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Abstract. Nowadays a major factor of interest in industries in relationship to development of 

new techniques for detection and localization of faults it is the concern with the security of 

their systems. There is need for supervising and monitoring in order to detect and correct any 

fault as fast as possible. It is verified actually, that some determined parameters of the 

systems may vary during the process, due to the specific characteristics or the natural 

wearing of its components. It is known that even in well-designed systems the occurrence of 

cracks in some components can cause economic losses or lead to dangerous situations. With 

the help of the state observers methodology one can reconstruct the unmeasured states of the 

system, since that it is observable, becoming possible in this way to estimate the measures for 

locations of difficult access. The technique of state observers consists in developing a model 

for the system under analysis and comparing the estimate of outcome with the measured one, 

the difference between these two resulting in a residue that is used for analysis. In this work a 

bank of signals associated to a model of crack was assembled in order to follow its progress. 

The data acquired from the computational simulations in a cantilever beam discretized by 

means of the technique of finite elements, had been sufficiently satisfactory, validating the 

proposed methodology 
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1. INTRODUCTION 

The increasing technological advances verified during the last decades demand from the 

machines and mechanical structures, each time more, larger capacities of producing work 

under speed of operation moreover, currently one of the biggest concerns of the industry is 



how to keep equipment operating all the time avoiding sudden faulty stops, which explains 

the constant development of new techniques of detection and location of faults in mechanical 

systems submitted the dynamics efforts. With the purpose of assuring the operation of the 

mechanical systems with safety, these should be supervised and as well as monitored for the 

flaws to be identified following their progress scheduling a maintenance program for the most 

appropriate moment, since inherent disturbances to the operation of these systems can lead to 

a deterioration of the system performance or even to severity dangerous situations. 

The state observer's technique consists on a method capable of reconstructing the states in 

cases for which their measurement becomes difficult or even impossible. This way, flaws can 

be detected in those points even without the knowledge of their measurements, could also 

monitor them through those reconstructions of your states. On the other hand, this technique 

consists on developing a model for the system under analysis and comparing the output for 

the observer with the one of the system. 

Once identified the flaws the challenge moves on to monitoring the form system in order 

to analyze the reliability and the compromising level caused by each identified flaw. It is 

known that the occurrence of cracks in some components can take to not planned stops 

causing financial damages or even dangerous situations. This analysis allows to accompany 

the propagation of the same and through some pre-defined criteria and to program the 

maintenance in the system for the most appropriate moment. 

The main focus of the literature revision has been the detection and location of 

mechanical system faults. Theories which are related to state observers and crack modeling 

have been taken in its account. The state of the art is presented in chronological order and the 

most significative works are selected. 

Luenberger (1964). Luenberger states that the major part of the theory of modern control is 

based on the assumption that the state vector of the system to be controlled is available fro 

direct measurement. However, in many practical situations, just few of output database 

available. The author shows how the inputs and outputs that are available can be used to build 

an estimate observer, or just observer. This work states the state observer theory. 

Luenberger (1966). Has shown that for a linear system, its state vector can be approximately 

reconstructed by means of an observer designed. The “n” order state vector with “m” 

independent outputs can be reconstructed, rebuilding the remaining states from differential 

conditions. He proved also that the design of observer with “m” outputs can be reduced a 



design “m” observer as if they were simple output subsystems simplifying the observer 

complexity. 

Watanabe and Himmelbleau (1982). The authors have presented a method to detect 

instruments faults in nonlinear time dependent processes, including uncertainties such as 

modeling mistakes, parameters ambiguity and input and output noise. The main goal of their 

work has been the development of state estimate filters with minimum sensitivity to 

uncertainties and maximum sensitivity to instruments faults, like those corresponding to slight 

deterioration or gradual chances, instead or sudden or catastrophic faults. The authors have 

employed the concept of robust observer, introduced by Clark (1978), with designing state 

estimation filters for instruments default detection, robust enough to with stand the 

uncertainties. The base for the filters was the separation of the effects of faults from the 

uncertainties. 

Yuen, M. M. F. (1985). He has considered damaged cantilever beam in the witch the 

damaged location dimensions were unknowing. The modeling of the stiffness change has 

been simulated by a reduction on the elasticity modulus of the section. In the way, the 

damaged extension can be related to the reduction degree. They have proposed a new idea of 

defect insulation by means of robust observation, from which a defect diagnosis law is found 

in such away to monitor the components of a system and a diagnosis system is design 

following a systematic procedure. The results from that technique have shown that robust 

approach for defective components coupled by unavailable states can be effectively detected. 

