋅F  does not depend explicitly on ,∈X   then the body is homogeneous and  we write 
( )DW=P F .  

 
If ( ),W F X  is smooth with respect to its arguments in a given part   of  , we can 

substitute (3) into the equilibrium equation (2) and use the chain rule to get 

 ( ) ( )22 2, , 0, ,k

ij kl j l j ij

xW W
F F X X X F

∂∂ ∂
+ = ∈ ∈ ⊂

∂ ∂ ∂ ∂ ∂ ∂
F X F X F X   ,      1, 2,3,i =  (4) 

where the second derivatives 2
ij klW F F∂ ∂ ∂  are the components of the elasticity tensor 

( ) ( )2, , ,D W≡F X F X  which is a fourth-order tensor evaluated at F  for the material point 
∈X  . This tensor plays an important role in the investigation of new phenomena in solid 

mechanics. For instance, consider the Legendre-Hadamard condition  
 ( ) [ ] 3: 0, ,⊗ ⊗ > ∈b c b c b c  ,       (5) 
where “:” denotes the inner product in   and [ ]∈G   for ,∈G   with components ijkl klA G . Also 
known as the strong ellipticity condition, it substantiates the experimental evidence according to 
which a body is elongated in the direction of the applied forces ([3] APUD [4]). On the other hand, 
the violation of this condition is associated with the formation of shear bands, which may lead to 
material failure by localization of shear deformation ([5,6]). In Classical Linear Elasticity, 
( )[ ] ( )[ ],≡X E 1 X E  ( )( ):λ= X E 1 1 ( )2µ+ X E , where ∈E   is symmetric and both λ  and µ  

are the Lamé moduli. Here, the condition (5) is equivalent to having both 0µ >  and 2 0λ µ+ > .  
 
We shall consider displacement boundary conditions of the form  

 ,= ∈∂u u X  , (6) 
where 3:∂ →u   is a known displacement field imposed on the boundary of  . A well-known 
particular case of (6) corresponds to ( )= −u F 1 X , where ∈F   is constant. We then have that a 
boundary value problem of elastostatics in this work consists of finding the deformation field 

3: →x = u + X   that satisfies the equilibrium equations (4), where F  is given by (1), together 
with a displacement boundary condition of the form (6).  

  
 

3 EFFECTIVE PROPERTIES OF NONLINEAR LAMINATES 

We consider a laminate obtained from a periodic distribution of cells in the 1X − direction, 
where each cell is composed of two consecutive plane laminae of same width W , same height H , 
and lengths 1L  and 2L  in a reference configuration of the body, as illustrated in Fig. 1. We then 
have that the reference configurations of the laminate and its periodicity cell are given by 

1 2 ,=     1 2 ,=∅   and 1 2 ,Ω ≡ Ω Ω  1 2 ,Ω Ω =∅  respectively, where r  and 
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, 1, 2,r rΩ =  are the undistorted reference configurations of the phase r  of the laminate and its 
periodicity cell, respectively.   

 
Figure 1: Reference configurations of a) Laminate; b) Periodicity cell of the laminate. 

 
Phase r  is isotropic and hyperelastic, with strain energy function :rW → . Using the 

characteristic function { }: 0,1rχ →  to identify the undistorted configuration of phase r  in  , we 
can write the strain energy function :W × →   that appears in (3)  as a piecewise continuous 
function given by   
 ( ) ( ) ( ), , , .r rW W χ= ∈ ∈F X F X F X   (7) 

Substituting (7) into (3), we obtain the mechanical response of the material in an arbitrary 
point .∈X  This response is local, or, microscopic and depends upon the knowledge of the 
associated deformation field, which is, in general, evaluated approximately using numerical 
methods. In [7] we use a Finite Element Method (FEM) to obtain approximate solutions of uni-axial 
tension problems involving linearly elastic bilaminates. We also use an Asymptotic 
Homogenization Method to obtain a global, or, macroscopic response of the laminate, which 
coincides with the response function obtained from the numerical results when both the number of 
laminae in a laminate with fixed dimensions and the number of degrees of freedom in the numerical 
approximation tends to infinity.  

 
In the nonlinear case, analogous results are still the subject of intense investigation (see, for 

instance, [1,8]) due not only to the complexity of the analysis of the associated nonlinear problems, 
but also to the possibility of material instabilities that can generate multiple solutions for a given 
problem.  

