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ABSTRACT 

This paper investigates a topology optimization strategy for structures under multiple load cases. Typically 

compliance is calculated for each of the load cases in analysis and minimization is computed for a weighted average of 

the compliances, resulting in time consuming algorithms. A way to increase convergence speed is updating density on 

the element level. Instead of having an averaged compliance for the whole structure, it is proposed to compute it 

individually for every element. All load cases are analyzed, however only the ones of the maximum compliances are 

considered for sensitivity analysis. Thus compliance gradient is function of a few load cases at each element, reducing 

the processing time without weight penalty. The efficiency of the proposed technique is exemplified and compared to 

the one of a classical approach of multiple load case problem, solved using optimality criteria.  
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1 INTRODUCTION 

Optimization techniques are very important in many fields of engineering, such as aerospace, 

mechanical and naval. Problems in these fields are often function of several variables and 

optimization should be carried out for each of them in order to achieve global minima. As loading is 

typically the input in structural optimization, an efficient strategy for multiple load case problems is 

quite useful in engineering activities.  

The objective function of topology optimization problems is typically minimize compliance, 

which may be defined by displacement and stiffness of the structure. When the problem accounts 

for multiple load cases, the objective function is usually set as a linear combination of the 

compliance of each load case, calculated separately. Hence the more load cases there are in the 

problem, the longest is the optimization process. 

Reducing the amount of load cases is the straight answer to save processing time. However, 

evaluating which load cases of the problem are relevant is not always an easy task, since it depends 

on the geometry of the structure that changes at each optimization step. Instead of determining 

which load cases shall be considered, it is proposed to define the region of the structure under the 

influence of each load case. This strategy also contributes to prevent interference of non relevant 

load cases that could drive the solution out of the optimum. 
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The approach developed in this work is an adaptation to topology optimization of the solution 

strategy proposed by A. Faria [1], which a is robust optimization proposal based in a directional 

search of the critical load case. 

The 99 line code of topology optimization written in Matlab [2] has been a starting point for 

the development of the new technique. Optimality Criteria is the solving approach employed, 

however the new technique may be easily adapted to any optimization solver. 

 

2 THEORETICAL DEVELOPMENT 

O. Sigmund [2] defines a single load case topology optimization problem of an isotropic 

material by the power-law approach that can be mathematically written as: 
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      (1b) 

                                        (1c) 

 

Where, U is the vector of displacement, K the global stiffness matrix, F the applied loading, N 

is the number of elements, x is the density and p is the penalization power. 

The sensitivity analysis of the objective function (1a) is formulated by: 
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The typical compliance formulation for a problem of “L” load cases is the summation of the 

compliance of each load case i: 
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Hence the compliance gradient is also calculated for every load case (equation 4), no matter 

whether they are relevant or not. 
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However, calculating compliance for every load cases provides a ranking of the most critical 

ones. The higher is the compliance, the less worthy is the element contribution for that load case. In 

addition, compliance of each load case derives from the compliance of all the elements. Instead of 

summing all of them, we could compare the compliance of each element through all load cases and 

identify which load case is the most critical for every element. Sensitivity analysis would then be 

calculated only for the critical load cases.  

Equation (5) defines the compliance of each element for a load case i, where 1 ≤ i ≤ L 

 

            
    

                (5) 

 

The worst compliance for each element reads: 

 

                             (6) 
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The objective function becomes to minimize the compliance    and the sensitivity analysis is 

performed for gradient of the worst compliance of each element, that is: 

 
   

   
            

             (7) 

 

Where    and    are the elements density and the displacement matrix associated to the load 

case of the maximum compliance. 

Minimizing the worst compliance of each element drives the solution to minimize the 

maximum compliance of the structure. However, the instability of the load case of maximum 

compliance may increase the number of iterations. Hence instead of considering only one load case 

for each element as presented in equation (6), it may be considered a few ones. For example, 

equation (8) defines the group of the critical compliances of an element as sum of first and second 

worse load cases. 

