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Abstract. The effort to integrate the knowledge on Integral Transforms application into a computational code resulted 

in a recently developed open source mixed symbolic-numerical computational code called UNIT (UNified Integral 

Transforms), that provides a development platform for finding solutions of nonlinear partial differential equations by 

integral transformation. To demonstrate the robustness of the UNIT code, the present work challenged this code in 

solving three different situations of heat diffusion dealing with spatially variable coefficients. The selected variations of 

the thermophysical properties illustrate: a large scale variation such as in Functionally Graded Materials (FGM), 
abrupt variations such as in layered composites and random variations due to local concentration fluctuations in 

dispersed phase systems such as composites. The results obtained with the UNIT code show a very good agreement 

with a dedicated computational implementation of the integral trnasform method, even for severe variations of the 

thermophysical properties, illustrating its robustness and flexibility. 
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1. INTRODUCTION 

 

The numerical solution of partial differential diffusion models by discrete approaches has been a crucial analysis 

tool in practice, development and research in engineering sciences, either as user-developed routines, general purpose 

subroutines from mathematical packages, or object oriented commercial codes. Such solution paths have been co-
existing with classical analytical approaches for some classes of problems that allow for exact treatment, and with 

hybrid numerical-analytical methods for more general, even nonlinear, formulations not a priori tractable by the 

classical analytical methodologies. This essential synergy of numerical and more analytically oriented approaches is 

related with benchmarking and covalidation needs, with cost reduction and/or robustness incorporation in certain 

applications, and most especially with the continuous development of novel hybrid methods. While discrete numerical 

approaches are progressively and more readily available as automatic routines for general purpose use, even nowadays 

merged within multiphysics frameworks, analytical and hybrid-type approaches still require a considerable amount of 

effort in the implementation of the computational algorithms, even though they may involve, in principle, simpler and 

more cost-effective algorithms. On the other hand, the more recent spreading of the symbolic computation culture, has 

been allowing for the generalization and systematization of algebraic manipulations that are inherent to such analytic-

based methods, and offering an impulse to the establishment of automatic codes based on analytical methods for PDE´s. 
Analytical solutions of linear diffusion problems have been systematically solved for seven different classes of heat 

and mass diffusion problems with the Classical Integral Transform Technique (CITT) (Mikhailov & Ozisik, 1984). 

Later on, the classical integral transform approach gained a hybrid numerical-analytical implementation, referred to as 

the Generalized Integral Transform Technique (GITT) (Cotta, 1990; Cotta, 1993; Cotta, 1994; Cotta & Mikhailov, 

1997, Cotta, 1998; Cotta & Mikhailov, 2006). This hybrid approach was progressively advanced to overcome barriers 

posed by different classes of problems such as nonlinear physical properties, moving boundaries, irregular geometries 

and nonlinear convective terms. The effort to integrate the knowledge on the GITT application into an automatic and 

unified computational tool resulted in a recently developed open source mixed symbolical-numerical computational 

code called UNIT, which stands for UNified Integral Transforms (Sphaier et al., 2009; Cotta et al., 2010), that provides 

a development platform for finding solutions of partial differential equations by means of integral transforms. 

Diffusion problems defined in heterogeneous media involve spatially variable coefficients in different forms, 

depending on the type of heterogeneity involved, such as large scale variations in functionally graded materials (FGM), 
abrupt variations in layered composites and random variations due to local concentration fluctuations in dispersed phase 

systems such as nano-composites and nanofluids (Lin, 1992; Divo & Kassab, 1998; Fudym et al., 2002; Sutradhar & 

Paulino, 2004; Kumlutas & Tavman, 2006; Naveira-Cotta et al., 2009; Naveira-Cotta et al., 2010a). In the present work 

we challenge the UNIT code in solving heat diffusion problems in heterogeneous media. The simplest possible auxiliary 

eigenvalue problem is adopted so as to test the UNIT code solver in the most adverse case, and thus the terms that are 

responsible for the information on the heterogeneity of the medium are grouped into the source term. This is in fact the 

main difference of the present approach in comparison with the dedicated solution provided by (Naveira-Cotta, 2009; 

Naveira-Cotta et al., 2009), where the most appropriate and general eigenvalue problem, with no simplification, was 
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tackled with the GITT itself. The aim is to demonstrate the flexibility and applicability of the recently advanced 

automatic symbolic-numerical implementation, by employing representative test problems that provide a number of 

different and stiff functional forms for the partial differential formulation coefficients.  

