
Object oriented finite element probabilistic
stress analysis

Fernando César Meira Menandro
fmenandro@uol.com.br
Departamento de Engenharia Mecânica
Universidade Federal do Esṕırito Santo
Av. Fernando Ferrari, 514, 29060-050, Vitória - ES

November 13, 2006

Abstract

An object oriented finite element code was developed to take ad-
vantage of the clearly object oriented nature of finite elements, spe-
cially with respect to property inheritance and function overloading.
Furthermore, the operator overloading characteristic of the C++ lan-
guage allowed for the inclusion in the software, without any additional
programming effort, of the probability density functions of any vari-
ables one might wish to analyze. By no additional programming effort
it is meant that the actual finite element code is exactly the same as a
deterministic code (obviously, programming of the overloaded opera-
tors and data type was necessary). The resulting software expands the
realm of application of the finite element method for true probabilistic
stress analysis, either for actual experimental verification of for prob-
abilistic design with respect to uncertainties associated to physical
properties, boundary conditions, and geometry.

1

1 Introduction.

The use of the finite element method for structural analysis is already well
consolidated in the engineering community. The advances in materials and
computational resources, though, have substantially altered basic premises
which guided the development of this method. It is no more necessary to
seek computationally fast and economic solutions, since processing speed and
memory availability are no longer limiting factors. This new paradigm calls
for ever more realistic approximate models, which means, for less approxi-
mate and more perfect models of reality. These new models require more
care in the analysis, in details that were until recently completely neglected,
either due to the imprecision of the models themselves or the cumbersome
nature of the implementation of such details.

Stemming from this premise, this work shows the development of a soft-
ware that takes into account the probability density functions of the involved
variables as an integral part of the analysis. Although there exists a Stochas-
tic Finite Element Method, the implementation shown here is far simpler,
as it takes advantage of the operator overloading capabilities of the C++
programming language.

2 Theoretical Background.

In this section a brief introduction on probability theory is presented, to
illustrate the developed procedures. Short accounts of object oriented pro-
gramming as well as of the finite element method are also presented.

2.1 Probability.

The initial part of our theoretical background recalls some concepts and
definitions on probability theory, and can be found in any introductory text
on the subject [1].

Definition 2.1 Let ε be an experiment and S a sampling space associated
to the experiment. A function X, that associates to each element s ∈ S a
real number, X(s), is called a random variable.

Definition 2.2 Let X be a continuous random variable. The probability
density function f , written in short form as pdf, is a function f that satisfy
the following conditions:

2

(a) f(x) ≥ 0 for all x ∈ RX ,

(b)
∫

RX

f(x)dx = 1. (1)

Furthermore, one can define for any c < d (in RX),

P (c < X < d) =
∫ d

c
f(x)dx = 1. (2)

The definition of the accumulated distribution function will be useful and
is presented next.

Definition 2.3 Let X be a random variable, discrete or continuous. Func-
tion F is defined as the accumulated distribution function of the random
variable X, (short form: df) as F (x) = P (X ≤ x).

To this definition follow some theorems which characterize the accumu-
lated distribution function as a non-decreasing function and define its relation
with the probability density function:

F (x) =
∫ x

−∞
f(s)ds; (3)

or

f(x) =
d

dx
F (x). (4)

Besides these definitions, it can be shown that for two independent con-
tinuous random variables X and Y , with pdfs g and h, respectively, the pdf
s of the variable Z = X + Y is given by [1, p. 275]:

s(z) =
∫ +∞

−∞
g(w)h(z − w)dw. (5)

It can also be shown that for two independent continuous random vari-
ables X e Y , with pdfs g and h, respectively, the pdf p of the variable V = XY
is given by [1, p. 115]:

p(v) =
∫ +∞

−∞
g(u)h

(
v

u

) ∣∣∣∣1u
∣∣∣∣ du, (6)

