
   

 

1 

 

 
A Simple and Accurate Elastoplastic Model Dependent on the Third 

Invariant and Applied to a Wide Range of Stress Triaxiality  
 

Lucival Malcher 
Department of Mechanical Engineering 

Faculty of Tecnology, University of Brasilia 
malcher@unb.br 

 

Edgar Nobuo Mamiya 
Department of Mechanical Engineering 

Faculty of Tecnology, University of Brasilia 
mamiya@unb.br 

 

Fabio Comes de Castro 
Department of Mechanical Engineering 

Faculty of Tecnology, University of Brasilia 
fabiocastro@unb.br 

 

João Vitor Sahadi Cavalheiro 
Automotive Engineering 

Faculty UnB at Gama, University of Brasilia 
Joao_sahadi@aluno.unb.br 

 

ABSTRACT 

In this contribution, a new and simple elastoplastic model is proposed and applied to a wide range of stress 

triaxiality. Regarding the constitutive formulation, a new equivalent stress is suggested depending now on the second 

and third invariant of the deviatoric stress tensor. The effect of the last one is introduced by the so-called normalized 

third invariant that is a ratio between the third invariant and the von Mises equivalent stress. The new proposition is 

then implemented in an academic finite element framework and through an operator split methodology the numerical 

model is determined. After that, numerical simulations are carried out regarding different load conditions. The 

numerical results obtained by the new proposition are compared with experimental data and classical elastoplastic 

models, such as: von Mises and Tresca. In the conclusions, it is shown that the new proposition is more accurate that 

the classical models for a wide range of stress triaxiality, regarding the level of displacement at fracture and the level of 

reaction force during the process. 
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1 INTRODUCTION 

The theory based on the second invariant of the deviatoric stress tensor (  ), more widely 

known as the von Mises’ model, is one of the most used formulations to describe the behavior of 

metals during the elasto-plastic regime. Such model (von Mises) assumes that the effect of the 

hydrostatic stress is negligible in the evolution of the plastic flow for ductile materials. The 

hydrostatic stress is a parameter responsible for controlling the size of the elastic regime (Bardet, 

1990; Bai, 2008). Furthermore, in the von Mises’ formulation, the effect of the third invariant of the 

deviatoric stress tensor (normally denoted by   ) is also ignored. The third invariant is a parameter 
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used in the definition of the Lode angle or Azimuth angle, which can be responsible for the shape of 

the yield surface (Bardet, 1990; Bai, 2008). Over the last five years, the importance of these two 

parameters in the description of the behavior of ductile materials, the hydrostatic stress and the 

Lode angle, has been clearly recognized and detailed studies were conducted by several authors 

(Bai et al., 2007; Bai, 2008; Driemeier et al., 2010; Mirone et al., 2010; Gao et al., 2011). Many 

researchers have done extensive experimental studies as Richmond & Spitzing (1980), who were 

the first researchers to study the pressure effects on the yielding of aluminium alloys. Later, Bardet 

(1990) proposed a methodology to describe the Lode angle dependence for some constitutive 

models, in addition Wilson (2002) conducted studies on notched 2024-T351 aluminium bars under 

tensile tests and verified the importance of these effects. Brunig et al. (1999) proposed a 

constitutive model with three invariants that could be applied to metal plasticity and fracture. 

According to Mirone et al. (2010), the phenomenon of ductile failure is influenced by the relation 

with the variables from the stress–strain characterization and the failure prediction is better 

described by the plastic strain, stress triaxiality and Lode angle parameters. An experimental 

program to study the influence of the stress tensor invariants in ductile failures was presented by 

Driemeier et al. (2010). This methodology can be seen as an efficient tool to investigate the effects 

of stress intensity, stress triaxiality and Lode angle. Recently, Gao et al. (2011) have proposed an 

elasto-plastic model, which is a function of the hydrostatic stress as well as the second and third 

invariants of the stress deviator. The initiation of the fracture is often preceded by large plastic 

deformation and there are considerable stress and strain gradients around the point of fracture. In 

such a case, the    theory is not accurate enough to capture the physical effects and more refined 

plasticity models have to be developed to be used in a larger range of loading conditions. 