 

2. PROBLEM FORMULATION AND SOLUTION METHODOLOGY 

 

We consider the one-dimensional version of the general formulation on transient diffusion presented and solved in 

(Sphaier et al., 2009; Cotta et al., 2010), for the potential ( , ),T x t  dependent on position x and time t and defined in 

region x [0,L]. The formulation includes the transient term, the diffusion operator, a linear dissipation term, nonlinear 

source terms, and the space variable thermal conductivity and heat capacity, for a heat transfer application, as shown in 

problem (1) below. The nonlinear equation and boundary source terms may collect nonlinear terms from the different 

portions of the problem formulation. The coefficients ( ) and ( ),w x k x  are thus responsible for the information related to 

the heterogeneity of the medium. The diffusion equation and initial and boundary conditions are given by:  
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   

     
, ,

( ) , , , ,   0 ,   0
T x t T x t

w x k x d x T x t P x t T x L t
t x x

  
      

   
           (1a) 

   ,0 ,    0T x f x x L                                 (1b) 

   0 0 0

( , )
, ( , , ),   0,  0

T x t
T x t k x x t T x t

x
  


   


              (1c) 

   1 1 1

( , )
, ( , , ),   ,   0

T x t
T x t k x x t T x L t

x
  


   


                           (1d) 

 

Problem (1) covers a fairly wide range of physical conditions for a typical one-dimensional transient thermal 

conductivity experimental setup, including the various types of boundary conditions and independent heating, or, for 

instance, based on an initial space variable thermal excitation throughout the domain, and subsequent temperature 

measurements acquisition via infrared thermography (Fudym et al., 2008; Naveira-Cotta et al., 2010a; Naveira-Cotta et 

al., 2010b).  
We first recall the analytical solution path adopted in (Naveira-Cotta, 2009; Naveira-Cotta et al., 2009a), where the 

exact formal solution for the linear version of problem (1) is obtained through the Classical Integral Transform Method 

(Mikhailov & Ozisik, 1984), based on the eigenvalue problem that incorporates all the space variable coefficients, 

allowing for the analysis of different classes of heterogeneous media by considering specific functional forms and 

parameter values for the related space variable coefficients. The Generalized Integral Transform Technique (GITT) is 

then employed essentially to offer a hybrid numerical-analytical solution of the eigenvalue problem, and this detailed 

analysis can be found in the cited references. 

Here, we seek the formal solution of problem (1), in a more general sense, not accounting for the exact integral 

transformation that is achievable when the specific eigenvalue problem with all the space variable coefficients is 

chosen. This alternative more flexible solution path, which forms the basis of the UNIT code (Sphaier et al., 2009; 

Cotta et al., 2010) is then based on direct application of  the Generalized Integral Transform Technique (Cotta, 1990; 
Cotta, 1993), starting with the inverse formula below: 

 

1

( , ) ( )( ; ) ( )i

i

f iT x t T x Tx t t




                                                                           (2a) 

 

where Tf(x;t) is a filtering solution to be proposed, and the transformed potentials are defined with the integral 

transformation operation given by 

 

* *

0
( ) ( , )( ) ( )

L

i iw x T x t dxT t x                                                                           (2b) 

 

The eigenvalues i and eigenfunctions ( )i x , are obtained from the chosen eigenvalue problem below:

  

2* * *( )
[ ( ) ] [ ( ) ( )] ( ) 0, [0, ]

d xd ik x w x d x x x Li idx dx


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with boundary conditions 
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where the coefficients k*(x), w*(x), and d*(x) are simpler coefficients chosen so as to construct an eigenvalue problem 

of known analytical solution to offer the basis for the eigenfunction expansion. For convenience, we also require that 

eqs.(3b,c) match the homogenous version of the boundary conditions, eqs.(1.c,d), by letting γ0= β0k(0)/ k*(0) and γ1= 

β1k(L)/ k*(L). The other quantities that appear in the inverse formula (2a) are computed after solving problem (3), such 

as:  

 

      
( )

( ) i
i

i

x
x

N


  ,  normalized eigenfunctions                                                           (4a) 

* 2

0
( ) ( )

