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Abstract. A accuracy examination of the Immersed Interface Method is performed. The method is applied to the calcu-
lation of the second derivative of the sine function over an uniform grid. This is conducted through the employment of a
fourth-order, compact finite differences scheme, subjected to the introduction of Jump Discontinuities at points that do not
coincide with grid ones. This justifies the requirement of a correction method to be applied. One of the IIM’s inner steps
is briefly discussed and the solution generated throught its use is then compared to the exact one. Finally, some qualitative
remarks regarding this method’s grid refinement requirements are presented.
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1. INTRODUCTION

This article is intended to provide outlines and to spot one limitation of the Immersed Interface Method, as proposed
by [2] and [1].

This method has been designed to provide for high-order (4rd order and above) flow simulations around bodies of
complex shape over structured, Cartesian grids. It’s suited for problems such as the evolution of Tollmien-Schlichting
waves, and all sorts of problems which require high near-wall accuray in order to be represented accordingly. One of its
key advantages is the possibility of working with fixed, stationary grids, even if the immersed geometry moves within the
domain. This may lead to a significant reduction of the overall computational cost.

During the latest year this method has been extensevely analysed by the authors and, though its mathematical formula-
tion does cope with the necessity of order maintenance, one of its inner steps seem to have harsh restrictions regarding grid
refinement. This is investigated through its employment to accomplish a simple calculation, that of the second derivative
of a sine funtion over an uniform grid. The reason behind the selection of the sine function falls beyond the existence
of an analytical solution to be compared with the numerical one. It lies on the fact that the sine function has an infinite
number of derivatives. This is of particular importance not only in order to compare the final solutions, but also in order
to perform individual tests throughout the IIM’s substeps. This will become clearer later on.

2. NUMERICAL METHODOLOGY - THE IMMERSED INTERFACE METHOD

The numerical discretization is performed here through the use of a fourth-order accurate Compact Scheme, in con-
juction with the Immersed Interface Method, IIM. The IIM builds upon the fact that implicit methods such as Compact
Schemes loose validity when Jump Discontinuities are introduced at points that do not lie on grid ones. The picture below
depicts that:
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Figure 1. Jump Discontinuity Introduced at the point xα
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Where xα represents the point at which the Jump Discontinuity is introduced.
The method is depicted here taking as an example the following approximation of a function’s first derivative through

the use of a Compact Scheme (second and higher order derivatives follow the same guidelines). Assuming that it consists
of a set of equations of the form:

L1,i−1f
′(x(i− 1)) + L1,if

′(x(i)) + Li+1f
′(x(i+ 1)) = R1,i−1f(x(i− 1)) +R1,if(x(i)) +R1,i+1f(x(i+ 1))(1)

Where the coefficients Ln,i+m e Rn,i+m represent Padé Schemes coefficients, with n refering to the n-th order deriva-
tive (0 refers to the function value itself), and the letters L and R indicating left and right coefficients, respectively.

These equations are based upon Taylor Series expansions over different grid points. As those expansions presume
function continuity, it becomes clear that the presence of Jump Discontinuities requires some kind of correction to be
employed in order to maintain their validity.

Two situations might take place according to where the Jumps are placed, relatively to the interface.
Assuming a scheme centered at the point i, the point at which the function needs to be corrected can be either i+1 or

i−1. These situations are respectively represented as fn, n = 0, 1, 2, 3, . . . superscripts 	 and ⊕. The negative sign refers
to the branch of function downstream the immersed interface, whereas the positive sign refers to the upstream branch.