 

2 CONSTITUTIVE FORMULATION 

Several factors have been systematically analysed in the study of ductile fracture, 

nevertheless, there are three factors that have gained increased interest: the hydrostatic stress (  , 
stress triaxiality ( ), and the Lode angle     expressed by Equations (1-3) respectively (Brunig et 

al., 2008; Bai & Wierzbicki, 2008; Zadpoor et al., 2009; Tvergaard, 2008; Nahshon et al., 2008). 
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where    √  ⁄      is the von Mises equivalent stress,        is the deviatoric stress tensor 

and   ,    and    are the components of the deviatoric stress tensor in the principal plane. The Lode 

angle can also be written as a function of the so-called normalized third invariant of the deviatoric 

stress tensor, as presented below 
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where   represents the normalized third invariant, that can be mathematically determined by a ratio 

between the third invariant and the von Mises equivalent stress 

  (
 

 
)
 

    (5) 

The term    represents the third invariant, alternatively, defined by Bai et al. (2007) and can 

be determined as following 

  [
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    (6) 

where    is the third invariant of the deviatoric stress tensor,  . The Lode angle can also be 

normalized ( ̅  and this parameter is known as the normalized Lode angle (Bai & Wierzbicki, 

2008). 

    
  

 
    (7) 

The range of  ̅ is     ̅   . According to many authors, the contribution of the effect of the 

third invariant is more severe than the contribution of the stress triaxiality effect in the plastic flow 

rule (see Bai et al, 2008 and Gao, 2011). The definition of the Lode angle, , can be better 

understood by analyzing the representation of the stress vector,   ⃑⃑⃑⃑  ⃑, on the principal stresses space 

as illustrated in Figure 1(a). 

 

       (a)              (b) 

Figure 1. (a) Schematic representation of the stress vector   ⃑⃑⃑⃑  ⃑ on the principal stresses space 

and (b) definition of the Lode angle on the π-plane. Adapted from Bai (2008). 

The stress vector can be decomposed in two, a deviatoric   ⃑⃑⃑⃑  ⃑ and a hydrostatic    ⃑⃑ ⃑⃑ ⃑⃑  ⃑part. The 

ratio between the hydrostatic and deviatoric part is, by definition, the stress triaxiality which is 

associated with the angle  , that is the angle obtained between the stress vector   ⃑⃑⃑⃑  ⃑ and the π-plane. 

Such angle, named elevator angle, is responsible for the size of the elastic regime. The Lode angle 

is defined on the π-plane or deviatoric plane, see Figure 1b, and is the smallest angle between the 

projection of the stress tensor on the deviatoric plane and the axis of the principal stresses. Bardet 

(1990) conducted several studies on the influence of the Lode angle on the shape of the yield 
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surface and concluded, for instance, that the Drucker-Prager model is Lode angle independent and 

Tresca and Mohr-Coulomb models are Lode angle dependent (Figure 1b). 

In the context of ductile fracture, some researchers have suggested the introduction of the 

Lode angle effect either into the standard von Mises elasto-plastic constitutive model as into some 

damage evolution laws. In particular, Bao et al. (2004), Brünig et al. (2000) and Bai & Wierzbicki 

(2008) have proposed new elasto-plastic models that include the three invariants of the deviatoric 

stress tensor in the definition of the material yield surface. On the other hand, in order to improve 

the evolution of the porosity obtained by Gurson’s theory for low level of stress triaxiality, Nahshon 

& Hutchinson (2008), Barsoum & Faleskog (2007) and Xue (2008) have proposed the introduction 

of new shear mechanisms in the damage evolution law of Gurson’s model, which are Lode angle 

dependent. Within this framework, it is proposed a simple and accurate elastoplastic model wherein 

the equivalent stress is a combination between the von Mises equivalent stress and the normalized 

third invariant of the deviatoric stress tensor. Following the new proposition is described.  