L

i iN w x x dx  ,  normalization integrals                                                 (4b) 

 

The UNIT code allows for different choices of filtering solutions, either user provided or automatically determined 

from the symbolic computation feature of the Mathematica system. The simplest possible filtering solution is written as 

a linear function in the space variable that simultaneously satisfies both boundary conditions (1c,d),  

 

( ; ) ( ) ( )fT x t a t x b t                                                                               (5) 

This straightforward linear filter is the default option in the UNIT code and essentially homogenizes the boundary 

conditions in the filtered partial differential problem to be integral transformed. A more complete analytical filter may 

be preferred, that further eliminates the source terms in the original equation, eq.(1a), but the above choice was already 

quite effective in the present situation. The filtered temperature problem formulation is then given by: 
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where the filtered source term is written as 
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Before proceeding to the integral transformation process itself, it is of interest to avoid an implicit transformed 

system, and thus Eq.(6a) can be rewritten in terms of the chosen weighting function w*(x), as follows: 
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The integral transformation is now performed by operating eq.(7b) on with 
0

( )
L

i x dx  , to yield the following 

transformed ordinary differential system:  

 

( )
( , ), 0, , 1,2,...i

i
j

dT t
g t T t i j

dt
                                                                (8a) 

 

with the transformed source terms given by 

 

0
, , )( , ) ( ( )

L

i ij x t Tg t T G x dx                                                                     (8b) 

 
  and the transformed initial conditions 
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The ODE system (8) can be numerically solved to provide results for the transformed temperatures, upon truncation 

to a sufficiently large finite order N. The Mathematica platform (Wolfram, 2005) provides the routine NDSolve for 
solving stiff ODE systems such as the one here considered, under automatic absolute and relative error control. Once 

the transformed potentials have been numerically computed, the Mathematica routine automatically provides an 

interpolating function object that approximates the t  variable behavior of the solution in a continuous form. Then, the 

inversion formula can be recalled to yield the potential field representation at any desired position x and time t . 

The constructed UNIT code in the Mathematica 7.0 platform encompasses all of the symbolic derivations that are 

required in the above GITT formal solution, besides the numerical computations that are required in the solution of the 

chosen eigenvalue problem and the transformed ODE system. The user essentially needs to specify the problem 

formulation, according to Eqs.(1), and then choose how to present results according to the specific needs. In order to 

computationally solve the problem defined by Eqs. (1), a quite straightforward general algorithm can be described as 

follows: 

-  The user provides the input and problem formulation module, which includes the equation and boundary condition 
coefficients in eqs.(1), besides the corresponding source terms. There is an implicit choice of eigenvalue problem when 

the coefficients k*(x), w*(x), and d*(x) are specified so as to form the auxiliary problem to be solved for.  

- The automatic filtering module is then activated, which is either the simplest possible choice of functions that 

essentially satisfy the boundary conditions, to make them homogeneous as here discussed, or the filter is provided as a 

problem formulation by the user, to be handled via symbolic or numerical computation. The option of not providing a 

filtering solution is also allowed, either because it might not be actually necessary or as a solution strategy to be 

complemented by an integral balance acceleration a posteriori (Cotta, 1993). 

-  The auxiliary eigenvalue problem of Eqs. (3) is solved for the eigenvalues and related normalized eigenfunctions, 

either in analytic explicit form, when applicable, as obtained by the symbolic routine DSolve, or through the GITT itself 

(Naveira-Cotta et al., 2009). 

- The transformed initial condition is computed, either analytically (function Integrate) or with a general-purpose 
procedure through adaptive numerical integration (function NIntegrate). Two additional options are provided to the 

user, namely, a semi-analytical evaluation where the analytical integration of the eigenfunction oscillatory behavior is 

preserved, and a simplified and cost-effective numerical integration with Gaussian quadrature, automatically exploiting 

the frequency of oscillation of the eigenfunctions in the choice of nodes. Similarly, the coefficients on the transformed 

O.D.E. system of Eq. (8a), once they are not dependent on the transformed potentials, can be evaluated in advance. For 

the more general situation of nonlinear coefficients, there are some computational savings in grouping them into a 

single integrand, as represented in Eq.(8b). The coefficients in the transformed system can be obtained by analytical 

integration, if feasible, or again by the automatic Gaussian quadrature scheme that accounts for the knowledge on the 

eigenfunctions oscillatory behavior. The alternative semi-analytical integration procedure is also implemented, which is 

particularly convenient in nonlinear formulations that might require costly numerical integration. For instance, the 

integral transformation of the equation source term for homogeneous filtered boundary conditions would then be 

evaluated as: 
 