2.1 Jump Correction for the Downstream Branch Based Scheme

Further simplifying the following terms:

f	,⊕(x(i+ 1)) = f	,⊕i+1 (2)

f
′	,⊕(x(i+ 1)) = f

′	,⊕
i+1 (3)

The equation 1 becomes:

L1,i−1f
′	
i−1 + L1,if

′	
i + L1,i+1f

′	
i+1 = R1,i−1f

	
i−1 +R1,if

	
i +R1,i+1f

	
i+1 (4)

In this case, the Jump is introduced in the region x(i) < xα < x(i+ 1). This is imposed when boundary and interior
conditions are applied to satisfy the presence of a physical object within the domain. With that particular introduction,
the scheme, that was entirely based on downstream values, now computes two downstream (at points i− 1 and i) and one
upstream value (at the i+1-th grid point). With that in mind, and withouth any correction applied, the equation becomes:

L1,i−1f
′	
i−1 + L1,if

′	
i + L1,i+1f

′⊕
i+1 = R1,i−1f

	
i−1 +R1,if

	
i +R1,i+1f

⊕
i+1 (5)

At this stage there’s the need to introduce the Jump Correction Term, which intends to be a workaround to that
problem. Following the definition provided by [2], this term shall, hereinafter, be represented as Jnα,i+m. Its meaning
shall be elucidated below.

The next challenge is to find expressions for those corrections. Expanding f(x(i + 1)) through Taylor Series both to
the left and to the right side of the interface, and naming these expansions as f	i+1 and f⊕i+1, one has:

f⊕i+1 = f⊕α + f1⊕
α dx+

α +
f2⊕
α (dx+

α )
2

2!
+ . . .+

fn⊕α (dx+
α )
n

n!
(6)

f	i+1 = f	α + f1	
α dx+

α +
f2	
α (dx+

α )
2

2!
+ . . .+

fn	α (dx+
α )
n

n!
(7)

With:

dx+
α = x(i+ 1)− xα (8)

fn⊕,	α = lim
x→xα+,−

fn(x) (9)

If one relates f⊕i+1 to f	i+1 then it’s possible to equal this expression to a term called J0	
α,i+m, which ultimately results

in:

J0	
α,i+1 = f⊕i+1 − f	i+1 (10)

This becomes, upon manipulation:

J0	
α,i+1 = [f0

α] + [f1
α]dx

+
α + [f2

α]
(dx+

α )
2

2!
+ . . .+ [fnα ]

(dx+
α )
n

n!
(11)
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With:

[fnα ] = lim
x→x+

α

fn(x)− lim
x→x−α

fn(x)

After this procedure, it becomes obvious why the term J0	
α,i+1 is called Jump Correction Term, and one could proceed

similarly to obtain an expression for J1	
α,i+m:

J1	
α,i+1 = [f1

α] + [f2
α]dx

+
α + [f3

α]
(dx+

α )
2

2!
+ . . .+ [fnα ]

(dx+
α )
n−1

n− 1!
(12)

These manipulations lead to the corrected equation of the form:

L1,i−1f
′	
i−1 + L1,if

′	
i + L1,i+1f

′⊕
i+1 = R1,i−1f

	
i−1 +R1,if

	
i +R1,i+1f

⊕
i+1 − (R1,i+1J

0	
α,i+1 + L1,i+1J

1	
α,i+1) (13)

2.2 Jump Correction for the Upstream Branch Based Scheme

The development for this case follows the same guidelines as those from the previous section. Considering an approx-
imation to the first derivative:

L1,i−1f
′⊕
i−1 + L1,if

′⊕
i + L1,i+1f

′⊕
i+1 = R1,i−1f

⊕
i−1 +R1,if

⊕
i +R1,i+1f

⊕
i+1 (14)

That becomes:

L1,i−1f
′	
i−1 + L1,if

′⊕
i + L1,i+1f

′⊕
i+1 = R1,i−1f

	
i−1 +R1,if

⊕
i +R1,i+1f

⊕
i+1 (15)

Using the following Taylos Series expansions around xα:

f⊕i−1 = f⊕α − f1⊕
α dx−α +

f2⊕
α (dx−α )

2

2!
+ . . .+ [−1(n)]f

n⊕
α (dx−α )

(n)

(n)!
(16)

f	i−1 = f	α − f1	
α dx−α +

f2	
α (dx−α )

2

2!
+ . . .+ [−1(n)]f

n	
α (dx−α )

(n)

(n)!
(17)

f1⊕
i−1 = f1⊕

α − f2⊕
α dx−α +

f3⊕
α (dx−α )