Ge, W. and Fang, C. Z. (1988). The authors have described a novel conception for the 

detection of components under failure by robust observation. Considering a mathematical 

model corresponding to “m” components coupled by non-estimated states. They have 

determined the design of devices to monitor the operation of those “n” components and faults 

detection. In the case an observable system, some first or superior order components can be 

monitored for the purpose of diagnosis without information of possible faults modes. Due to 

the observer robustness, the authors have analyzed some reactions such as linearization and 

measurement errors, noise presence, numerical errors, and so on. 

Qian (1990). He has established the elements stiffness matrix and motion equation for a 

cracked beam. According to the Saint Venant principle, the tension field is disturbed in a 

region close to the crack only. The whole element stiffness matrix, with exception to the 

cracked element, remains unaffected, obeying to certain constraints in the element size. The 

energy of the crack is additional tension is evaluated from fracture mechanics theory and the 



flexibility coefficient in expressed by an intensity factor derived from the Castigliano 

Theorem, on linear elastic field. 

Choy et al. (1995). He has presented a methodology based on the vibration theory that can be 

used for faults detection in finite element modeling systems, employing beam elements 

supported by an elastic foundation. The identification and localization of a fault on the beam 

are obtained by “m…” a change in the Young´s modulus for that particular beam element. 

Assuming that for the original system the Young´s modulus is well-know the natural 

frequencies of the system are numerically evaluated by means of suitable mathematical 

model, experimentally validated in a crack develops on a certain beam element. There is an 

alteration in the system natural frequencies, considering just one faulty element, the procedure 

starts up supposing that the crack is located on the first elements. The corresponding Young´s 

modulus is adjusted until the first natural frequency matches the measured one. The process is 

repeated for each element. 

Melo, G. P. (1998). He has developed a methodology for the detection and localization of 

faults in mechanical system employing reduced order state observers. He has shown the way 

non measured states can be reconstructed. By “means” of robust state observers, he could 

provide localization of faults, with the help of several robust state observer data bank, for each 

system parameter, he has proved that it is possible to quantify the system faults. He has 

preserved computing simulations and laboratory experiments “validating” the theory. 

Cacciola, P., Muscolino, G. (2002). They have employed a cantilever beam, finite element 

“discretized“ for a crack closing model, considering completely open or closed cracks, in 

order to describe the damaged element. Once defined the beam mathematical model, the 

dynamical outcome is evaluated, applying a numerical procedure, based on the fundamentals 

of dynamical changing structural systems. To the stochastic case, the enhanced perturbation 

method is modified in order to efficiently solve the nonlinear stochastic differential equations. 

Muscolino G. et al. (2003). They have used vibration analysis of a cracked beam, by means 

of stochastic analysis to detect the presence and localization of has been employed in order to 

apply the Monte Carlo method to evaluate in the domain, the statistical high order of the 

nonlinearities. 

Lemos (2004). He has presented the state observer methodology for detection and location of 

faults in rotary systems, taking into account their foundations. According to him, the state 

observer methodology is able to reconstruct non measured states or estimate values coming 

from difficult access locations in the system. On fact, those faults can be detected without the 

need for a direct measurement. 



Fault detection technique employing state observers can reconstruct non measured states or 

values of difficult access locations. In that case, faults can be detected and monitored without 

measurements. The technique consists on developing a system model and comparing the 

estimated output with the measured one. The main idea is to use a crack model to build an 

observer bank, capable of supervising the process in which each observer is dedicated to an 

amount of deep of the crack. Actually a cracked beam when submitted in an alternate effort or 

to an initial condition, causes openings and closings alternately. However, when the crack 

remains closed, the stiffness does not change. In the present work, for fault diagnosis, only the 

case of opening crack has been considered.  

 

2 ANALYTICAL MODEL OF THE CRACKED BEAM 

The presence of a crack in the beam, according to the principle of Saint Venant, causes a 

perturbation of the stress field in the neighborhood of the breach. Such a perturbation is 

relevant specially when the crack is open and determines a local reduction of the flexural 

stiffness. On the other hand, when the crack is closed the beam acts, approximately, as a 

homogeneous beam with no crack. According to author Muscolino the stiffness matrix is the 

structural property that is most affected from the breathing of the crack, as damping and mass 

matrices do not change appreciably during the opening and closure of the crack. 