1
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where ˆ ( , ,T)mG x t  are simpler representations of the source term, defined in M sub-regions Vm, for which analytical 

integration of the eigenfunctions is still obtainable. The simplest choice would be the adoption of uniform values of the 

source terms within the subdomains (zeroth order approximation), but linear and quadratic representations of the source 

terms behavior are also implemented. 

-  The truncated O.D.E. system of Eqs. (8a) and (8c) is then numerically solved through function NDSolve of the 

Mathematica system. In general, such initial value problem solvers should work under the automatic selection of a stiff 

system situation, such as with the BDF (Gear’s) method, since the resulting system is likely to become stiff, especially 

for increasing truncation orders.  This subroutine offers an interesting combination of accuracy control, simplicity in 

use, and reliability.  

-  Once all the intermediate numerical tasks are accomplished within user-prescribed accuracy, one is left with the 

need of reaching convergence in the eigenfunction expansions and controlling the truncation order N for the requested 

accuracy in the final solution. The analytic nature of the inversion formula allows for a direct testing procedure at each 
specified position within the medium where a solution is desired, and the truncation order N can be decreased (or 

eventually increased), to fit the user global error requirements over the entire solution domain. The simple tolerance 

testing formula employed is written as 

 

* 1
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The numerator in Eq. (10) represents those terms that in principle might be abandoned in the evaluation of the 

inverse formula, without disturbing the final result to within the user-requested accuracy target. Therefore, this testing 

can be implemented by choosing the value of N* in the numerator sum, then offering error estimations at any of the 

selected test positions within the domain. 

The open source UNIT code is a development platform for researchers and engineers interested on hybrid integral 

transform solutions of convection-diffusion problems, readily available for download from the site 

http:\\2009unit.vndv.com. 

 

3. RESULTS & DISCUSSION 

 

3.1.Functionally Graded Materials (FGM) 
 

As the first example we consider the case of variable coefficients with large scale variations within the domain, such 

as related to the heat transfer analysis of functionally graded materials (FGM) (Sutradhar and Paulino, 2004). The 

related dimensionless energy equation, initial and boundary conditions for the FGM example are written as: 
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where the thermophysical properties vary exponentially in the form 

 

 
2 2 0

0 0 0

0

( ) ( ) , .,x xk x e w x e const
k

k w
w

                      (12a-c) 

This particular functional form was chosen on purpose as it leads to a problem formulation with exact solution via 

the classical integral transform method (Ozisik & Mikhailov, 1984), yielding a benchmark solution for this case. The 

effect of the parameter   on the behavior of the thermophysical properties is illustrated in Fig. 1. Note that for the case 

of 3  , a ratio of approximately 400 times is achieved between the thermal conductivity values at the two edges of 

the domain. This same problem was handled in (Naveira-Cotta et al., 2009) through a dedicated implementation of the 

formal exact solution, in conjunction with the GITT hybrid solution of the related eigenvalue problem. Here, the UNIT 
code solution was pursued for the simplest possible choice of eigenvalue problem throughout, namely, w*(x)=1, 

k*(x)=1, and d*(x)=0, so as to further challenge the automatic symbolic-numerical routine. 
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Figure 1 - Behavior of the variable diffusion coefficient ( )k x  for the FGM example, with  β = -3, -1, 1 and 3. 

 

In Figs. 2a. and 2b the transient behavior of the temperature profiles is shown for three time values, 0.01t  , 0.05  

and 0.1, with 3   and 3   , respectively, as solved with the GITT via UNIT code and compared against the exact 

solution (Naveira-Cotta et al., 2009). The excellent convergence behavior of the expansion is illustrated in Table 1. 

 

 
 

Figures 2 – Physical behavior and validation (GITT via UNIT vs Exact) of temperature distributions for the FGM with 

(a) 3   and (b) 3   . 

 

Table 1 – Convergence of temperature eigenfunction expansion for the FGM problem. 