 
A procedure of analysis consists of assuming that a global, or, macroscopic relation for the 

laminate is given by (see, for instance, [9]) 
 ( ) ,DW=P F  (8) 
where ,≡P P ,≡F F  with ( )d⋅ ≡ ⋅∫ Y


  and   being the volume of  , and  

 ( )
( )

( )
( )

( )
2

1
min , min ,r r r

r
W c WW

∈ ∈=

≡ =∑F F F F
F F X F

 
,r

r

L
c

L
≡  (9) 

is the strain energy function of the resulting homogenized medium. In (9),  
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 ( ) ( ) ( ) ( ){ }ˆ ˆ| with grad in , on ≡ ∃ ≡ ∂F F X = x X F X x X X = F X   (10) 

is the set of kinematically admissible deformation gradients and ( ) , 1, 2,
r

rr
d r⋅ ≡ ⋅ =∫ Y


  where 

r  is the volume of the rth lamina in the reference configuration r . Also, , 1, 2,rc r =  is the 
volume fraction of phase r  in the reference configuration of the laminate.  

 
The next step in this procedure is to formulate the associated boundary value problem of 

elastostatics, which consists of finding the deformation field 3: →x  , with corresponding 
deformation gradient grad=F x  belonging to the set ( )F , that satisfies the equilibrium equations 

(4) with W  replaced by W , with no explicit dependence on ∈X  , and F  replaced by F . 
Assuming homogeneous deformations in the different laminae and imposing continuity of both 
traction and deformation at the lamina interfaces, we obtain an equilibrium solution, called 
principal solution, of the boundary value problem. Bifurcations may occur from this solution due to 
material instability associated to the loss of ellipticity of the equilibrium equations. In this case, 
stable secondary solutions, which are physically meaningful, may co-exist with principal solutions, 
which become unstable and, therefore, impossible to occur in the “real world”. 

 
In [1] the onset of macroscopic instabilities investigated by analyzing the loss of strong 

ellipticity of an effective strain energy function of the bilaminate evaluated at a principal solution. 
Using a second-order  homogenization method developed by [2] , it is shown in [1] that the 
effective strain energy function may be written in the form  
 ( ) ( ) ( )1 1 1 2 2 2

ˆ ,W c W c W= +F F F  (11) 

where both , 1, 2,r r
r≡ =F F  must satisfy the global average condition  

 1 1 2 2c c= +F F F  (12) 
and we recall from above that : , 1, 2,rW r→ =  is the strain energy function of phase r , which 
is isotropic and homogeneous. The authors also show that  

 ( ) ( ) ( ) ( )( )
112 2 2 2

1 1 2 1 1 1 2 2
ˆ ,D W D W c c D W D W

−− = + − −  
F F F F  (13) 

where the components of the fourth-order tensor   are given by  
 ( )1 ,ijkl j lik

H N N−≡ K       ( )( )2
1 1 ,ik p qipkq

K D W N N≡ F  (14) 

with , 1, 2,3,pN p =  being the components of the direction N  of lamination of the bilaminate in its 
reference configuration. In this work, 1N = e . 

Replacing ( ),F X  in the strong ellipticity condition (5) by ( )2 ˆD W F , the authors argue that 
macroscopic instability may occur in the corresponding effective medium whenever the resulting 
strong ellipticity condition is violated for some F . It is clear from (9) and (11)  that ( ) ( )ˆW W=F F  
from the reference configuration, F = 1 , up to the onset of the first instability, after which 

( ) ( )ˆW W≤F F . 
 
The previous assumption concerning homogeneous deformation in each lamina is reasonable 

away from the boundary of a finite laminate, or, in the interior of laminates with infinite 
dimensions. In the next section we consider a special class of hyperelastic materials together with a 
particular expression for F  in (10) and concentrate on the analysis of the angles of lamination of 
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bilaminates in their deformed configurations using both the theory outlined above and 
computational results obtained from finite element solutions of boundary value problems defined 
for laminates with finite dimensions. To obtain the angles of lamination in this last case, we 
consider that the deformations of consecutive laminae at the centers of the bilaminates are 
approximately homogeneous. This has been verified numerically. 

 

4 NUMERICAL RESULTS 

Recall from Section 3 that we consider a two-phase laminate composed of periodically alternating 
homogeneous laminae along the 1X -direction. The laminae are perfectly bonded to each other and 
the reference configuration of the periodicity cell is given by 1 2Ω = Ω Ω , as illustrated in Fig. 1.b. 
We also consider a fixed orthonormal basis { }1 2 3, ,e e e  for the rectangular Cartesian coordinate 
system.  

