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ABSTRACT 

The concept of frame cannot be considered simply as the result of the application of the finite element procedure 

to the Euler-Bernoulli theory of beams. The difference between both approaches lies in the inclusion of the notion of 

plastic hinge in the theory of frames. A plastic hinge is not the consequence of the introduction of some approximate 

displacement field in the kinematic equations but a radical modification of the constitutive laws. As a result, a beam 

finite element and a frame element are not only quantitatively dissimilar but, most important, qualitatively different. 

This is especially significant in the case of structures presenting softening with all the associated localization problems. 

There is a large number of frame elements available in the literature but, as far as the authors know, all of them 

correspond to straight components. In the present work, a curvilinear frame element for arches with plastic hinges 

exhibiting hardening and/or softening is proposed and numerically validated. 
. 
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1 INTRODUCTION 

One of the most valuables advantages of the frame theory with plastic hinges is that the 

analyst has control over the way and the position where inelastic effects may be located in the 

structure. Often, this a fundamental feature for an adequate and effective description of the 

structural behavior in the presence of softening. 

A large number of frame elements with plastic hinges, which include not only plasticity but 

cracking or local buckling too, can be found in the literature. However, as far as the authors of this 

paper know, all of them correspond to straight components. On the other hand, arches are important 

structural alternatives in the construction industry. Many civil and aerospace structures may be 

modeled as arches. At the present time, an analyst using commercial finite element programs has to 

use beam elements or discretize the structure using many frame elements, which complicates 

unnecessarily the modeling of the structure and limits the control that the engineer has over the 

analysis. Circular and parabolic arch elements are available in the literature but they do not include 
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plastic hinges [1,2]. Notice that if lateral or in plane instability is controlled by providing sufficient 

bracing, the failure mechanism of the arch would be plastic collapse.  

In this paper, a new frame element for circular arches with plastic hinges is proposed. The 

formulation accepts arbitrary yield functions and plastic evolution laws including hardening and/or 

softening. It is expected that in many practical applications, some users will find more convenient 

using a few circular frame elements instead of dense meshes of shell or beam elements. It is worth 

noting that analytical solutions for practical problems may be obtained, with the formulation 

presented in the paper, using any symbolic manipulator program. 

The element was formulated from the classical theory of plasticity, using the notation 

introduced in [3] and the procedures described in [1,2]. 

 

2 STATICS AND KINEMATICS OF CIRCULAR ARCS 

2.1 Kinematic equation 

Consider a circular arch as shown in Fig. 1. A circular element between nodes i and j is 

isolated from the structure. The element is characterized by the radius R and the angle α. Two sets 

of coordinates axes are defined: the global ),( GG ZX  and the local ones ),( LL zx . The angle between 

the axes 
GZ  and 

Lz  is called β.  

 
Figure 1 Circular arch, global and local coordinates axes 

 

The angles α and β can be computed as a function of the global coordinates of the element 

nodes and the element radius. 

Two sets of static variables are introduced: the matrix of nodal forces in global coordinates: 

),,,,,(}{ jwjujiwiui
t

QQQQQQ θθ=Q  (Fig 2a) and the matrix of generalized stresses in local coordinates: 

),,(}{ iji
t

nmm=M  (Fig 2b). The variable im  is the bending moment on the end i of the element, jm  

is the bending moment on j and in is the axial force on i (compression is positive). Nodal forces 

matrices and generalized stresses are related by the following equilibrium equation: 

 

}{][}{ MBQ
t=      (1) 

 

Where ][B  is denoted kinematic transformation matrix. The next section presents the explicit 

expression of this matrix. 
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Introduce now the matrices of nodal displacements ),,,,,(}{ jjjiii
t

wuwu θθ=q  and generalized 

deformations ),,(}{ δφφ ji
t =Φ , that are conjugated with the nodal forces and generalized stresses 

respectively, then the power Wɺ  is computed as: 

 

}{}{}{}{ MΦQq tt
W ɺɺɺ == ;  i.e. }{}{}{][}{ MΦMBq ttt ɺɺ =   (2) 

 

 
Figure 2 a) Nodal forces b) Generalized stresses 

 

Therefore, these kinematic variables are related by the following equation: 

 

}]{[}{ qBΦ ɺɺ =
      (3) 

 

The expression (3) is the kinematic equation of the curved element. If displacements are 

small, the transformation matrix in the initial and the deformed configurations ( ][ 0B and ][B  

respectively) are approximately the same, thus the kinematic and equilibrium equations become: 

 

][][ 0BB ≅  ⇒  }]{[}{ 0 qBΦ ≅ ;  }{][}{ 0 MBP t≅   (4) 

 

2.2 Kinematic transformation matrix 

Consider again the circular element in local coordinates and introduce a third static variable: 

),,,,,(}{ jwjujiwiui
t

QQQQQQ θθ ′′′′′′=′Q , the matrix of nodal forces again, but in local coordinates this time. 