Method 0.01t    3   0.01t    3    

 0.2x   0.4x   0.6x   0.8x   0.2x   0.4x   0.6x   0.8x   

UNIT 40N   0.299159 0.0883170 0.0248731 0.0057496 0.994489 0.975184 0.911569 0.700450 

UNIT 50N   0.299412 0.0884360 0.0249094 0.0057654 0.994283 0.975107 0.911546 0.700520 

UNIT 60N   0.299433 0.0884460 0.0249048 0.0057643 0.994261 0.975101 0.911544 0.700530 

UNIT 70N   0.299442 0.0884510 0.0249048 0.0057642 0.994249 0.975098 0.911543 0.700530 

UNIT 80N   0.299450 0.0884550 0.0249062 0.0057648 0.994243 0.975096 0.911542 0.700537 

Exact 0.299454 0.0884585 0.0249067 0.0057652 0.994221 0.975093 0.911542 0.700542 

 

3.2. Properties with abrupt variations 

 

We now consider the analysis of problems with abrupt variations on the thermophysical properties (Orlande et al., 

2008; Naveira-Cotta, 2010a). The analyzed problem formulation is: 
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where the space variable coefficients with abrupt variation are governed by the parameter  in the function below 
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1
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1 x xc
x

e 


 

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with 
cx  being the interface position. The initial condition is arbitrarily chosen as 

2( ) 1f x x  . Fig. 3a. illustrates the 

behavior of the variable coefficient ( )k x  with 
1 1k  , 

2 20k  , 
1 1w  , 

2 4w  , 0.3cx   and for the parameter 

20,  200   and the discontinuous situation. In Fig. 3b. are shown the results obtained through the UNIT code for 

200   at 0.001t   and 0.01t   considering different truncation orders 25N  , 45  and 65 . Table 2 below more 

closely illustrates the convergence behavior of the temperature eigenfunction expansion for this case, which is fully 

converged to four significant digits and agrees with the dedicated computation in (Naveira-Cotta et al., 2009). 

 

 
 

Figures 3 – (a) Abruptly variable  thermal conductivity. (b) Results for linear heat diffusion in heterogeneous media. 

 

Table 2 – Convergence of temperature eigenfunction expansion for the abrupt variation problem ( 200  ). 

Method 
0.001t   0.01t   

0.2x   0.4x   0.6x   0.8x   0.2x   0.4x   0.6x   0.8x   

UNIT 25N   0.946641 0.814250 0.636081 0.346372 0.838215 0.670491 0.578623 0.452474 

UNIT 35N   0.952572 0.819150 0.628030 0.351627 0.852720 0.675334 0.572659 0.452789 

UNIT 45N   0.956912 0.822098 0.629902 0.353351 0.860751 0.678245 0.574727 0.454811 

UNIT 55N   0.956568 0.822366 0.630013 0.353433 0.860426 0.678560 0.574867 0.454918 

UNIT 65N   0.956603 0.822250 0.629957 0.353386 0.860423 0.678437 0.574803 0.454865 

GITT
1
 0.956536 0.822182 0.629859 0.353286 0.860514 0.678413 0.574732 0.454773 

1Temperature expansion truncation order: 100; Coefficient expansion truncation order: 110. (Naveira-Cotta et al., 2009) 

 

3.3. Properties with random variations 

 

Now we consider the problem formulation with random variations in the properties values, typical of local 

concentration fluctuations in dispersed phase systems such as composites. The randomly generated coefficients were 

obtained based on the example of (Lin, 1992), by first generating a number of positions within the medium, and then 

producing random scaling factors for the properties variations at each position, normalized by their average value. The 

resulting values are then interpolated to provide continuous functions. The variable coefficients are the given by: 

 

 1 2

1 2

( ) ( )
( ) 1 1 , ( ) 1 1

g x g x
k x G w x G

g g

      
              
         

    (15a,b) 

 

where 1( )g x  and 2 ( )g x  are linearly interpolated functions within selected positions x  and properties values randomly 

generated in the interval [0,1] . Here, just for illustration purposes, the x  positions were taken as equally distributed 

points within the domain. For 1G   one obtains the full random pattern of the generated functions, while 0G   

recovers the uniform thermophysical properties situation. Figs. 4a-d below illustrate the employed ( )k x  and ( )w x  

coefficients by taking 0 0 0.5k w  , with 0.2G   and 0.8 . A total of 41 equally spaced points were taken along the 

domain for the random properties generation, while the random numbers at each position were kept unchanged for the 

