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Abstract. The economic dispatch problem (EDP) is one of the fundamental issues in power systems to obtain benefits 
with the stability, reliability and security. Its objective is to allocate the power demand among committed generators in 
the most economical manner, while all physical and operational constraints are satisfied. The cost of power 
generation, particularly in fossil fuel plants, is very high and economic dispatch helps in saving a significant amount of 
revenue. Recently, as an alternative to the conventional mathematical approaches, modern heuristic optimization 
techniques such as simulated annealing, evolutionary algorithms, neural networks, ant colony, and tabu search have 
been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. 
On other hand, continuous GRASP (C-GRASP) is a stochastic local search meta-heuristic for finding cost-efficient 
solutions to continuous global optimization problems subject to box constraints. Like a greedy randomized adaptive 
search procedure (GRASP), a C-GRASP is a multi-start procedure where a starting solution for local improvement is 
constructed in a greedy randomized fashion. The C-GRASP algorithm is validated for a test system consisting of fifteen 
units, test system that takes into account spinning reserve and prohibited operating zones constrains. 
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1. INTRODUCTION 
 

The economic dispatch optimization problem is one of the fundamental issues in power systems to obtain benefits 
with the stability, reliability and security. Its objective is to allocate the power demand among committed generators in 
the most economical manner, while all physical and operational constraints are satisfied. The cost of power generation, 
particularly in fossil fuel plants, is very high and economic dispatch helps in saving a significant amount of revenue 
(Chatuverdi et al., 2008). 

Many optimization methods have been researched. In the conventional methods such as the lambda-iteration 
method, dynamic programming, interior point method and gradient-based methods, an essential assumption is that the 
incremental cost curves of the units are monotonically increasing piecewise linear functions, but the practical systems 
are nonlinear. However, conventional methods like lambda-iteration, quadratically constrained programming, gradient 
methods, among others, rely heavily on the convexity assumption of generator cost curves and usually approximate 
these curves using quadratic, piecewise quadratic or higher order polynomial cost functions (Wood and Wollenberg, 
1984). When fuel cost function is approximated by nonsmooth or non-convex function, numerical methods are no 
longer applicable. For example, practical economic dispatch problems with valve-point effects are represented as 
nonsmooth optimization problems. 

Recently, a number of meta-heuristics, for example simulated annealing (Basu, 2005), genetic algorithm (Walters 
and Sheblé, 1993), evolutionary programming (Sinha et al., 2003), differential evolution (Noman and Iba, 2008), 
cultural differential evolution (Coelho et al., 2008), tabu search (Lin et al., 2002), improved quantum-inspired 
evolutionary algorithm (Neto et al., 2010), and particle swarm optimization (Panigrahi et al., 2008) have been applied 
to solve the economic dispatch optimization problem. 

In the optimization context based on meta-heuristics, a Continuous-GRASP (C-GRASP) algorithm was initially 
proposed in Hirsch et al. (2006), as a novel global optimization method. C-GRASP extends the Greedy Randomized 
Adaptive Search Procedure (GRASP) of Feo and Resende (1995) from the discrete to the continuous global 
optimization field. C-GRASP is a stochastic local search meta-heuristic that doesn’t make use of derivative information 
and is easily implemented, therefore if can be applied to find cost-efficient solutions of a wide range of continuous 
global optimization problems subject to box constraints. Like GRASP, C-GRASP is a multi-start procedure where a 
starting solution for local improvement is constructed in a greedy randomized fashion. 

In this paper, an economic dispatch problem is employed to demonstrate the performance of the C-GRASP and 
validate the approach in this field. The benchmark problem used consisted of 15 thermal generators with prohibited 
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operating zones, and it is described in Lee and Breipohl (1993). Simulation results obtained were analyzed and 
compared with other optimization results reported in literature. 

The remainder of this paper is organized as follows: section 2 describes the formulation of the economic dispatch 
problem, while section 3 explains the fundamentals of C-GRASP. Subsequently, section 4 provides the simulation 
results for the 15-unit test system. Lastly, conclusion is given in the section 5. 
 