 

                                    (8) 

 

It is also considered in this work a group of “n” worse compliances in such that n is the load 

case whose compliance is greater or equal to 90% of the worst compliance (equation 9). 

 

                                              (9) 

 

Where:                          
 

3 ALGORITHM IMPLEMENTATION 

Few modifications have been implemented into the original code of reference [2]. The same 

volume fraction is prescribed (40%), the same filtering (mesh-independency) and solver (optimality 

criteria) are employed to focus the comparison in the objective function. The three approaches for 

the element compliance (one, two and multiple critical load cases) described in the previous section 

are implemented and compared to the multiple load case version of reference [2], named in this 

work as “all load cases”. 

Stability of the answer is an important issue for “multiple critical load cases” approach. Since 

the number of load cases accounted at each step may vary, the gradient of the compliance function 

is normalized by the ratio of the load cases accounted and the total load cases of the problem. 

Eventually the function of maximum embedded in Matlab Software is for simplicity the one 

employed to calculate compliance in the proposed approaches (equations 6, 8 and 9). 

 

4 NUMERICAL EXAMPLES 

Let us consider a cantilever beam fixed in the left extremity and discretized in a mesh of 84 

by 20 squared elements. The structure is subjected up to nine load conditions, illustrated in Figures 

1-3. 
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Figure 1: Load cases 1 (L) to 3 (R) applied to example 01. 

   

Figure 2: Load Cases 4 (L) to 6 (R) applied together with LC1 to LC3 on example 02. 

  

Figure 3: Load Cases 7 (L) to 9 (R) applied together with LC1 to LC6 on example 03. 

 

Analysis will be performed for loading sets of 3, 6 and 9 load cases (examples 01, 02 and 03 

respectively). Table 1 presents the flexibility (compliance) of the optimum structure for each load 

case calculated individually on the original code of reference [2]. Since the compliance of LC 1, LC 

5 and LC 8 are higher; it is expected that solution shall be driven by them. 

 

Table 1: Compliance of the optimized structure for each load case individually 

LC 1 LC 2 LC 3 LC 4 LC 5 LC 6 LC 7 LC 8 LC 9 

5.81E+04 3.45E+04 3.46E+03 3.05E+03 5.13E+04 1.91E+04 2.38E+04 5.88E+04 2.37E+04 

 

Figures 4-6 present the results of the topology optimization for the 3 proposed examples. 

Results of each approach are presented side by side, respectively by one maximum load case, two 

maximum load cases, multiple maximum load cases and all load cases. 

 

 

Figure 4: solution to 3 load cases problem provided by the strategies of 1LC (top-left), 2LC (top-

right), Mult-LC (bottom-left) and All-LC (bottom-right) 
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Figure 5: solution to 3 load cases problem provided by the strategies of 1LC (top-left), 2LC (top-

right), Mult-LC (bottom-left) and All-LC (bottom-right) 

 

Figure 6: solution to 9 load cases problem provided by the strategies of 1LC (top-left), 2LC (top-

right), Mult-LC (bottom-left) and All-LC (bottom-right) 

The proposed strategies and reference approach delivered similar solutions as expected. 

Performance of each strategy is presented on Tables 2 to 4. Compliance of each load case is 

calculated according to equation (1a). Eventually, the elapsed time for running each solution is 

presented as reference only, since none of the algorithms have been developed focused on 

computational efficiency. Examples of enhancements that could be applied to the algorithms are 

presented on Ref. [3]. 

Table 2: Results for 3 load cases - original stop criteria 

 One Two Multiple All 

C1: 59945 61270 60039 61341 

C2: 38721 37205 38761 37410 

C3: 5714 5884 5717 5788 

Iterations: 337 101 277 114 

Elapsed time: 223 69 184 76 

 

Table 3: Results for 6 load cases - original stop criteria 

 One Two Multiple All 

C1: 64125 64824 64127 65131 

C2: 40053 39477 40075 38410 

C3: 6349 6409 6345 6249 

C4: 5096 5301 5090 5002 

C5: 56045 56476 56036 55458 

C6: 23242 23170 23251 23053 

Iterations: 132 82 136 77 

Elapsed time: 112 71 116 65 
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Table 4: Results for 9 load cases - original stop criteria: 