 

2.1 Yield stress in shear and tensile loading conditions 

According to experimental evidences (see Wilson, 2002), it can be observed a difference 

between the yield stress of a material subjected to tensile and shear loading conditions. Figure 2 

illustrates the projection of the stress vector on the π-plane. 

 
Figure 2. Projection of the stress vector onto the deviatoric plane and difference of the yield 

stress under tensile and shear loading condition. 

 

In pure tensile loading condition, the yield criterion can be defined by √    𝜎  , where    

is the second invariant of the deviatoric stress tensor,  , and 𝜎   defines the yield stress in a tensile 

condition. However, under pure shear loading condition, the yield criterion is written as √   𝜎  , 

where now, 𝜎   defines the yield stress in shear condition. Based on this behaviour, it can be 

defined the difference between tensile and shear yield stress,   , by: 

 

   𝜎   𝜎   (√   )√   (8) 
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2.2 Lode angle function 

The behaviour of the Lode angle, according to the loading condition applied, can be described 

by Table 1. 

Table 1.Behavior of same elastoplastic parameters. 

 

Load 𝜼 𝝃 𝜽 𝜽 

tensile  
 ⁄    0   

shear 0 0  
 ⁄  0 

compression   
 ⁄      

 ⁄     

 

Based on the behaviour of the normalized third invariant or on the Lode angle parameter, a function 

can be defined, which establishes the influence of the loading condition on the yield criterion of the 

material. The function can be called as a Lode angle function and is mathematically written as: 

        (9) 

where    represents the Lode angle function and when it is equals to zero, a predominant tensile or 

compression loading condition is presented. However, when the function is equal to a unit, a 

predominant shear loading condition is being applied. Finally, when the function behaves between 

zero and a unit, a combined loading condition is presented. 

 

2.3 Defining the new yield function 

In order to define a yield criterion that contemplate the mechanical behaviour in both shear 

and tensile conditions, the following function is written: 

𝜙      (√   )        𝜎   (10) 

where 𝜙 represents the new yield criterion and the parameter    is introduced in order to control the 

convexity of the function. In this work, it is proposed a non-linear isotropic hardening rule to model 

the behaviour of the material, as following:  

𝜎   𝜎      ̅  (11) 

where 𝜎   is the initial yield stress of the material under tensile load,    represents the isotropic 

hardening modulus that is a function of the equivalent plastic strain and  ̅  is the equivalent plastic 

strain that represents the isotropic hardening variable. The isotropic hardening modulus, regarding a 

non-linear behaviour, is a function of the equivalent plastic strain. The yield function defined in the 

Equation (10) can be plotted and compared to classical yield functions as von Mises and Tresca. 
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Figure 3. Behaviour of the new proposition       ⁄   and classical yield functions. 

 

 

Regarding the additive decomposition of the strain tensor, associative plasticity and isotropic 

hardening, the following mathematical model can be formulated. The convexity of the constitutive 

model is guaranteed for values of    between zero and   ⁄ . 

Box 1. Mathematical model for the new proposition. 

i) Additive decomposition of the strain tensor: 

        

ii)  Elastic Law: 

        
iii) Yield function: 

𝜙      (√   )        𝜎      ̅  

   
 

 
      

  

 

    

  
 

iv) Plastic flow rule: 

 ̇   ̇
 

  
        

    

       (√   )             (√   )
      

 
 

and evolution of the equivalent plastic strain  ̅  : 

 ̅̇   
 

 
 ̇   ̇   ̇   

    
 
       

   
 

     

   
 

v) Load/unload condition. 

