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Abstract.  This paper describes a constitutive law modeling isotropic polymeric foam materials. 

Focus has been placed on modeling the relative density dependency effect on polymeric foams 

subjected to large deformations using a volumetric hardening law. The model assumes the 

deformation measure to be given by the logarithmic, or Hencky, strain tensor with a conjugate 

stress measure, which is given by the rotated Kirchhoff stress. Numerical implementation scheme 

for the constitutive model is described and has been implemented using the element-free Galerkin 

method in a finite strain framework. The imposition of the essential boundary condition is made by 

the application of the Augmented Lagrangian method. Numerical examples are presented, under 

axisymmetric assumption, in order to attest the performance of the proposed numerical scheme. 
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1. INTRODUCTION 

 

 The polymeric foams are more and more used in industry and in domestic applications. 

Made of a skeleton of more or less regular open or closed cells, here cells are the basic unit of these 

materials; they have a high energy absorption capacity, particularly useful for shock applications, 

acoustic and thermal insulating properties, and in some cases, for filtering applications. For these 

reasons, they are widely used in aircraft and automotive industry, buildings and packaging. 

Combining good mechanical properties with a low density, rigid polymer foams can also be used as 



structural materials. Whatever their use, their optimization needs the understanding of their 

microstructure/macroscopic mechanical property relationships. Indeed, the mechanical response of 

these materials depends on their architecture, and on the intrinsic properties of the polymer in the 

cell wall. The architecture is determined by the cell wall thickness, the size distribution and the cells 

shape. 

 The literature presented many models to predict the behavior of these materials. Theoretical 

studies on foam have mainly addressed the behavior of low density foams. The structures of these 

foams are simulated by a compact assembly of walls and struts. All these models can be divided 

into two groups: complex modeling approaches based on finite element method which try to 

describe as finely as possible the foam microstructure; or simpler and more numerous models which 

largely simplify this microstructure such as Gibson & Ashaby (1997). These models are based on 

the assembly of geometric symmetric cells and relate analytically the elastic material properties and 

yield stress to the foam relative density. In the case of very high density foams, made of spherical 

cells that are closed and isolated ones from the others, the materials can be considered as porous.  

 The useful properties of cellular solids depend on the material from which they are made, 

their relative density, and their internal geometrical structure. It is important to link the physical 

properties of cellular solids to their density and complex microstructure, in order to understand how 

such properties can be optimized for a given application. Thus, for this class of material we will 

consider an elasto-plastic model, which incorporates, a hyperelastic constitutive relation that 

depends on the relative density of the material. This dependence inclusion can be justified by foam 

structures, which usually experience a large volumetric reduction in a usual compressive process, as 

show in Roberts & Garboczi (2001). On the other hand, the plastic phase is described by a modified 

J2 model, with a volumetric hardening law motivated by the experimental observation that shows a 

different response in compression and tension.  

 The adopted formulation considers: a total Lagrangian description of the finite deformation 

problem; a multiplicative decomposition of the deformation gradient, into a plastic and an elastic 

part; and a constitutive formulation, given in terms of the logarithmic deformation measure, or 

Hencky measure, and the rotated Kirchhoff stress. The use of the rotated Kirchhoff stress together 

with the logarithmic strain measure was first described in Eterovic & Bathe (1990) and Weber & 

Anand (1990) and also studied by others authors, such as Akkaram & Zabaras (2001). The 

advantage of choosing this conjugate stress-strain pair in the formulation of the constitutive relation 

is that it leads to a return mapping whose form is the same as the one derived in the small 

deformation plasticity framework. 

2. KINEMATICS OF DEFORMATION 

 



The plasticity model presented in this paper considers the multiplicative decomposition of the 

deformation gradient F into an elastic deformation, Fe, and a plastic deformation, Fp, as illustrated 

in Figure 1. Thus,  

 

  with  (1) e p=F F F (F = Ñ , tjX X )

 

? 

� 

⌧ 

 
Figure 1 - Multiplicative decomposition of the deformation gradient. 