Undamaged elements of the beam are modeled by Euler type finite elements with two 

degrees of freedom (transverse displacement and rotation) at each node. The cracked element 

will be modeled as an undamaged element if the crack is closed whereas it exhibits a more 

flexible behavior if it is open. 

 

2.1 Stiffness matrix 

The strain energy of an element without a crack, neglecting shear action, can be written as 
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Where E is the Young modulus, I the moment of inertia, l the length of the finite element. P 

and M are shear and bending action, respectively, synthesizing the presence of the elements 

situated at the right of the element, while the behavior of the elements situated at the left of 

the finite element are considered as constraints. The calculation of the additional stress energy 

of a crack has been studied in fracture mechanics and the flexibility coefficients are expressed 

by a stress intensity factor in the linear elastic range using Castigliano’s theorem. The 



additional energy, in the case of a rectangular beam of height h and width b, due to the crack 

can be written as (Cacciola P., Muscolino G.): 
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where E’=E for plane stress, E’=E/(1+ν) for plane strain and a is the crack depth. Taking into 

account only bending, Eq. (2) leads to 
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are stress intensity factors for opening-type and sliding-type cracks due to M and P, 

respectively, and 
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Being s the ratio between the crack depth and the height of the element (s = a/h). The 

elements of the compliance (or flexibility) matrix ce
(0) of the undamaged element can be 

derived as 
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And the elements of the additional flexibility ce
(1) matrix are 
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 Finally the total flexibility matrix for the element with an open crack is 
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 From the equilibrium conditions, the following relationship holds 
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 From the principle of virtual work the stiffness matrices of the undamaged and cracked 

element can be respectively written as 
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 The stiffness matrix of the undamaged element with rectangular cross-section is that 

given by Bernoulli-Euler theory with Hermite shape functions: 
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 The expression of the stiffness matrix of the cracked element as an explicit function of all 

the other parameters is quite involved. However, noting that the matrix can be written as 

follows: 
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Considering that the crack can reach a depth of up to 40% of the height (a=0.4h), the 

coefficients α1, α2, α3 and α4 are obtained of the curves below for several values of depth of 

the crack: 
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Figure 1 - Coefficient value for the evaluation of the stiffness matrix modeling the cracked 

element when the crack is open. (Cacciola, P., Muscolino, G) 

 

Where r is the ratio between the height and the length of the cracked element (r = h/l). 

 

2.2 Equation of motion 

The dynamic response of the beam in the time intervals the crack is closed may be 

regarded, for simplicity sake, as that of a beam without crack, because the crack interfaces are 

completely in contact with each other. Under the action of the excitation force, crack opening 

and closure will alternate as a function of time. 

The equations of motion of a cracked beam discretized by Ne finite elements and 

subjected to an external excitation vector f(t) can be written as: 
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in which M is the mass matrix, C is the damping matrix, Ku is the stiffness matrix of the 

undamaged beam, u(t) is the displacement vector of the nodal points of  order N x 1, being N 



the degrees of freedom of the beam. The change in the global stiffness matrix due to the crack 

is 

cu KKK −=Δ                  (15) 

Where Kc is the stiffness matrix of the damaged beam and (In according (Cacciola P., 

Muscolino G.) 
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We will consider γ=1, because during the period in which the crack stays closed (γ=0) we 

will consider that will not be changing of stiffness, therefore at that time there is not fault 

existence. 

 

3 FAULT DETECTION METHOD 

The characteristics of reduced-order state observer for detection and location of faults is 

described here. 

 

3.1 State observer design and methodology 
 

Design 

Many control systems are based on the supposition that the full state vector is available 

for direct measurement, but in practice, not always all the variables are available, and those 

unavailable must be estimated. In such a way, an observer can be built to estimate them. The 

schematic is as follows: 

 

Figure 2 - Scheme of a state observer 

 



The observer is basically a copy of the original system; having the same input and almost 

the same differential equation. An extra term compares the actual measured output y(t) to the 

estimated output . )t(ŷ

Control systems using state observers can reconstruct the non-measured states or to 

estimate the values of points of difficult access in the system. However, the necessary 

condition for this reconstruction is that all the states should be observable (Luenberger, 1964; 

D’Azzo and Houpis, 1988). 

The Fig. 3 shows a logical diagram for faults detection and location in mechanical 

systems using the state observers' technique. 

 
Figure 3 – Observation System. 