 
Figure 3 Nodal forces in local coordinates and generalized stresses 

 

The equilibrium of the element is now defined by: 
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0sincos =′+′+ αα wjuji QQn  

0cossin =′+′−′ αα wjujwi QQQ      (5) 

0sin)cos1( =+′+−+ jwiii mQRRnm αα  

 

or in matrix equation: 

 

}{][}{ MBQ
t′=′ ; 

























+−
−

+−

−−

−−

=′

0
sin

cos1
10

sin

cos1
1

1
sin

cos1
0

sin

1
0

0
sin

cos1
1

sin

1
0

][

α

α

α

α
α

α

α

α

α

α

RRR

RRR

B   (6) 

 

Nodal forces in global coordinates }{Q  and local coordinates }{Q′  are related by the 

conventional geometrical transformation matrix ][T : 

 

}]{[}{ QTQ ′=       (7) 

 

Where ][T  is given by: 

 



























++−

++

−

=

100000

0)cos()sin(000

0)sin()cos(000

000100

0000cossin

0000sincos

][

βαβα

βαβα

ββ

ββ

T   (8) 

Therefore: 

 
t]][[][ TBB ′=       (9) 

 
Figure 4. Bending moment, shear force and axial force in the arch 

 

The bending moment, axial and shear forces (see Fig. 4) on any section of the element can 

also be expressed as a function of the generalized stresses by the same equilibrium considerations: 
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3 ELASTIC-PLASTIC CONSTITUTIVE EQUATIONS WITH PLASTIC HINGES 

3.1 Generalized plastic deformations in a circular element 

Assume that the element is the assemblage of an elastic circular arch and two plastic hinges 

localized at its ends as shown in Fig 5. 

 
Figure 5. A circular arch element with two plastic hinges 

 

These plastic hinges may experience rotations p
iθ , p

jθ  and/or elongations p
i∆ , p

p∆  as shown in 

Fig. 6.  

 
Figure 6. Plastic rotations and elongations a) without axial force b) with axial force 

 

The plastic power pWɺ  of the plastic hinges is therefore: 

 
p
j

p
j

p
i

p
ip NMNMW ∆++∆+= ɺɺɺɺɺ )()()0()0( αθαθ    (11) 

 

where )0(M  is the bending moment of the plastic hinge i, )0(N  is the axial force on the same 

hinge and )(αM , )(αN  are the corresponding variables for hinge j (see Fig. 6). 

On the other hand, assume that the total deformation matrix introduced in the previous section 

is expressed as the sum of an elastic part, the deformation of the elastic arch, and a plastic one: 
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}{}{}{ pe
ΦΦΦ += ;  ),,(}{ pp

j
p

i
tp δφφ=Φ   (12) 

 

All the generalized deformation matrices in (12) are conjugated with the stress matrix }{M  

giving, respectively, the total, elastic and plastic power on the element. Therefore, the latter is: 

 
p
j

p
j

p
i

p
i

p
i

p
jj

p
iip NMNMnmmW ∆++∆+=++= ɺɺɺɺɺɺɺɺ )()()0()0( αθαθδφφ   (13) 

 

According to (10): 

 

imM =)0( ; inN =)0( ; jmM −=)(α ; R

mRnm
N

jii ++
=)(α   (14) 

 

Thus, the equations (13-14) lead to: 

 

R

p
jp

i
p

i

∆
+=θφ ;  

R

p
jp

j
p
j

∆
+−= θφ ;  p

j
p
i

p ∆+∆=δ   (15) 

 

Expressions (15) give a physical interpretation of the internal variables ),,( pp
j

p
i δφφ . Notice 

that p
iφ and p

jφ  are not identical to the plastic rotations, but for large radios and small plastic 

elongations the difference is negligible. The term pδ  is minus the total permanent elongation of the 

element. 

 

 

3.2 Elasticity law 

The elastic deformation term can be related to generalized stresses through the flexibility 

matrix ][ 0F : 

 

}]{[}{ 0 MFΦ =e
     (15) 

 

Therefore, according to (12,15), the elasticity law of the circular element is: 

 

}]{[}{ 0 MFΦΦ =− p
;  or; }]{[}{ 0

p
ΦΦEM −=    (16) 

 

where 
1

00 ][][ −= FE  is the elasticity, or stiffness, matrix. The flexibility matrix terms can be 

obtained using the Castigliano theorem as described in [1,2]; the resulting expressions are given in 

the next section. 