 

 Moreover, since , one may define the deformation measure to be given by the 

logarithmic or Hencky strain tensor, given by . 

e e=F R Ue

( )E U= lne e

 Hill (1978) pointed out that the stress-strain pairs must be such that the rate of work density 

remains preserved. The enforcement of this criterion together with the assumption of an isotropic 

response of the material leads to the determination of the conjugate stress measure, which is given 

by the rotated Kirchhoff stress t , 

 

 e T e(R ) (R )t t= , (2) 

 

where t  is the Kirchhoff stress, , with s  denoting the Cauchy stress. det (F)t = s

 

3. A BRIEF DESCRIPTION OF THE ELEMENT-FREE GALERKIN METHOD 

 

Moving least square approximation: The usage of the Moving Least Square Approximation, 

proposed by Lancaster & Salkuskas (1981), enables the construction of an approximate function 

( )hu X  that fits a discrete set of data  where: { }, I= 1,...,nI Iu u= ,
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in which: represents the set of intrinsic base functions; ( ){ , 1, ...,j =Xjp ( )Iw -X X  is a 

weight function centered at ( );I IFX X  is the derived global shape function, defined at particle IX ; 

and ( )A X  is the moment matrix. 

 

Element-free Galerkin weight functions: One of the most used weight function is the quartic-spline 

function, which is given as: 
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in which = I Ir r r  with = -Ir IX X . The radius Ir , defining the support of ( )Iw -X X , is 

determined by 
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where JI represents the set of adjacent nodes associated with XI. An example of the covering of a 

given domain is illustrated in Figure 2. 
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Figure 2 - An example of body coverage by the EFG 

 

4. CONSTITUTIVE MODELING 



 

 In this section a rate-independent constitutive model is presented for isotropic polymeric 

foam material. A volumetric hardening model is motivated by the experimental observation that 

foam structures usually experience a different response in compression and tension. In compression 

the ability of the material to deform volumetrically is enhanced by cell wall buckling processes as 

described by Gibson & Ashby (1997). It is assumed that the foam cell deformation is not 

recoverable instantaneously and can, thus, be idealized as being plastic for short duration events. In 

tension, on the other hand, cell walls break readily; and as a result the tensile load bearing capacity 

of crushable foams may be considerably smaller than its compressive load bearing capacity. The 

volumetric hardening model assumes the evolution of the yield surface is controlled by the 

volumetric plastic strain experienced by the material. 

 

4.1 Definition of the yield surface 

 

 In order to define the yield function, we must introduce some few definitions. The deviatoric 

rotated Kirchhoff stress, the effective rotated Kirchhoff stress, and the pressure stress, in that order, 

are given by 
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 In this work we consider the yield function for crushable foam materials to be defined in 

terms of the Kirchhoff stress measure and given by 
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in which ( )ka a e=  and ( )c c kp p e=  are a function of the internal variables ke . The evolution of 

the yield ellipse is controlled by a plastic strain measure, 1
p
ve eº , which is the volumetric 

compacting plastic strain, as shown in Figure 3, defined as 
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used in the volumetric hardening model, and the axial plastic strain, 2
p
ae eº , whose definition, in a 

unilateral compression test, is given by 
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where  is the unloaded length, after the deformation has been applied, and  is the length of the 

initial configuration of the reference specimen. 

pL oL

 Here, we consider the hydrostatic tension strength, tp , being related to the current 

compressive hydrostatic yield stress as t cp pz= , where  represents a constant of proportionality. 

Consequently, the expansion in the tensile p-direction is proportional to the hardening of the 

compressive p-direction. However, we assume the hydrostatic compression strength, 

z

cp , to evolve 

as a result of compaction (increase in density) or dilation (reduction in density) of the material, i.e. 
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 Moreover, the parameter a  is considered to depend on the volumetric compacting plastic 

strain  and also on the axial plastic strain  , i.e. , , given in a uniaxial state by p
ve p
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 Thus, the parameters  and  are sufficient to define the center and the lengths 

of the major and minor axes of the yield ellipse. These parameters are variables which are functions 

of the volumetric compacting plastic strain , which describes the so-called consolidation 

phenomenon, Zhang 

( )p
c vp e ( , )p p

v aa e e

p
ve

et al. (1998), and on the effective axial plastic strain . The two 

consolidation variables (

p
ae

, )cpa  are uniquely determined by the knowledge of two experimental 

tests, given by the uniaxial and hydrostatic compression tests. Thus, F F ( , )cpa=  where a  and 

cp  are material parameters. 