3

and that for two independent continuous random variables X e Y , with
pdfs g and h, respectively, the pdf q of the variable U = X/Y is given by [1,
p. 117]:

q(u) =
∫ +∞

−∞
g(vu)h(v) |v| dv. (7)

It can be also shown that for a random variable X with pdf f , the pdf g of
a random variable Y = H(X), monotonic function (increasing or decreasing)
of X is given by [1, p. 92]:

g(y) = f(x)

∣∣∣∣∣dx

dy

∣∣∣∣∣ . (8)

If the accumulated distribution function y = H(x) is increasing,

G(y) = F (x), (9)

and for y = H(x) decreasing,

G(y) = 1− F (x). (10)

2.2 Programming Language.

The choice of the programming language depends of the verification of some
fundamental requisites, such as: execution efficiency, low level resources,
object oriented capabilities, and ease of graphics programming [2].

Among the available programming languages, the one that best suits the
proposed requisites is C++ [3][4]. Since the proposed system should be able
to function either under Windowstm or Linuxtm, with a graphics interface, a
visual development environment would be a better option, and the KDevelop
environment was chosen.

There are four basic properties which characterize object oriented pro-
gramming [5]: Abstraction, encapsulation, inheritance and polymorphism.
Abstraction is the capacity of representing abstract data types, or abstract
concepts, with a user created class of objects. Encapsulation is the capacity
of encompassing intrinsic properties within the class programming, without
leaving to the final programmer (or the user) the need for specific knowledge
of the abstract data type. Inheritance is the capacity to write general coding

4

that can apply to all objects instantiated with that class, or with classes
derived from the class that contain that code. Polymorphism, on the other
hand, allow classes derived from the same class to have different behavior
and carry different information. The finite element method is quite suitable
to this programming paradigm. Since all elements are derived from the same
general principles, some routines concerned with post-processing, graphical
user interface, or retrieval of element properties, can clearly be written in a
general way such as to allow inheritance of these methods. All elements have
nodes, connectivity, material properties, real constants associated, but each
might have a different number of such properties and thus, different behav-
ior concerning these properties. Some element characteristics, such as their
internal displacement interpolation functions, shape functions, and material
behavior type, can be encapsulated, leaving for the user only the trouble of
using the element in a piece of code. Finally, different elements have different
behavior, and this can be accomplished by overloading existing methods on
the parent class, such that the new class has its own behavior.

2.2.1 Operator Overloading

The operator overloading technique, present in the C++ programming lan-
guage, allows the definition of new algebraic operators for new data types.
With this technique, and the definitions on the previous section, it was pos-
sible to define a set of operators for a new abstract data type created to
represent a random variable.

Preliminary studies pointed towards the storage of points related to the
accumulated distribution function, since it is a monotonically increasing func-
tion with values always between zero and one. The adoption of this function
as the storage data for the random variables would limit the amount of mem-
ory storage, but it would also increase the amount of computation needed
for each operation to be performed. The probability density function (pdf)
was thus chosen as the storage function. The operations will be performed
on these functions for each variable, and each variable is stored as a set of
properties defining the function.

Programming the random variable class required knowledge on data struc-
tures and advanced numerical methods, as well as object oriented program-
ming. Finite element programing for this code was, on the other hand, quite
simple, since the operator overloading took care of the difficulties generated
by the random variables[8].

5

2.3 Finite Element Method.

The formulation of the finite element method can be simplified by taking the
minimizing coefficients of the functional [6][7]

Π =
1

2

∫
V

εT CεdV −
∫

V
UT fBdV −

∫
S

UST
fSdS, (11)

where ε is the strain, U is the associated displacement in each point of the
element, fB is the body force and fS is the surface force.

Different will involve integration in different domains (dimensionally speak-
ing) and might involve different interpolation functions.