0.001t   

0.01t   

25N   

45N   

65N   

( )a  ( )b  
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different gains. Figs. 5a. and 5b. illustrate the temperature profile behavior at two different dimensionless times, 

respectively, for 0.05t   and 0.1t  . Table 3 shows the convergence behavior of the solution varying the number of 

sub-regions ( M ), with the second order semi-analytical integration, for the same two cases: 0.2G   and 0.8 . Clearly, 

the case with larger variation amplitudes requires a more refined integration scheme. The convergence behavior of the 

temperature field  is also demonstrated while varying the truncation order in the eigenfunction expansion, for different 

values of G =0.2, 0.5, and 0.8, respectively, in Tables 4 to 6. One may observe that for increasing values of G  the 

convergence of the solution becomes slower, which is expected since higher values of G  yield patterns with abrupt 

random variations of larger amplitudes, much more different from the uniform average values adopted in the very 

simple chosen eigenvalue problem. Nevertheless, at least three significant digits are converged for the case G=0.5, and 

at least two digits, in the worst situation, for G=0.8, in the range of truncation orders here analyzed. 
 

 
 

 
 

Figures 4 –Behavior of the variable diffusion and thermal capacitance coefficients, ( )k x  and ( )w x , for the 

 random properties example, with 0.2G  (a-b) and with 0.8G  (c-d).  

 

 
 

Figures 5 – Temperature distributions for the random properties example with 0,  0.2, 0.5, 0.8 and 1G  , at two 

different dimensionless times : 0.05t   (a) and at 0.1t  (b) 

( ), 0.2k x G   ( ), 0.2w x G   

( ), 0.8w x G   ( ), 0.8k x G   
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Table 3 – Convergence of UNIT code solution ( 70N   terms in eigenfunction expansion) with different number of 

sub-regions in the semi-analytical integration ( M ), for 0.2G   and 0.8G  . 

M  
0.2,   70,   0.1G N t    0.8,   70,   0.1G N t    

0.2x   0.4x   0.6x   0.8x   0.2x   0.4x   0.6x   0.8x   

360M   0.791140 0.712956 0.627982 0.540992 0.837339 0.734938 0.622731 0.500930 

380M   0.790998 0.713604 0.627686 0.541651 0.818277 0.710375 0.643878 0.489622 

400M   0.790401 0.713516 0.627184 0.541168 0.824206 0.712316 0.641536 0.490609 

420M   0.790376 0.713176 0.627243 0.541419 0.823595 0.711918 0.642521 0.492229 

GITT
1
 0.790358 0.713431 0.627278 0.541537 0.824474 0.715097 0.644814 0.494964 

1Temperature expansion truncation order: 130; Coefficient expansion truncation order: 80. (Naveira-Cotta et al., 2009) 
 

Table 4 – Convergence of temperature expansion for the random variations problem for 0.2G  , with 420M  . 

Method 
0.05t   0.1t   

0.2x   0.4x   0.6x   0.8x   0.2x   0.4x   0.6x   0.8x   

UNIT 30N   0.852407 0.762114 0.620424 0.451106 0.791173 0.716865 0.611192 0.543517 

UNIT 40N   0.862331 0.752019 0.614121 0.455441 0.790454 0.713221 0.628043 0.540233 

UNIT 50N   0.863473 0.751298 0.611906 0.457267 0.790230 0.713290 0.627310 0.541450 

UNIT 60N   0.863640 0.751686 0.611970 0.457656 0.790218 0.713136 0.627194 0.541452 

UNIT 70N   0.863616 0.751651 0.611988 0.457630 0.790376 0.713176 0.627243 0.541419 

GITT
1
 0.863769 0.751067 0.612032 0.457890 0.790358 0.713431 0.627278 0.541537 

1Temperature expansion truncation order: 130; Coefficient expansion truncation order: 80. (Naveira-Cotta et al., 2009) 

 

Table 5 – Convergence of temperature expansion for the random variations problem for 0.5G  , with 420M  . 