2. FUNDAMENTALS OF ECONOMIC DISPATCH OPTIMIZATION P ROBLEM 
 

The primary concern of an economic dispatch problem is to minimize the total fuel cost at thermal power plants 
subjected to the operating constraints of a power system. Therefore, it can be formulated mathematically with an 
objective function and two constraints. The equality and inequality constraints are represented by Eqs. (1) and (2) given 
by: 
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In the power balance criterion, an equality constraint must be satisfied, as shown in Eq. (1). The generated power 

should be the same as the total load demand plus total line losses. The generating power of each generator should lie 
between maximum and minimum limits represented by Eq. (2), where Pi is the power of generator i (in MW); n is the 
number of generators in the system; PD is the system’s total demand (in MW); PL represents the total line losses (in 
MW) and Pi

min and Pi
max are, respectively, the output of the minimum and maximum operation of the generating unit i 

(in MW). The objective of minimization of the total fuel cost function is formulated as follows: 
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where Fi is the total fuel cost for the generator unit i (in $/h), which is defined by equation: 
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where ai , bi and ci are cost coefficients of generator i. In the case study presented here, we disregarded the transmission 
losses, PL (mentioned in Eq. (1)), i.e., in this work PL = 0. In this study, the spinning reserve and prohibited operating 
zone-constraints are considered (Lee and Breipohl, 1993; Papageorgiou and Fraga, 2007). The constraints can be 
represented by equations given by: 
 

(i) spinning reserve constraints (Papageorgiou and Fraga, 2007): 
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where Si is the spinning reserve contribution of unit i, SR the system spinning reserve requirement, Si

max the maximum 
spinning reserve contribution of unit i, and ω is the set of on-line units with prohibited operating zones. 
 

(ii) prohibited operating zones constraints: 
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where Pl
i,k and Pu

i,k are the lower and upper bounds of the k-th prohibited zone of unit i; k is the index of prohibited 
zones (zoi). 
 
3. C-GRASP 
 

Optimization problems arise in many situations when dealing with science and engineering. In many cases, 
convexity of the search space cannot be verified, thus it is assumed that there are multiple local optimum. Global 
minimization, or optimization, which can be discrete or continuous, consists of seeking a solution that presents the 
lowest value for the objective function analyzed, within all possible search space solutions. Such a solution is called 
global minimum, whereas local minimum is defined similarly, but considering a bounded search space region, called 
neighborhood. 

In this context, C-GRASP was proposed by Hirsch et al. (2006) considering a domain S in a n-dimensional search 
space, where an arbitrary solution is made of n variables x1,..., xn, with l ≤ x ≤ u, l and u being respectively the lower 
and upper bound vectors, and l, x, u ∈ ℜn. The minimization problem is to find the global minimum x* to the objective 
function f(x), f : ℜn → ℜ. 
 

 

Figure 1. Pseudo-code for C-GRASP. 
 
 

As earlier mentioned, C-GRASP is a multi-start stochastic search meta-heuristic, and uses a greedy randomized 
procedure to generate input solutions for a local improvement method. At Fig. 1, it can be seen that one iteration of the 
algorithm consists of a series of construction and local improvement cycles, and at each of these cycles the discrete grid 
of the search space is made denser. At the C-GRASP pseudo-code, MaxIters, MaxNumIterNoImprov, NumTimesToRun, 
MaxDirToTry e α are input parameters and represent, respectively: the maximum number of construction and local 
improvement cycles per main iteration; maximum number of calls to the local improvement procedure when the 
solution is not improving; maximum number of multi-start iterations (main iterations); maximum number of directions 
to be analyzed in the construction phase; and requirement parameter to form the restricted candidate list in the 
construction phase. f* represents f(x*), where x* is the best solution found so far, h is the discretization value for the 
search space, UnifRand(l, u) is a procedure that defines a random spot in the problem domain, and 
ConstructGreedyRandomized(x, f(.), n, h, l, u, α) and LocalImprovement(x, f(.), n, h, l, u, MaxDirToTry) are the calls to 
the construction and local improvement phases, which have their respective pseudo-codes illustrated in Figs. 2 and 3. 