 One Two Multiple All 

C1: 69345 68071 70213 69482 

C2: 43391 42258 44159 40444 

C3: 7486 7022 7792 7698 

C4: 6106 5496 6386 5694 

C5: 60671 59940 61786 60705 

C6: 24734 23611 25830 22668 

C7: 35292 36581 36766 37057 

C8: 69427 67450 70016 66828 

C9: 31796 30285 32088 30791 

Iterations: 80 140 887 78 

Elapsed time: 81 136 857 75 

Comparing the compliance of each load case after the optimization, it is found that 

compliance of load case 1 ended up being the highest for all examples. It means that application of 

load case 1 demands more of the optimized structures than all the other load cases. Hence 

compliance variation of the other load cases is not as critical, though the ideal optimization point 

would be a structure with the same compliance for all the load cases. 

Results point that a small reduction of the flexibility has been achieved on the critical load, 

except for example 3 (9 load cases) where strategy for multiple load cases reads about 1.1% higher 

in compliance. However a first reading on the amount of iterations may mislead to a reduction in 

convergence rate. Examination of Figures 7 to 9, which plot the first 45 iterations of the compliance 

evolution of the critical load case, allows understanding the development of compliance 

convergence. 

 

 

Figure 7: initial 45 iterations of the compliance variation of the critical load case (LC1) - 

convergence of the proposed techniques is faster than typical approach 
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Figure 8: initial 45 iterations of the compliance variation of the critical load case (LC1) - 

convergence of the proposed techniques is faster than typical approach 

 

 

Figure 9: initial 45 iterations of the compliance variation of the critical load case (LC1) - 

convergence of the proposed techniques is faster than typical approach 

 

The convergence rates for the proposed strategies are significantly better for the first 25 

iterations. The reason why the proposed approaches demand more iterations to converge is the stop 

criteria. The original code of reference [2] proposes to end the optimization when maximum density 
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variation of the elements is smaller than 1%. As critical load case of each element may alternate in 

the proposed approaches, the element density variation is not as smooth as in the all load cases 

approach. Consequently the optimization process of the proposed strategies demands more 

iterations to converge.  

Instead of developing an improved filtering that could fix this issue, it is proposed a stop 

criteria based in the convergence of compliance. One possibility is to run the optimization until the 

maximum compliance variation is smaller than a percentage of the compliance of the previous 

iteration. The compliance employed in each strategy is the compliance of the structure, defined as 

the sum of the compliance of each element for the computed load cases. The following results have 

been run for a compliance variation smaller than 0.001%. 

 

Table 5: Results for 3 load cases - modified stop criteria 

  One Two Multiple All 

C1: 61772 62112 60229 61076 

C2: 39767 37492 38801 37425 

C3: 5871 6136 5842 5699 

Iterations: 82 41 90 195 

Time elapsed: 56 28 61 132 

 

Table 6: Results for 6 load cases - modified stop criteria 

  One Two Multiple All 

C1: 66801 65419 64627 64745 

C2: 41894 39752 40176 38474 

C3: 6579 6516 6421 6144 

C4: 5733 5631 5296 4819 

C5: 57988 56623 56250 55463 

C6: 24668 23267 23307 22966 

Iterations: 19 29 42 170 

Time elapsed: 17 25 36 141 

 

Table 7: Results for 9 load cases - modified stop criteria 

 One Two Multiple All 

C1: 69381 70729 69537 68054 

C2: 43429 43788 43639 40658 

C3: 7460 7735 7332 7474 

C4: 6133 6477 6034 5505 

C5: 60677 61180 60964 59437 

C6: 24766 24511 24913 22664 

C7: 35446 37419 35349 36920 

C8: 69487 69649 69789 65639 

C9: 31852 31636 32094 31225 

Iterations: 67 42 99 181 

Elapsed time: 67 42 99 180 
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The compliance stop criteria have not been as effective for the reference approach as it has 

been to the proposed strategies. The amount of iterations reduced for them and increased for the “all 

load cases” approach. A reasonable comparison would consider the results of the proposed 

approaches for the compliance stop criteria and the results of the reference approach for the density 

stop criteria. This comparison, presented on Tables 8-10, still point advantages for the proposed 

approaches: reduction in the number of iterations without weight penalty.   