Method 
0.05t   0.1t   

0.2x   0.4x   0.6x   0.8x   0.2x   0.4x   0.6x   0.8x   

UNIT 30N   0.858432 0.744861 0.587726 0.453946 0.795920 0.726467 0.644948 0.522308 

UNIT 40N   0.868371 0.747645 0.626972 0.443154 0.816069 0.713212 0.632678 0.532082 

UNIT 50N   0.869999 0.747726 0.627575 0.442359 0.800101 0.713405 0.635013 0.529276 

UNIT 60N   0.869975 0.747763 0.627610 0.442239 0.800264 0.713516 0.635094 0.529291 

UNIT 70N   0.869916 0.747729 0.627693 0.442291 0.800303 0.713570 0.635136 0.529285 

GITT
1
 0.870880 0.748470 0.627424 0.442530 0.800430 0.713492 0.635133 0.529107 

1Temperature expansion truncation order: 130; Coefficient expansion truncation order: 80. (Naveira-Cotta et al., 2009) 

 

Table 6 – Convergence of temperature expansion for the random variations problem for 0.8G  , with 420M  . 

Method 
0.05t   0.1t   

0.2x   0.4x   0.6x   0.8x   0.2x   0.4x   0.6x   0.8x   

UNIT 30N   0.885132 0.737244 0.640958 0.410935 0.828359 0.708773 0.628221 0.511239 

UNIT 40N   0.877961 0.743037 0.648139 0.410382 0.825049 0.709996 0.643107 0.506194 

UNIT 50N   0.882139 0.744086 0.649718 0.409421 0. 823877 0.711665 0.641057 0.492702 

UNIT 60N   0.882340 0.744181 0.649453 0.408935 0.823546 0.711922 0.642301 0.492025 

UNIT 70N   0.882339 0.744206 0.649415 0.409018 0.823595 0.711918 0.642521 0.492229 

GITT
1
 0.887136 0.745236 0.646225 0.407719 0.824474 0.715097 0.644814 0.494964 

1Temperature expansion truncation order: 130; Coefficient expansion truncation order: 80. (Naveira-Cotta et al., 2009) 

 

4. CONCLUSIONS 
 

In the present work we have challenged the recently constructed UNIT code in solving heat diffusion problems in 

heterogeneous media, characterized by spatially variable coefficients. Three different heat diffusion problems were 

herein studied where the variation of the thermophysical properties were illustrated by (i) large scale variations such as 

in Functionally Graded Materials (FGM), (ii) abrupt variations such as in layered media and (iii) random variations due 

to local concentration fluctuations in dispersed phase systems such as composites. The results obtained with the UNIT 

code show excellent agreement with a dedicated computation also based on integral transforms, even for severe 
variations of the thermophysical properties, illustrating its robustness and flexibility as a simulation tool in this class of 

problems. 

 

5. ACKNOWLEDGEMENTS 

 

The authors would like to acknowledge the financial support provided by CNPq, Brazil.  

 



Proceedings of ENCIT 2010                                                                         13
rd

 Brazilian Congress of Thermal Sciences and Engineering 

Copyright © 2010 by ABCM December 05-10, 2010, Uberlandia, MG, Brazil 

 

 

6. REFERENCES 

 

Cotta, R.M., 1990, “Hybrid Numerical-Analytical Approach to Nonlinear Diffusion Problems”, Num. Heat Transfer, 

Part B, vol. 127, pp.217-226. 

Cotta, R.M., 1993, “Integral Transforms in Computational Heat and Fluid Flow”, CRC Press,  

Cotta, R.M., 1994, “Benchmark Results in Computational Heat and Fluid Flow: The Integral Transform Method”, Int J. 

Heat & Mass Transfer (Invited Paper), vol.37, pp.381-394. 

Cotta, R.M. and Mikhailov, M.D., 1997, “Heat Conduction: Lumped Analysis, Integral Transforms, Symbolic 

Computation”, Wiley-Interscience, Chichester, UK. 

Cotta, R.M., 1998, “The Integral Transform Method in Thermal and Fluids Sciences and Engineering”, Begell House, 

New York. 
Cotta, R.M., and Mikhailov, M.D., 2005. “Semi-Analytical Evaluation of Integrals for the Generalized Integral 

Transform Technique”, Proc. of the 4th Workshop on Integral Transforms and Benchmark Problems – IV WIT, 

CNEN, Rio de Janeiro, RJ, August 2005. 