 

3.3 Flexibility matrix 

The strain energy stored in a slender circular component can be written as: 
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where the terms EI, and AE are the usual bending and axial stiffness. Then, the coefficients of 

the flexibility matrix can be obtained according to Castigliano´s theorem:  
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3.4 Plastic rotation evolution laws 

The element is completely defined introducing the yield functions of the plastic hinges i and j: 

0),( ≤pif ΦM , 0),( ≤pjf ΦM . Then, plastic deformation evolution laws may be obtained via the 

conventional normality rule: 
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where iλ  and jλ  are the plastic multipliers of, respectively, plastic hinges i and j, that may be 

computed by the usual consistency condition: 
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It should be possible to include any of the conventional expressions for yield functions in the 

circular beam element: linear or no linear, with kinematic and/or isotropic hardening; even 

considering time-dependent plasticity is also possible. Therefore, the formulation could be used to 

analyze structures of any material, reinforced concrete, steel, aluminum and so on. 

 

4 NUMERICAL EXAMPLE 

The arch element is thus defined by the kinematic equation and equilibrium (4), the elasticity 

law (16) and the plasticity laws (19-20). 

The numerical implementation of the frame element does not require any special procedure. 

Any algorithm for the numerical analysis of elastic-plastic models with multiple yield functions can 

be used. For the example presented in this paper, an element compatible with a commercial 

structural analysis program [4] and an academic one [5] was developed and implemented. The 

program included the following yield functions: 

 

y
p

iii MCmf −−= φ ;  
y

p
ijj MCmf −−= φ      (21) 

 

where yM  is the yield moment of the cross section and C is a plastic hardening/softening 

coefficient. 

Figure 7 shows the geometry and the properties of a circular arch of radio 20 m. The structure 

was modeled using four elements with the same angle α without taking the advantage of the 

symmetry . A displacement-controlled loading was applied in the middle of the arch and 

incremented monotonically up to the formation of plastic hinges on all the nodes.  

 

 
Figure 7. Geometry and properties of the arch 

 

The curve of reaction force vs. displacement of the support in the middle of the arch is shown 

in Fig. 8. The bending moment diagrams at the times of the formation of plastic hinges are shown in 

Fig. 9, Fig. 10 and Fig. 11. In those figures, the bending moment is plotted against the angle β of 

each cross section. Fig. 9 corresponds to the time of formation of the first plastic hinge on the node 

3; bending moments after the appearance of plastic hinges in 1 and 5 are shown in Fig 9. Fig 10 

shows the distribution at the time of formation of the last plastic hinge. The corresponding 

deformed configurations of the arch are also included in the same figures. The final configuration of 

the arch is indicated in Fig 11. 
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Figure 8. Displacement vs. force on the roller 

 

 

 
Figure 9. Distribution of bending moments on the arch after the appearance of the first plastic 

hinge 

 

A similar, although not identical, structure was solved using a commercial finite element 

program: ANSYS [6]. The arch was discretized using three-node elements labeled in that program 

as BEAM 189. The same geometry was used in both cases but the ANSYS element includes plastic 

effects based on a fiber beam model; the uniaxial behavior of the material was represented using a 

yield function with linear kinematic hardening, yield stress of 2222.22 KN/m
2
 and a hardening 

coefficient of 444.4 KN/m
2
. Fifty BEAM 189 elements of the same size were needed to reach a 

convergent solution that represents correctly the plastic zones. Fig 13 compares the proposed 

approach with the ANSYS solution using the displacement vs. force curve. 
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Figure 10. Bending moment distribution after the appearance of plastic hinges on the supports 

 

 
 

Figure 11 Bending moment distribution with plastic hinges on all the nodes 

 
Figure 12 Initial and final configuration of the arch 
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Figure 13 Comparison between ANSYS and the proposed analysis 

 

5 CONCLUSION 

The mathematical formulation of the element is very simple. Thus, not only numerical 

analysis, but analytical solutions as well can be obtained in many cases with the help of any 

symbolic manipulator program. This is not the case of the conventional beam elements. 

Beyond the academic example included in the paper, it is clear that much more complex and 

realistic mathematical models describing the inelastic behavior of the hinges can easily be included 

in the element.  

The consideration of some non-linear geometrical effects is also straightforward. It is 

sufficient to modify the linear kinematic and equilibrium equations used in the example by the non-

linear versions also derived in the paper.  

The behavior of a tridimensional frame element may be described by exactly the same matrix 

equations, expanding the matrices involved and reformulating the transformation and flexibility 

terms. 
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