By adopting a set of displacement interpolating functions one can gener-
ate a system of equations which will represent the physical behavior in the el-
ement. For irregular domains it becomes necessary to also map the deformed
element in an undeformed configuration, which creates the need for position
interpolation functions, also called shape functions. For the present paper,
only the interpolation functions for the two-dimensional linear quadrilateral
isoparametric element will be shown. They are (for r and s, the parametric
coordinates in undeformed space):

N1 = 1
4
(1 + r)(1 + s),

N2 = 1
4
(1− r)(1 + s),

N3 = 1
4
(1− r)(1− s),

N4 = 1
4
(1 + r)(1− s).

 (12)

The previous equations, as stated, interpolate both displacements and
shape as follows:

x =
∑q

i=1 Nixi,
y =

∑q
i=1 Niyi,

}
(13)

u =
∑q

i=1 Niui,
v =

∑q
i=1 Nivi,

}
(14)

where xi, yi, ui, and vi are, respectively, the coordinates and displacements
of node i of the element, which has q nodes.

For the truss element, the stiffness matrix can be obtained both for the
same approach shown above and from strength of materials considerations.

For the 2-D isoparametric element, the programing language showed its
full potential. The actual routines written were the constructor, B assembly,

6

Figure 1: Class diagram for element classes

Element

V irtualB assembly
V irtualC assembly

V irtual

Stiffness Assembly
Post Process
operator >>
operator <<

2−D Isoparametric

B assembly
C assembly
Stiffness Assembly

Lquad

Shape
function

Truss

B assembly
C assembly
Stiffness Assembly

B
B
B
B
B
B
B
B
B
B

B
B
B
B
B
B
B
B
B
B

C assembly, and Stiffness assembly (using BTCB), all for the 2-D Isopara-
metric element class, overloading the element routines. For the actual Linear
quadrilateral element it was only necessary to overload the shape functions
(displacement interpolation functions, since we are dealing with isoparamet-
ric elements). An example of the element class tree is as follows:

The programmed shape function is as follows:

void elemento2D4N::monta_n(int pg)

{

#ifdef ALEATORIO

aleatorio

#else

double

#endif

r,s,J[2][2],invJ[2][2],um=1.0,quatro=4.0;

double xpg[ptg],wpg[ptg];

int p=ptg;

for (int i=0;i<2;i++)

for (int n=0;n<4;n++)

dn[2*n+i]=dN[2*n+i]=0.0;

pontos_de_gauss(p,xpg,wpg);

r=xpg[pg%p];

s=xpg[pg/p];

peso=wpg[pg%p];

peso*=wpg[pg/p];

N[0]=(um+r)*(um+s)/quatro;

N[1]=(um-r)*(um+s)/quatro;

N[2]=(um-r)*(um-s)/quatro;

N[3]=(um+r)*(um-s)/quatro;

dn[0]=(um+s)/quatro;

dn[1]=(um+r)/quatro;

dn[2]= -(um+s)/quatro;

dn[3]=(um-r)/quatro;

dn[4]= -(um-s)/quatro;

dn[5]= -(um-r)/quatro;

dn[6]=(um-s)/quatro;

dn[7]= -(um+r)/quatro;

7

J[0][0]=J[0][1]=J[1][0]=J[1][1]=0.0;

for (int i=0;i<2;i++)

for (int j=0;j<2;j++)

for (int n=0;n<4;n++)

J[i][j]+=dn[2*n+i]*this->pno[n]->qx(j);

detJ=J[0][0]*J[1][1]-J[1][0]*J[0][1];

invJ[0][0]=J[1][1]/detJ;

invJ[1][1]=J[0][0]/detJ;

invJ[0][1]=-J[0][1]/detJ;

invJ[1][0]=-J[1][0]/detJ;

for (int i=0;i<2;i++)

for (int j=0;j<2;j++)

for (int n=0;n<4;n++)

dN[2*n+i]+=invJ[i][j]*dn[2*n+j];

peso*=detJ;

}

3 Results

In this section a couple sample problems are shown, to illustrate the potential
of the present technique.

3.1 Truss

The truss example shown below was created to test the obtained results. The
results were compared to the reference [9].