Cotta, R.M. and Mikhailov, M.D., 2006, “Hybrid Methods and Symbolic Computations”, in: Handbook of Numerical 

Heat Transfer, 2nd edition, Chapter 16, Eds. W.J. Minkowycz, E.M. Sparrow, and J.Y. Murthy, John Wiley, New 

York. 

Cotta, R.M., Quaresma, J.N.N., Sphaier, L.A., and Naveira-Cotta, C.P., 2010. "Unified Integral Transform Approach in 

the Hybrid Solution of Multidimensional Nonlinear Convection-Diffusion Problems", 14th Int. Heat Transfer Conf., 

Washington, DC, USA, August. 

Divo, E. and Kassab, A., 1998, “Generalized Boundary Integral Equation for Transient Heat Conduction in 

Heterogeneous Media”, J. Thermophysics & Heat Transfer, V.12, no.3. 
Fudym, O., Ladevie, B. and Batsale, J. C., 2002, “A Seminumerical Approach for Heat Diffusion in Heterogeneous 

Media: One Extension of the Analytical Quadrupole Method”, Num. Heat Transfer, Part B: Fundamentals, V.42, 

no.4, pp.325-348. 

Fudym, O., Orlande, H.R.B., Bamford, M., and Batsale, J.C., 2008. “Bayesian Approach for Thermal Diffusivity 

Mapping from Infrared Images Processing with Spatially Random Heat Pulse Heating”, Journal of Physics. 

Conference Series (Online), v. 135, p. 12-42. 

Kumlutas, D. and Tavman, I.H., 2006. “A Numerical and Experimental Study on Thermal Conductivity of Particle 

Filled Polymer Composites”, J. Thermoplastic Composite Materials, vol.19, pp.441-455, 2006. 

Lin, S. H., 1992, “Transient Conduction in Heterogeneous Media”. Int. Comm. Heat & Mass Transfer, V.10, no.2, 

pp.165-174. 

Mikhailov, M.D. and Ozisik, M.N., 1984. “Unified Analysis and Solutions of Heat and Mass Diffusion”, John Wiley, 
New York. 

Naveira Cotta, C. P., 2009, “Problemas Inversos de Condução de Calor em Meios Heterogêneos: Análise Teórico-

Experimental via Transformação Integral, Inferência Bayesiana e Termografia por Infravermelho”, D.Sc. Thesis, 

COPPE/UFRJ, Rio de Janeiro. 

Naveira Cotta, C. P., Cotta, R. M., Orlande, H. R. B. and Fudym, O., 2009a, “Eigenfunction expansions for transient 

diffusion in heterogeneous media”, Int. J. Heat & Mass Transfer, vol. 52, Issues 21-22, pp. 5029-5039. 

Naveira-Cotta, C.P., Orlande, H.R.B., and Cotta, R.M., 2010a. “Integral Transforms and Bayesian Inference in the 

Identification of Variable Thermal Conductivity in Two-Phase Dispersed Systems”, Num. Heat Transfer – part B 

Fundamentals, Vol.57, no.3, pp.1-30. 

Naveira-Cotta, C.P., Orlande, H.R.B., Cotta, R.M., and Nunes, J.S., 2010b. "Integral Transforms, Bayesian Inference, 

and Infrared Thermography in the Simultaneous Identification of Variable Thermal Conductivity and Diffusivity in 

Heterogeneous Media", 14th Int. Heat Transfer Conf., Washington, DC, USA, August. 
Sphaier, L. A., Naveira Cotta, C. P., Cotta, R. M., Quaresma, J. N. N., 2009, “The UNIT (Unified Integral Transforms) 

Symbolic- Numerical Computational Platform for Benchmarks in Convection-Diffusion Problems”, Proceedings of 

the 30th CILAMCE Congresso Ibero Latino Americano de Métodos Computacionais em Engenharia (CILAMCE), 

2009, Buzios, RJ, Brazil.  

Sutradhar, A. and Paulino, G. H., 2004, “The Simple Boundary Element Method for Transient Heat Conduction in 

Functionally Graded Materials”, Comput. Methods Appl. Mech. Engrg., V.193, pp.4511-4539. 

Wolfram, S., 2005, “The Mathematica Book”, Cambridge/Wolfram Media. 

 

7. RESPONSIBILITY NOTICE 

 

The authors are the only responsible for the printed material included in this paper. 