2

2!
+ . . .+ [−1(n−1)]f

n⊕
α (dx−α )

(n−1)

(n− 1)!
(18)

f1	
i−1 = f1	

α − f2	
α dx−α +

f3	
α (dx−α )

2

2!
+ . . .+ [−1(n−1)]f

n	
α (dx−α )

(n−1)

(n− 1)!
(19)

Where:

dx−α = xα − x(i− 1) (20)

fn⊕,	α = lim
x→xα+,−

fn(x) (21)

And the following definitions:

J0⊕
α,i−1 = f	i−1 − f⊕i−1 (22)

J1⊕
α,i−1 = f ′	i−1 − f ′⊕i−1 (23)

The Jump Correction Terms are then written as:

J0⊕
α,i−1 = −[f0

α] + [f1
α]dx

−
α − [f2

α]
(dx−α )

2

2!
+ . . .+ [−1(n+1)][fnα ]

(dx−α )
n

n!
(24)

J1⊕
α,i−1 = −[f1

α] + [f2
α]dx

−
α − [f3

α]
(dx−α )

2

2!
+ . . .+ [−1(n)][fnα ]

(dx−α )
(n−1)

(n− 1)!
(25)

Where:

[fnα ] = lim
x→x+

α

fn(x)− lim
x→x−α

fn(x)

Finally, the corrected first derivative equation:

L1,i−1f
′	
i−1 + L1,if

′⊕
i + L1,i+1f

′⊕
i+1 = R1,i−1f

	
i−1 +R1,if

⊕
i +R1,i+1f

⊕
i+1 − (R1,i−1J

0⊕
α,i−1 + L1,i−1J

1⊕
α,i−1) (26)
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Nevertheless, it’s yet to be shown how to obtain approximations to those Jump Terms. The only values know at each
iteration of the method are function values themselves. So the only option available is to combine them in such a way that
all derivatives at the immersed interface can be estimated accordingly. For the case depicted at this subsection, the desired
system can be represented by:

f(xα) = cα,1f(xα) + ci+1,1f(xi+1) + ci+2,1f(xi+2) + . . .+ ci+n,1f(xi+n)
f1(xα) = cα,2f(xα) + ci+1,2f(xi+1) + ci+2,2f(xi+2) + . . .+ ci+n,2f(xi+n)

... =
... +

... +
... +

... +
...

fn(xα) = cα,nf(xα) + ci+1,nf(xi+1) + ci+2,nf(xi+2) + . . .+ ci+n,nf(xi+n)

(27)

With fn(xα) = fnα and f(xi+n) = f0
i+n, its matrix representation is:


f0
α

f ′α
...

fn−1α

 =


1 0 0 . . . 0

cα,2 ci+1,2 ci+2,2 . . . ci+n,2
...

...
...

...
...

cα,n ci+1,n ci+2,n . . . ci+n,n

 ×


f0
α

f0
i+1
...

f0
i+n

 (28)

The Weierstrass’s theorem states that if a function f(x) is continuous over a finite interval a ≤ x ≤ b then it can be
approximated as closely as we please by a power polynomial, provided this polynomial’s order is sufficiently large. So,
one may want to represent the function values in successive points close to the immersed interface through Taylor Series
expansions (according to [2], the fist neighbor point shall be neglected):


f0
α

f0
i+1
...

f0
i+n

 =


1 0 0 . . . 0

1 (dx+
α + dx)

(dx+
α+dx)

2

2! . . .
(dx+

α+dx)
n

n!
...

...
...

...
...

1 (dx+
α + ndx)

(dx+
α+ndx)

2

2! . . .
(dx+

α+ndx)
n

n!

 ×


f0
α

f ′α
...

fn−1α

 (29)

Using:

[C] = Cn,n =


1 0 0 . . . 0

cα,2 ci+1,2 ci+2,2 . . . ci+n,2
...

...
...