 

In the system of Fig. 3, when a certain component begins to fail, the state observer is 

capable to detect the influence of this fault quickly, because the observer is quite sensitive to 

any incipient irregularity that appears in the system. The state observer is a group of ordinary 

differential equations of first order that represents the same response as that of the real 

system, when it is working property. Therefore, the idea is to use this effect sensed for the 

state observer to detect and to locate a possible fault in a mechanical system. 

In this set of observers, the global observer has the role of verifying if the system is 

working properly without indications of faults, because this observer uses the same system 

matrix of the mechanical system analysis. Thus, the global observer can detect a possible fault 

or irregularity in the system in analysis if the system’s response is not coincident with the 

global observer's response. 

If a possible fault is detected, the next step would be to locate such fault, and for this 

reason robust observers are used. In the robust observers' assembly are removed of system 



matrix the parameters subject to the faults or the parameters subject to a reduction of its 

values are removed from the system matrix.  This way, the robust observer's response that 

approaches to the response of the system with fault will be the responsible one for the location 

of this possible fault of the system. A possibility remains of one or more parameters failing at 

the same time. In this case, the solution in agreement with Melo (1998) would be to design 

robust state observers to reach all the parameters subject to failure. 

Finally, the Unit of Logical Decision (ULD) collects and analyzes the difference between 

the real system and the mounted state observers, in order to detect and to locate faults or 

irregularities in the system. This unit also analyzes the progression of possible faults of the 

system, and activates, when it becomes necessary, an alarm system, ready to be triggered 

when  a determined variation in a certain parameter occurs. 

 

Methodology 

The Fig. 4 shows a block diagram of the developed methodology for faults detection and 

location in mechanical systems using state observer’s technique. The stages of this block 

diagram start from finding a mathematical model of the system up to the analysis of the 

response of the system and of the observers in the ULD. The commands used in this 

methodology belong to the package Matlab. In a general form, the developed methodology is:  

 

 The measurements matrix [Cme] is defined so that the system is observable using 

this matrix; 

 All the eigenvalues of the system in analysis should have their real parts negative 

to guarantee stability and fast convergence. 

 If the system isn’t observable, new measures should be carried out until the system 

becomes observable; 

 The matrix of the state observer [L] is obtained using MatLab’s LQR command 

which is an implementation of the Ackerman’s formula to calculate optimal gains 

[L] and to verify the stability of the system. 

 

 



 
 

Figure 4 - Block diagram of the developed methodology. 

 

4 NUMERICAL SIMULATION 

 A numerical example is given in this section starting from the developed methodology. 

 Consider the cantilever beam, shaped for the technique of the finite elements using beam 

elements, as it is shown in Figure 5, in which a is the depth of crack located in element 2. 

 As it was said previously we will consider the condition of open crack (γ =1). 

(a)

(b) 

Figure 5 - Cantilever beam: (a) for numerical application (b)representation for finite element  

 



4.1 Initial Condition 
 

 For this example we consider L=2x10-1m, h=5x10-3m, b=8x10-3m, E=2,07x1011N/m2 

and ρ=7850kg/m3. The simulation was carried through for an initial condition x10(0)=0.05m. 

The interval of time used for this simulation 0.4 second, and was 256 sampled points were 

taken. 

 

 



 
Figure 6 - Results obtained to detect faults using state observers. 

 

In the Fig. 6 Graphics 1 to 10 present, the values of displacement {x10(t)} of the system 

(simulated) and the values reconstructed { } for the state observers against time in 

seconds. 

)(10 tx
∧

 Firstly, as can be observed in the Graphic 1, both curves are coincident, i.e., the global 

observer does not detect any irregularity in the system.   In order to simulate a possible fault, a 

crack with a=0.25h in the element 2 of the simulated system. Thus, it is observed in Graphic 2 

that the curves are not coincident any longer, i.e., the global observer detects a possible fault 

in the simulated system. Once detected the next step is to locate this fault. For this, a set of 

robust observers to the possible parameters of system subject to failure has been mounted, as 

can be seen in Graphics 3 to 10  

  It can be verified that only in Graphic 7 the curves are coincident, i.e., the robust observer 

mounted with a=0.25h was able to locate the fault in the simulated system again. 

 One sequence of per cent of cracks was analyzed. The values obtained are shown in the 

Tables 1 and 2 with present the differences of the RMS values between the real system and 

the global and robust state observers. 

 

 

 

 

 

 

 

 

 



Table 1 – Difference in RMS values of x10(t) – Faults is a=0.05h to a=0.20h. 