3.1.1 Deterministic Values

In this case, all data values furnished were deterministic. The results, in this
case, as expected, all present zero deviation from the mean.

It can be observed that the tension (or compression) force, described in
the output data as calculated stress (tensão calculada) are correct. It is
important to point out that the used printing format prints only the mean
and standard deviation, but the program keeps in storage the description of
the complete probability density function associated to each variable, and it
is possible to the user to recover this information.

Elemento 0: Tensao calculada = 6 0

Elemento 1: Tensao calculada = 4 0

Elemento 2: Tensao calculada = 4 0

Elemento 3: Tensao calculada = 4 0

Elemento 4: Tensao calculada = 5.65685 0

Elemento 5: Tensao calculada = -5.65685 -0

Elemento 6: Tensao calculada = -2 -0

Elemento 7: Tensao calculada = 6 0

Elemento 8: Tensao calculada = 2.82843 0

Elemento 9: Tensao calculada = -4 -0

Elemento 10: Tensao calculada = -6 -0

Elemento 11: Tensao calculada = -8.48528 -0

Elemento 12: Tensao calculada = -5.65685 -0

Vetor de deslocamentos resultantes =

8

Figure 2: Truss problem

@
@

@
@

@
@

@
@

@
@

�
�

�
�

�
�

�
�

�
� �

�
�

�
�

�
�

�
�

�

@
@

@
@

@
@

@
@

@
@

�
�

�
�

�
�

�
�

�
�

�
@

�
@

��
��
��

0

1

2 3 4

5

6

7

e0 e1 e2

e3

e4

e5

e6

e7

e8 e9

e10

e11

e12

? ?

4t 4t

2m

2m

2m 2m 2m

�

�

�

� � � �

9

u[0]=0 0

u[1]=0 0

u[2]=0 0

u[3]=-0.0016 0

u[4]=0.0012 0

u[5]=-0.00346274 0

u[6]=0.002 0

u[7]=-0.00812548 0

u[8]=0.0028 0

u[9]=-0.0139196 -0

u[10]=-0.00153137 0

u[11]=-0.00732548 -0

u[12]=-0.0012 -0

u[13]=-0.00426274 -0

u[14]=-0.0008 0

u[15]=-0.00306274 0

3.1.2 Variation of the loading.

In this case, the values of all furnished data were deterministic, except those
for the applied forces. These were described by a constant probability dis-
tribution function (pdf), with values between -4,04 and -3,96 (plus or minus
1%). This function has the calculated standard deviation of 0,023094. The
results present mean and standard deviation for all calculated values, show-
ing how this small uncertainty about entry data can alter our analysis results.
It is interesting to notice that bar 7 presents the highest relative standard
deviation (about 1,36% of the axial force value). This result would not be of
easy determination using conventional finite element techniques.

Elemento 0: Tensao calculada = 6 0

Elemento 1: Tensao calculada = 4 0

Elemento 2: Tensao calculada = 4 0.0086785

Elemento 3: Tensao calculada = 4 0

Elemento 4: Tensao calculada = 5.65685 -0.0221034

Elemento 5: Tensao calculada = -5.65685 0.0221034

Elemento 6: Tensao calculada = -2 -0

Elemento 7: Tensao calculada = 6 0.0818713

Elemento 8: Tensao calculada = 2.83315 0.0192891

Elemento 9: Tensao calculada = -3.99294 0.0370206

Elemento 10: Tensao calculada = -6 -0

Elemento 11: Tensao calculada = -8.48365 0.0389415

Elemento 12: Tensao calculada = -5.65685 -0

Vetor de deslocamentos resultantes =

u[0]=0 0

u[1]=0 0

u[2]=0 0

u[3]=-0.0016 0

u[4]=0.0012 0

u[5]=-0.00346273 2.15046e-06

u[6]=0.002 0

u[7]=-0.00812548 6.40233e-06

u[8]=0.0028 1.7357e-06

u[9]=-0.0139197 -2.59929e-05

u[10]=-0.00153133 7.84972e-06

u[11]=-0.00732548 -4.42069e-06

u[12]=-0.0012 -0

u[13]=-0.00426274 -1.37984e-05

u[14]=-0.0008 0

u[15]=-0.00306274 8.84137e-06

10

3.2 Two-dimensional isoparametric element.

The problem consisted of a single element, with either a probabilistic load
(plus of minus one percent) or a probabilistic size (the width varying plus or
minus half percent). The results, for the three options, deterministic, varying
load or varying width, are shown next:

Deterministic Varying Load Varying Width
0 0 ± 0 0 ± 0
0 0 ± 0 0 ± 0
20 20.0005 ± 0.147214 20.9039 ± 1.88914

5.77645e-16 0.00143169 ± 0.132165 1.35551 ± 1.97109
20 19.9979 ± 0.145676 19.0214 ± 1.16508
-5 -4.99829 ± 0.159795 -2.93172 ± 1.81429
0 0 ± 0 0 ± 0
-5 -4.99982 ± 0.0759411 -5.27838 ± 0.862019

The above results might lead to incorrect conclusions, such as the mean
plus deviation not covering the deterministic solution. As in the fifth dis-
placement, for varying width, -2.93172 minus 1.81429 does not add to -5.

The results, however, show interesting behavior that can best be seen on
the interval of possible resultant solutions:

Deterministic Varying Load Varying Width
0 [0,0] [0,0]
0 [0,0] [0,0]
20 [[19.4391,20.5609] [10.5513,26.9434]

5.77645e-16 [-0.578156,0.578156] [-15.9084,7.46965]
20 [19.5424,20.4576] [15.2713,28.466]
-5 [-5.49019,-4.50981] [-18.9973,1.39452]
0 [0,0] [0,0]
-5 [-5.247,-4.753] [-11.9851,-1.61036]

It can be observed that the probabilistic nature of loading does not affect
seriously the results, or at least not as seriously as uncertainties about the
geometric properties of the specimen.

11

4 Final remarks.

The developed software presents promising results for structural stress-strain
analysis. This software allows the user to know how small assembly imper-
fections, or small differences in the prescribed loading or material properties,
might change the internal stresses in the structure. More precisely, this
program allows the user to know the probability density functions of the
variables involved as a function of the probability density functions of the
project variables.

The proposed methodology of finite element object oriented programming
has proved its usefulness through the ease of programming and code mainte-
nance for the generated code. The addition of new elements is quite simple
and requires almost no additional programming.

The analysis of a very simple example shows a dependency on geometric
variables that is more important than loading uncertainties. Further work
will cover this aspect of the probabilistic nature of the stress-strain problem.

References

[1] P. L. Meyer, Probabilidade: aplicações à estat́ıstica. Livros Técnicos e
Cient́ıficos, Rio de Janeiro, 1981.

[2] F. C. M. Menandro and J. C. F. de Oliveira, Object Oriented Finite
Element Implementation, XXVII Congresso Brasileiro de Engenharia
Mecânica, Associação Brasileira de Ciências Mecânicas - ABCM,(2003).

[3] H. M. Deitel and P. J. Deitel, C++ como programar. 5. ed. Porto Alegre:
Bookman, 2006.

[4] B. Stroustrup, A Linguagem de Programao C++, Ed. Bookman, 2005.

[5] G. Booch, Object oriented design with applications. Redwood City:
Benjamin/Cummings, c1991. 580p.

[6] J. N. Reddy, An Introduction to the Finite Element Method, 2005

[7] K.-J. Bathe, Finite Element Procedures, Prentice-Hall, 1995.

[8] A. Haldar and S. Mahadevan, Reliability Assessment Using Stochastic
Finite Element Analysis, Wiley, 2000.

12

[9] J. C. A. Sussekind, Curso de Análise Estrutural, Vol. 1 a 3. Editora
Globo, Porto Alegre - Rio de Janeiro, 1983.

13