 

4.2 The non-associative plastic flow potential 



 

 The plastic modified strain rate for the non associative volumetric hardening model is 

assumed to be  
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complemented by postulating a null plastic spin, compatible with plastic isotropy, i.e., 0.p =W  

Here, l& is the plastic multiplier which must satisfy the Kuhn-Tucker conditions:  

and . 

0£F ,
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 The evolution of the plastic deformation and the plastic flow potential, shown in Figure 3, 

are respectively  
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where b  is related to the plastic Poisson's ratio  by pn
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 The plastic Poisson's ratio, which is the ratio of the transverse to the longitudinal plastic 

strain under uniaxial compression, should be defined, and it must be in the range of -1 and 0.5, i.e., 

. The upper limit, = 0.5, corresponds to an incompressible plastic flow. The usual 

assumption, for polymeric foams is to consider = 0.0. In the absence of the knowledge of the 

plastic Poisson's ratio, the consideration of a zero plastic Poisson's ratio is a reasonable assumption, 

as shown in Zhang 

[ 1, 0.5]pn Î - pn

pn

et al. (1998), Gibson & Ashby (1997) and Gilchrist & Mills (2001). 
 



 
 

Figure 3- Yield surface and flow potential on qp −  stress space. 

 

4.3 Hyperelastic response 

 

 Based on the hypothesis of multiplicative split of the deformation gradient and the 

deformation measure to be given by the logarithmic or Hencky strain tensor we may write the 

hyperelastic law as 
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in which ( )∗ρD  is the fourth order elasticity tensor, I  is the fourth order identity tensor,  is the 

second order identity tensor,  is the bulk modulus and  is the Lamé's coefficient or the 

shear modulus. 

I

( )K r * ( )m r *

 The above constitutive equation include the effect of the relative density, r , which is 

defined by the ratio of the foam density, r , by the fully compact material density,

*

Mr . Thus, 
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 At this point, writing the continuity equation with relation of relative density we obtain 
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in which ( )o or r* *= X  denotes the initial relative density, defined in the reference configuration, and 

( , )tr r* *= X  the actual relative density, defined at the reference configuration. 

The model considers 
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and 

 

 ( ) ( ) ME gr r* *= E  (26) 

 

with Mn  representing the Poisson's ratio and ME  the Young's modulus of the fully dense material. 

Thus, , 0n ME  and  must be identified by experimental tests. g

The hypothesis of considering  being independent of the relative density is observed 

experimentally, i.e., is a reasonable assumption. Thus, the strong dependency is through the 

Young's modulus. 

( )n r *

 

4.3 Hardening Rules 

 

 The scalar valued functions  and  are the hardening functions determined in a 

uniaxial and hydrostatic compressive tests respectively. 
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where,  is the initial yield compression stress obtained in a hydrostatic test and o
cp o

yt  is the initial 

yield stress obtained in a uniaxial compression test. 

 Notice that, in a non uniaxial loading case we are not able to identify p
aε . Thus, the axial 

plastic strain measure must be modified in terms of a new plastic measure that is computable in a 

general loading case. Now, in a uniaxial compression test we have 
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which allow us to replace  by the measure  in the hardening rule. p
ae p

ve

 

5. TOTAL LAGRANGEAN FORMULATION  

 

5.1 Strong formulation 

 

 The finite deformation elasto-plastic problem may be stated as: Determine u such that 
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where P is the first Piola-Kirchoff stress, m is the outer normal to ¶ Wo  and b , t  and u  are the 

prescribed body force, traction vector and displacement field respectively. 