 

Real System 
Without 

Fault 
(≠RMS) 

Real System 
With Fault of 

a1=0.05h 
(≠RMS) 

Real System 
With Fault of 

a2=0.10h 
(≠RMS) 

Real System 
With Fault of 

a3=0.15h 
(≠RMS) 

Real System 
With Fault of 

a4=0.20h 
(≠RMS) 

Gl. Obs. 1.5613E-16 7.9869E-05 1.3476E-05 1.3763E-05 1.5046E-04 

Rob.Obs. a1 2.1007E-05 9.0315E-14 5.0054E-05 1.6433E-05 1.5382E-04 

Rob.Obs. a2 5.4184E-06 4.8098E-05 3.0070E-14 1.5468E-05 1.2639E-04 

Rob.Obs. a3 2.7330E-05 1.4006E-04 7.6797E-05 1.8710E-13 7.2313E-05 

Rob.Obs. a4 1.0114E-04 2.8528E-04 2.0352E-04 3.1330E-05 2.2513E-13 

Rob.Obs. a5 3.6025E-04 6.4535E-04 5.7639E-04 2.3159E-04 3.2220E-04 

Rob.Obs. a6 1.000E-03 1.400E-03 1.300E-03 7.8334E-04 1.000E-03 

Rob.Obs. a7 1.300E-03 1.600E-03 1.600E-03 1.000E-03 1.200E-03 

Rob.Obs. a8 1.400E-03 1.600E-03 1.700E-03 1.100E-03 1.300E-03 

Obs*. is Observer, Glob** is Global, Rob#. is Robust 
 

Table 2 – Difference in RMS values of x10(t) – Faults is a=0.25h to a=0.40h. 

 
Real System 

Without Fault 
(≠RMS) 

Real System 
With Fault of 

a5=0.25h 
(≠RMS) 

Real System 
With Fault 
of a6=0.30h 

(≠RMS) 

Real System 
With Fault of 

a7=0.35h 
(≠RMS) 

Real System 
With Fault 
of a8=0.40h 

(≠RMS) 

Gl. Obs. 1.5613E-16 7.4723E-05 2.0913E-04 3.0395E-004 3.5775E-004

Rob.Obs. a1 2.1007E-05 5.1909E-05 2.2406E-04 3.1300E-04 3.5299E-04 

Rob.Obs. a2 5.4184E-06 1.4100E-04 6.3456E-05 2.4925E-05 4.4674E-05 

Rob.Obs. a3 2.7330E-05 6.2623E-05 1.6469E-04 2.4795E-04 3.0127E-04 

Rob.Obs. a4 1.0114E-04 8.5791E-05 1.7900E-04 2.7948E-04 3.6387E-04 

Rob.Obs. a5 3.6025E-04 5.2420E-14 5.2059E-05 3.6954E-05 4.1993E-06 

Rob.Obs. a6 1.000E-03 4.5338E-04 5.1662E-14 5.2371E-05 3.5903E-05 

Rob.Obs. a7 1.300E-03 7.4266E-04 1.2233E-04 7.3944E-14 7.7075E-05 

Rob.Obs. a8 1.400E-03 9.3217E-04 3.0882E-04 1.6577E-04 1.1146E-13 

Obs*. is Observer, Glob** is Global, Rob#. is Robust 
 

In the Table 1 and 2, notice how the fault can be detected and located by comparing the 

global system without fault with the global observer (second line with the second column of 

the Table 1 and 2). The order of the difference of RMS value is 10E-16, revealing that the 

curves are practically coincident, an indication there is no irregularity in the system. The fault 

is detected when comparing the real system with fault to the global observer, the RMS 



difference is now 10E-05, showing that the system has some irregularity (see second line with 

third column of Table 1). In order to locate such irregularity, the global fault system is 

compared with the robust observer dedicated to an each fault parameter from this comparison 

the differences in RMS values decrease to  the order of 10E-14. 

 

5 EXPERIMENTAL DATA 

 

With the purpose to validate the methodology, in the Vibrations Laboratory from 

Mechanical Engineering Department, a cantilever has been assembled, using a steel carbon 

bar rigid. An impulsive excitation has been selected to analyze the system transient 

behavior. 

Materials and Equipments used 

• Inertial table to support the assembly; 

• Steel-Carbon bar with dimensions: 0,2 x 0,0172 x 0,0125 m e 0,2 x 0,0155 x 

0,0155 m; E=2,07x1011m e ρ=7850 kg/m3. 