 
Recall from (11) and (12) that the principal solution for the boundary value problem of the 

effective medium is piecewise homogeneous. Here, we investigate numerically the possibility of a 
secondary solution to exist. For this, we consider strain energy functions of compressible Neo-
Hookean materials for the hyperelastic phases given by  

 ( )
( )

( )21 1
1 2/3

: 3 det 1 ,
2 2det

W
µ κ 

= − + 
 
 

F FF F -
F

      ( ) ( )2 1 ,W Wτ=F F  (15) 

where rµ  and , 1, 2,r rκ =  denote the shear and volumetric elasticity moduli,  respectively, in the 
reference configuration of the hyperelastic body and the factor τ ∈  quantifies the heterogeneity 
contrast between phases 1 and 2. These material models are implemented in the finite element 
commercial package ANSYS 10.0.   

 
Incidentally, in [1] different strain energy density functions of compressible Neo-Hookean 

materials for the hyperelastic phases are used, being given by  

 ( ) ( ) ( )2 21 11
1 : 3 log det det 1 ,

2 2 3
W

µ µκ  = − − + −    
F F F F F -  ( ) ( )2 1 ,W Wτ=F F  (16) 

where rµ  and , 1, 2,r rκ =  andτ ∈  denote the same material constants introduced in (15). It is 
not difficult to show that the strong ellipticity condition (5) is satisfied in each phase modeled by 
(16) for the values of rµ  and , 1, 2,r rκ =  considered below. In the case of (15), we have verified 
numerically that the condition (5) is also satisfied in each phase for the same values of rµ  and 

, 1, 2,r rκ = . Both (15) and (16) yield the (incompressible) Neo-Hookean material in the limit of 
incompressibility, det 1=F .  

 
Substituting (15) into (7) and then substituting the resulting expression into (3), we obtain  

 ( ) ( )
( )

( )1
5/3, cof det 1 ,

3det
r

r r
Iµ

χ κ
  ≡ = + −  

   
P P F X X F C - 1 F 1

F
  (17) 

where { }: 0,1rχ →  is the characteristic function introduced in Section 3.  
 
We consider the same boundary conditions used by [1] in their analysis. We assume a state of 
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plane strain parallel to the unit vectors { }1 2,e e  and consider that, relative to the orthonormal basis 

{ }1 2 3, ,e e e , the matrix representation of F  in (10) is given by  

 1

cos sin 0 0 0 cos sin 0
sin cos 0 0 0 sin cos 0 ,

0 0 1 0 0 1 0 0 1

λ
λ −

    Θ − Θ Θ Θ
      Θ Θ − Θ Θ      

        

F =  (18) 

where 2 1λ ≥  and 2λ −   are the principal stretches of T≡C F F  in the plane defined by the unit 
vectors { }1 2,e e  and [ ]0, / 2πΘ∈  yields the orientation, in the anti-clockwise direction from the 

1e -direction, of the principal axes of C . The homogeneous deformation obtained from F  
corresponds to a state of pure shear. We then say that the laminate is subjected to pure shear on its 
boundary ∂ .  

 
Since the imposed deformation on ∂  is plane and parallel to the plane defined by the 

vectors { }1 2,e e , we expect that the deformation of the laminate is also parallel to this plane and 
that the vector 1e , which defines the direction of lamination in the reference configuration, be 
mapped into a unit vector n  that is parallel to this same plane. The vector n  defines a direction of 
lamination in the deformed configuration and is oriented at an angle φ , called rotation angle of the 
layers, with respect to the direction of 1e . An illustration of both the reference and the deformed 
configurations of the laminate under the conditions introduced above is shown in Fig. 2. Using the 
principal solution for the effective medium, a relation between the vectors 1e  and n  is given by 
(see, for instance, [10]) 

 
( )
( )

1

1

cof
.

cof

F e
n =

F e
 (19) 

Substituting F , given by (18), into (19), we obtain  

 
( )

( )

2 2 2

4 4

2 cos sin
arccos .

1 1 cos 2

λ
φ

λ λ

 Θ+ Θ =   + − − Θ 

 (20) 

Observe from (20) that φ  depends upon Θ  and λ  only, being independent of the material 
properties of the laminate. 