 

Table 8: Variation in the number of iterations and compliance for critical load case - Ex. 1 

Example 1 - three load cases applied 

Objective function strategy: Compliance of LC 1: Iterations: Stop Criteria: 

One critical load case 61772 0.7% 82 -28.1% Compliance convergence 

Two critical load cases 62112 1.3% 41 -64.0% Compliance convergence 

Multiple critical load cases 60229 -1.8% 90 -21.1% Compliance convergence 

All load cases (reference) 61341 0.0% 114 0.0% Density convergence 

 

Table 9: Variation in the number of iterations and compliance for critical load case – Ex. 2 

Example 2 -six load cases applied 

Objective function strategy: Compliance of LC 1: Iterations: Stop Criteria: 

One critical load case 66801 2.6% 19 -75.3% Compliance convergence 

Two critical load cases 65419 0.4% 29 -62.3% Compliance convergence 

Multiple critical load cases 64627 -0.8% 42 -45.5% Compliance convergence 

All load cases (reference) 65131 0.0% 77 0.0% Density convergence 

 

Table 10: Variation in the number of iterations and compliance for critical load case – Ex. 3 

Example 3 - nine load cases applied 

Objective function strategy: Compliance of LC 1: Iterations: Stop Criteria: 

One critical load case 69381 -0.1% 67 -14.1% Compliance convergence 

Two critical load cases 70729 1.8% 42 -46.2% Compliance convergence 

Multiple critical load cases 69537 0.1% 99 26.9% Compliance convergence 

All load cases (reference) 69482 0.0% 78 0.0% Density convergence 

 

The geometry for the optimized structure with compliance convergence criterion is presented 

on Figures 10-12. The strategy for only one critical load case delivered inferior solutions with 

compliance convergence criterion. In example 2, the gray cloud on the top of the structure (Figure 

11) is consequence of the premature stop in iteration 19.  The multiple critical load cases approach 

seems to be the most promising: cleaner structural layout and faster convergence (Figures 7-9). 

 



IV International Symposium on Solid Mechanics - MecSol 2013 
April 18 - 19, 2013 - Porto Alegre - Brazil 

 

 

10 

 

 

Figure 10: solution to 3 load cases problem provided by the strategies of 1LC (top-left), 2LC (top-

right), Mult-LC (bottom-left) and All-LC (bottom-right) – Modified Stop criteria 

 

 

Figure 11: solution to 6 load cases problem provided by the strategies of 1LC (top-left), 2LC (top-

right), Mult-LC (bottom-left) and All-LC (bottom-right) – Modified Stop criteria 

 

 

Figure 12: solution to 9 load cases problem provided by the strategies of 1LC (top-left), 2LC (top-

right), Mult-LC (bottom-left) and All-LC (bottom-right) – Modified Stop criteria 

 

5 CONCLUSION 

This paper investigated a new methodology to deal with multiple load case problems in 

topology optimization. Instead of either running all the load cases or selecting a few ones, it is 

proposed to identify the critical load cases for each region of the problem. Compliance is thus 

accounted individually at each element for the critical load cases only, reducing the computational 

cost. Comparing to the typical approach [2], it presents a faster convergence without weight 

penalty. 

The instability of the results has not taken into significant changes in the structure geometric 

shape and has been addressed by adequate stop criteria. Implementing other filtering techniques, 

such as density filtering [6, 3, 7], shall reduce the regions of gray density. 

Reference [3] may be a starting point for computational improvements in algorithms. This 

associated with the implementation of functions of maximum and ordering more effective than the 

one embedded in Matlab will boost the reduction in computational cost. 
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