• Steel-Carbon base; 

• Data Acquisition system A/D Iotech DaqBook/112, DBK 17 with 4-input 

channel adapter; 

• Signal Conditioner/Amplifier Nexus Conditioning Amplifier Z6 –Bruel&Kjaer 

with 4-channel input and 4-channel output; 

• Piezoeletric Accelerometer Bruel & Kjaer (Sensitivity 0,979 pC/ms-2 ); 

• PCB type Impulsive Force Impact Hammer PCB 086C04 (1.2 mV/N); 

 
 Figure 9 –Cantilever with 10 d.o.f. 



 
Figure 10 – Experimental Cantilever. 

 

The experimental cantilever (figure 10) has dimensions: L=2x10-1m, b=17,2x10-3m, 

h=12,5x10-3m, E=2,07x1011m e ρ=7850 kg/m3. 

The system has been excited with an impulsive force with 2.5 m/s initial velocity. The 

velocity value has been determined through a unit conversion, taking into account the 

impedance hammer sensitivity and the impact duration. In the simulated system, the structural 

damping, experimentally verified, has been considered, as previously described. 2048 points 

have been acquired for experimental velocity signal at node 4 during 0.4 seconds. In order to 

better validate the method, the procedure has been repeated for several depth cracks. 

In the table 3 the detection and location of the faults can be noticed, by comparing the 

non fault global system with the global observer. The 10E-5 RMS value difference shows that 

the curves practically coincide, that is, the values of the real system without fault are the equal 

the non fault global observer.  

Once the fault inserted, it is detected by the robust observers. As an example, in the 

third low and third column there can be noticed a 10% fault detection. That means the crack 

has reached 10% of the total depth. In sequence, faults varying 10% up to 40% on 10% 

varying depth have been inserted. The effectiveness of the bank observers can be noticed from 

the data in Table 3. 

 

 

 



Table 3 – Difference in RMS values of x4(t) – Faults is a=0.25h to a=0.40h 

 
Real system 
without fault 

(≠RMS) 

Real System 
With Fault of 

a2=0.10h 
(≠RMS) 

Real System 
With Fault of 

a4=0.20h 
(≠RMS) 

Real System 
With Fault of 

a6=0.30h 
(≠RMS) 

Real System 
With Fault of 

a8=0.40h 
(≠RMS) 

Obs*. Gl**. 6.0176e-05 8.8519e-03 1.5354e-02 4.6255e-03 2.8046e-02 

Obs.Rob#a1 4.7437e-03 5.7148e-03 8.3510e-03 3.2281e-03 1.0696e-02 

Obs.Rob. a2 2.0251e-03 2.3036e-05 1.1542e-02 2.1987e-03 1.9611e-02 

Obs.Rob. a3 2.4302e-03 8.9387e-03 1.4613e-02 1.8467e-03 2.3427e-02 

Obs.Rob. a4 6.7278e-03 6.6312e-03 6.8883e-05 4.4834e-03 2.2055e-02 

Obs.Rob. a5 9.0707e-03 4.2815e-03 1.4004e-02 4.5640e-03 2.2674e-02 

Obs.Rob. a6 9.5672e-03 2.4449e-03 1.1638e-02 6.6661e-05 2.2539e-02 

Obs.Rob. a7 1.1323e-02 8.2965e-03 1.0064e-02 3.1804e-03 2.2391e-02 

Obs.Rob. a8 1.5404e-02 3.0214e-03 5.8309e-03 1.4956e-03 7.7216e-05 

Obs*. is Observer, Glob** is Global, Rob#. is Robust. 
 

6 CONCLUSION 

 

 In this paper a methodology has been developed using the state observer technique for the 

detection and location of a crack in a cantilever beam. The technique employed can 

reconstruct non measured states or to estimate the values of points of difficult access in a 

system, detecting faults in those points without the knowledge of measured data, monitoring 

them through the reconstructions of its states. It should be stressed that is satisfied if only if 

the analyzed system is observable using the number of measurements is satisfied carried out. 

In case this does not happen, new measurement should be carried out until the system 

becomes observable. Besides, the observers' eigenvalues should be selected to be a little at 

least to the left in the complex plan of the eigenvalues of the observed system in order to 

guarantee the stability and the fast convergence of the process.  The numerical simulation 

has shown the efficiency of this technique, presenting a methodology for the detection and 

location of a crack in a cantilever beam using state observers, which obtaining quite 

satisfactory results, confirming the reliability of this methodology. This way, this 

methodology can be implemented for several types of mechanical systems. With the 

experimental results, we could see in Laboratory the efficiency of this technique. 
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