 ̇  0    𝜙  0     ̇𝜙  0 

𝜎  

𝜎  
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3 NUMERICAL STRATEGY AND CALIBRATION 

Regarding the constitutive formulation, an implicit numerical integration algorithm is 

proposed and based on the operator split methodology (see Simo et al, 1998; De Souza Neto et al, 

2008). The pseudo-time discretization is implemented following the implicit Euler schema. Box 2 

presents the return mapping algorithm developed. 

 

Box 2. Numerical integration algorithm. 

i) Elastic trial stage: Given a strain increment,   . 

    
          

         
             

        

   0   ̅  
          ̅

 
 

        
 

 
    
          

             
  

 

       

       
 

ii) Plastic admissibiliy: 

𝜙               (√   )                  𝜎       ̅
 
 

 

If 𝜙      0, then (elastic step):              
     ; 

Else (plastic step): Plastic corrector algorithm: 

 

iii) Returning mapping:  solve a system of non-linear equations (Newton-

Raphson), regarding:      ,   ̅  
 

 e   . 

{
  
 

  
          

      
    

    
(                     

  )

  ̅  
    ̅

          

𝜙         (√   )(      
 )     𝜎       ̅  

  0

 

where: 

           (√   )        
   

         (√   )
           

 

 
 

              
        

 
    

       
  

         
 

             

         
 

iv) Update other state variable: 

 

v) End. 

 

 

The non-linear equations system is solved by Newton-Raphson method. Box 3 describes the 

numerical steps required. 
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Box 3. Return mapping algorithm (Newton-Raphson). 

i) Given the trial state as initial parameters: 

    
        

            0   ̅  
     

   ̅
 
 

 

ii) Solve the system of equations for:     ,   ̅  
 

 e   . 
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  ̅   
 

   

]

 

 

iii) Determine: 

    
     

     
   

      
     

                        
 

  ̅  
       

   ̅  
     

    ̅  
       

 

 

iv) Convergence: 

𝜙               (√   ) (         )        𝜎       ̅  
       

 

      
𝜙     

[𝜎       ̅  
       

]
           

v) End. 

 

According to the numerical implementation, the hardening curve is determined by a 

calibration procedure. The strategy starts with experimental results for a smooth bar specimen under 

pure tensile loading condition. A aluminum alloy 2024-T351 is also used, presenting the following 

material properties:      00    ,   0    and  𝜎          . In order to determine the 

hardening curve, the gradient method is taken by a univariable search squema. Figure 4 shows the 

results after the application of the calibration strategy.  

 

  

Figure 4. Reaction curve and hardening curve for the aluminum alloy. 
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4 NUMERICAL RESULTS 

Some preliminary tests were performed in order to demonstrate the robustness of the 

constitutive formulation. The aluminum alloy 2024-T351 was taken as well as specimens under 

different loading conditions. Figure 5 displays numerical and experimental results obtained 

regarding reaction curves for: (a) flat grooved plate under tensile, (b) butterfly specimen under 

shear and (c) shear specimen. In both cases, the proposed model has demonstrated a good 

agreement with the experimental data. In the first case (a), the correction in the reaction curve was 

around 20% when the third invariant effect is introduced.  In cases (b) and (c), the correction was 

by around 30%.   

 

 

 

 

(a) 

 

 

(b) 

  

 

(c) 

 

Figure 5. Reaction curves for specimens under different loading conditions. 
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5 CONCLUSION 

In this contribution, the influence of the third invariant was studied through a constitutive 

model proposed here. A flat grooved plate specimen and two shear specimens were used as well as 

a strongly dependent on the third invariant material, as the aluminium alloy 2024-T351. According 

to the numerical results presented, it can be observed the importance of the third invariant on the 

plastic flow rule for ductile materials. The correction in the reaction versus displacement curves, 

when the third invariant effect is active, is evident. In the critical presented case, the analysed curve 

regarding the model without the effect of third invariant, presents an error of 30%; when compared 

to the experimental data. 
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