 
We consider a laminate with 256 laminae subject to a state of plane strain parallel to the 

1 2X X − plane and having unit dimensions in planes perpendicular to the 3X − direction, so that 
, 1,W C H→∞ = =  and 1/ 256L =  in Fig. 1. We also consider that the volume fraction of Phase 1 

is 1 0.7c = . We have used ANSYS 10.0 to discretize the laminate with 4096 elements of the type 
PLANE1832

                                                 
2 The element PLANE183 is a two-dimensional, eight-node element with quadratic shape functions for the 

displacement field, which is well suited to modeling irregular meshes (adapted from ANSYS 10.0 Help Topics).  

, which yields 14345 degrees of freedom. Recall from above that the strain energy 
function of the compressible Neo-Hookean material that is implemented in ANSYS 10.0 is given 
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by (15), where computational results were obtained for 1 1µ = , 1 100κ = , and 20τ = . Thus, the 
material in Phase 2 is 20 times stiffer than the material in Phase 1.  

 

 
 

Figure 2: Pure shear of the laminate. 
 

In Fig. 3 we show curves φ  versus λ  obtained from both the expression (20) with o20Θ =  
and from computational results. The graph on the left-hand side of this figure is for ( )1,1.75λ ∈  
and the graph on the right-hand side corresponds to ( )1,1.10λ ∈  in the previous graph. To obtain 
the computational results, we have evaluated deformation gradients at the centers of two 
consecutive laminae located at the center of the laminate. Let 1F̂  and 2F̂  be the evaluated gradients 
at the laminae corresponding to phases 1 and 2, respectively. Substituting the average deformation 
gradient 1 1 2 2

ˆ ˆ ˆc c= +F F F , which is analogous to  (12), into (19),  we obtain an estimate for the 
resulting rotation angle of the layers away from the boundary of the bilaminate. In both graphs of 
Fig. 3, this angle corresponds to the dashed line and the angle φ  obtained from (20) corresponds to 
the solid lines. Observe from Fig. 3.a that both curves are indistinguishable for small values of λ , 
become different for 1.08λ ≅ , and then are almost parallel for large values of λ . Observe from 
Fig. 3.b that the transition from one curve to the other curve is smooth.  

 
In Fig. 3 we also show a dot on the solid line representing the point of the curve where the 

strong ellipticity condition ( ) ( )[ ]2 ˆ: 0D W⊗ ⊗ >b c F b c  for 3, ∈b c   fails, where ( )2 ˆD W F  is 

given by both (13) and (14) and ( )Ŵ F  is the effective strain energy function given by (11). The dot 

corresponds to the stretching 1.08λ ≅ . Recalling from above that the solid line represents the 
rotation angle obtained from the principal solution, we then see from Fig. 3 that the dashed line may 
correspond to a secondary solution, which bifurcates from the principal solution at the point where 
there is loss of ellipticity for the effective medium.  
 

5 CONCLUSION 

We have addressed the equilibrium problem of a two-phase hyperelastic laminate subjected to 
pure shear on its boundary. Of particular interest here is the case of phases made of compressible 
Neo-Hookean materials, for which the ellipticity condition (5) holds. Away from the boundary of 
the laminate, it is possible to obtain a deformation field that is homogeneous in each phase and 
satisfies appropriate jump conditions at the interface between the phases. This field is used to obtain 
an average deformation gradient that yields the direction of lamination of the laminate in its 
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deformed configuration. The average deformation gradient, given by (18) in this work, corresponds 
to a principal solution of the equilibrium problem for the effective medium. For a moderate value of 
λ  in (18), the ellipticity condition for this medium fails.  To search for a secondary solution that 
bifurcates from the principal one, we have used FEM to discretize a laminate under a state of plane 
strain, which is composed of laminae made of the same type of material considered above and 
subjected to the same state of pure shear on its boundary. We have obtained a deformation gradient 
field that was used to compute an average deformation gradient, which was then used to obtain an 
estimate for the rotation angle at the center of the laminate in its deformed configuration. By 
comparing the rotation angle obtained from the homogenization theory with the one obtained from 
FEM, we observe that both angles are close to each other for small values of λ  and are very 
different for large values of λ . The beginning of the transition zone where they become different 
from each other corresponds to the deformation for which the ellipticity condition for the effective 
medium fails. 
 

1.1 1.2 1.3 1.4 1.5 1.6 1.7



40

30

20

10



    

1.02 1.04 1.06 1.08 1.10



5

4

3

2

1



 
a) ( )1, 1.75λ ∈ . b) ( )1, 1.10λ ∈ . 

Figure 3: Rotation angle φ  versus stretching λ . 
Solid line: Analytical result from (20). Dashed Line: Computational result. 
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