 

5.2 Incremental weak form of the problem 
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 the set of admissible variations. The weak formulation of the problem may be 
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 The imposition of the essential boundary condition is done by the application of the 

Augmented Lagrangian method, where the term associated with the imposition of the essential 

boundary conditions is given by 
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The Lagrange multipliers are updated as 
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which shows that the lagrangian multiplier represents physically the traction acting at the essential 

boundary condition due to the reaction force. 

 

6. NUMERICAL RESULTS  

 

6.1 Uniaxial compression test 

 

Here, the simulation of a uniaxial compression test is presented and confronted with de 

experimental data obtained in Zhang, J. et al. (1998). The specimen has an initial area of 2500mm2 

and 50mm of height. The material parameters used in this analysis are described in Table 1. The 

process consists is prescribing the displacement of the upper part of the specimen, with a total 

upsetting of uy = 30mm, applied in order to compress the body. Due to the axisymmetry condition, 

only half of the domain is modeled. This example uses an integration mesh with 4 triangular cells 

and 9 EFG particles. A support of influence of s=1.5 together with a 7 points integration Gauss-

Legendre scheme is employed in the analysis. In addition, an external penalty parameter of ` uò =10-

6.is used in the analysis. 

 

Table 1 – Material Parameters. 

82, 034 928, 092 0,25

40, 470 0, 049 1, 54

0, 30 0, 00 0, 30

o
y m

o
c o

p

KPa E MPa

p KPa

c

t n

r g

z n

*

= =

= =

= =

=

=

=

 

 



 
                                                   (a)                                                                                    (b) 

Figure 4- Uniaxial simulation: (a) Cauchy Stress versus the logarithm strain; (b) Variation 

of relative density with respect the volumetric plastic strain. 

 

6.2 Conical slab  

 

This example considers an axisymmetric problem that consists in the upsetting of a conical slab, 

whose dimensions are: r1=90mm; r2=45mm; h=100mm. The analysis consists in prescribing the 

displacement of the upper wall, with a total upsetting of uy=80mm, which was applied in 1000 step-

loads, in an integration mesh with 240 cells and 143 EFG particles. The parameters used in this 

analysis are the same presented in Table 1. Again, 7 points integration Gauss-Legendre scheme is 

used, as well the support of influence s=1.5 and the penalty parameter ` uò =10-6. 

 

 



 
Figure 5- Fringes results from: (a) displacement on y direction, uy; (b) volumetric plastic 

strain, p
ve .  

 

 
             (a)                                                                                              (b) 

Figure 6- Uniaxial simulation: (a) Cauchy Stress versus the logarithm strain. The indexes A 

and B refers to the points indicated in Figure 5 and the sub indexes 1 and 2 refers to FEM and 

EFG methods respectively; (b) Variation of relative density with respect the volumetric plastic 

strain. 



 

 

7. DISCUSSION AND CONCLUSION 

 

 Polymeric foam constitutive behavior is extremely complex on the microstructural scale. 

Cellular buckling under compression initiates a long stress plateau. Further compression causes 

stress bottom up due to foam consolidation. 

 A rate-independent elasto-plastic foam constitutive model, that features a single-surface 

yield criterion, has been developed. A non associated plastic flow law and the relative density 

dependence showed reasonably prediction for the responses of rigid polymeric foams under the 

monotonic loading conditions. 

 One of the most relevant advantages in use the element-free Galerkin method, compared 

with the FEM, is the ability of the method to withstand the analysis of very large deformation 

processes, doing no remeshing, without breaking up. In addition, EFG method showed to be more 

robust to capture high deformation and deformation gradients, in which the material is subjected to 

a huge densification process, as shown in curves B1 and B2 in Figure 6, where the FE solution 

breaks up before the EFG solution. 

The proposed polymeric foam model was tested with a typical foam problem and has 

performed adequately. From the above considerations, one may conclude that the proposed model 

and numerical procedure showed to be adequate for the simulation of large strain behavior of 

polymeric crushable foams under monotonic loading conditions. 
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