...
...

cα,n ci+1,n ci+2,n . . . ci+n,n

 (30)

And:

[D] = Dn,n =


1 0 0 . . . 0

1 (dx+
α + dx)

(dx+
α+dx)

2

2! . . .
(dx+

α+dx)
n

n!
...

...
...

...
...

1 (dx+
α + ndx)

(dx+
α+ndx)

2

2! . . .
(dx+

α+ndx)
n

n!

 (31)

We can change between systems:

(f) = [D](fnα ) (32)

[D]−1(f) = [D]−1[D](fnα ) (33)

Upon close inspection, we conclude that [D] is always invertible. Finally:

[C] = [D]−1 (34)

A brief discussion regarding the order maintenance of these expansions is found in [2]. As for the fourth-order Com-
pact Scheme used:
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1 11 0 . . . . . . . . .
1 10 1 . . . . . . . . .
0 1 10 1 . . . . . .
...

...
...

...
...

...
. . . . . . 1 10 1 0
. . . . . . . . . 1 10 1
. . . . . . . . . 0 11 1


and



39a −81a 45a −3a . . . . . .
1b −2b 1b 0 . . . . . .
0 1b −2b 1b . . . . . .
...

...
...

...
...

...
. . . . . . 1b −2b 1b 0
. . . . . . 0 1b −2b 1b
. . . . . . −3a 45a −81a 39a


With:

a = 1/3dx2 (35)

b = 12/dx2 (36)

2.3 Grid Refinement Test Guidelines

A Selection of five different grids have been used:

Grid Number of Points
1 21
2 41
3 81
4 161
5 321

The errors are based on two norms, and their definitions follow [3]:

L1 =

[
j∑

n=1

|fex(n)− fcalc(n)|

]
/j (37)

L∞ = max|fex(n)− fcalc(n)| ; n = 1, 2, . . . , j (38)

Where the index n represents the number of grid points.

3. RESULTS AND REMARKS

Here are presented some results of the application of the method to the calculation of the second derivative of f(x) =
sin(x).

The selected sine profile is shown below. The domain has a lenght L = 10 and the Jump Discontinuities are placed at
xα1 = 1.97875 and xα2 = 8.02125:
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Figure 2. Jump Discontinuity Introduced at the points xα1
and xα2

Below there are plots from two numerical solutions, from grids number 1 and number 5, plus the exact solution.
Numerical solutions are represented by dots, whereas the analytical one is represented by a red line.
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Figure 3. sine Numerical Solution vs Analytical Solution - GRID 1
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Figure 4. sine Numerical Solution vs Analytical Solution - GRID 5

The following graph contains plots regarding the grid refinement test.
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Figure 5. Grid Refinement Test
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The numerical solution with Jump Terms based upon analytical values depict 4th-order behaviour both for L∞ and
L1. That’s in consonance with the method’s formulation.

In their turn, the two lines related to the entirely numerical solution reflect a degradation of the solution as the grid
becomes less refined. This behaviour rises the question of how effective is the approximation of those derivatives at points
xαn by the linear combination of the function values.

This approximation always requires the same amount of neighbor points to be carried over, but one can imediately
point out that their positions along the coordinate axis change as the grid becomes more refined. Additionally, what can
be seen is that this collection of points become more (or less) collapsed as we change from one grid to the next, and thus
the curve that is actually being computed by this process also changes from one run of the code to the next.

What has been shown is that this effect seems to have direct influence over the order maintenance of this method,
which could ultimately render it unfitted for its original proposition, which involves mantaining the order of the Compact
Scheme used.

The issue could lie on a bad implementation for the inversion process of the [D] matrix, from section 2.. That doesnt’t
seem to be the case, though. If [C] is [D]’s inverse matrix, their product should yield the Identity Matrix, and that’s
precisely what happens throughout all 5 runs from the entirely numerical solution.

With that in mind, one of the preliminary conclusions regarding the subject of this paper is that this linearization
process is a critical limitation of the Immersed Interface Method as it has been presented.

Further results and studies are still being performed, and the aim now is to provide a quantitative appreciation of this
issue, rather than a qualitative one.
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