The goal of the construction phase is to produce a good-quality solution from which to start a local search. In Fig. 2, 
S represents the set of unfixed coordinates of x, which initially contains all coordinates and at the end of the 
construction phase contains none. LineSearch(x, h, i, n, f(.), l, u) executes a linear discrete search at the i-th coordinate 
of x, seeking the value zi that minimizes the objective function, with respect to the discretization parameter h. gi is the 
value for the objective function for the solution with zi. min and max keep the maximum and minimum values of gi 
among all unfixed coordinates of x. Between the lines 12 and 17, a restricted candidate list RCL is formed, which 
contains the unfixed coordinates that satisfy the condition on line 14, where α ∈ [0,1]. RandomlySelectElement(RCL) is 
a method that randomly selects an element of RCL, which will be the coordinate to be fixed, on line 19. Such a 

procedure C-GRASP(n, l, u, f(.), MaxIters, MaxNumIterNoImprov, NumTimesToRun, MaxDirToTry, α) 
1 f*  ← ∞; 
2 for  j = 1,..., NumTimesToRun do 
3  x ← UnifRand(l, u); h ← 1; NumIterNoImprov ← 0; 
4  for  Iter = 1,..., MaxIters do 
5   x ← ConstructGreedyRandomized(x, f(.), n, h, l, u, α); 
6   x ← LocalImprovement(x, f(.), n, h, l, u, MaxDirToTry); 
7   if  f(x) < f*  then 
8    x* ← x; f*  ← f(x); NumIterNoImprov ← 0; 
9   else 
10    NumIterNoImprov ← NumIterNoImprov + 1; 
11   end if 
12   if  NumIterNoImprov ≥ MaxNumIterNoImprov then 
13    h ← h/2; NumIterNoImprov ← 0;        /* make the grid more dense */ 
14   end if 
15  end for 
16 end for 
17 return (x*); 
end C-GRASP; 
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procedure ensures the randomness in the construction phase. As soon as all the coordinates are fixed, the solution x is 
then returned from this phase. 

 
 

 

Figure 2. Pseudo-code for the C-GRASP construction phase. 
 
 

 

Figure 3. Pseudo-code for the C-GRASP local improvement phase. 
 
 

In the local improvement phase pseudo-code, the variables Improved, D, r and d represent, respectively: a flag to the 
occurrence of improvement on the evaluated direction; the set of directions already evaluated; a new random direction; 

procedure ConstructGreedyRandomized(x, f(.), n, h, l, u, α) 
1 S ← {1, 2,..., n}; 
2 while S ≠ 0 do 
3  min ← +∞; max ← –∞; 
4  for  i = 1,..., n do 
5   if  i ∈ S then 
6    zi ← LineSearch(x, h, i, n, f(.), l, u); 
7    gi ← f(zi); 
8    if  min > gi then min ← gi; 
9    if  max < gi then max ← gi; 
10   end if 
11  end for 
12  RCL ← 0; 
13  for  i = 1,..., n do 
14   if  i ∈ S and gi ≤≤≤≤ (1 – α).min + α.max then 
15    RCL ← RCL ∪ { i}; 
16   end if 
17  end for 
18  j ← RandomlySelectElement(RCL); 
19  xj ← zj; S ← S \ { j}; 
20 end while 
21 return (x); 
end ConstructGreedyRandomized; 

procedure LocalImprovement(x, f(.), n, h, l, u, MaxDirToTry) 
1 Improved ← true; D ← 0; 
2 x* ← x; f*  ← f(x); 
3 NumDirToTry ← min(3n – 1, MaxDirToTry); 
4 while Improved do 
5  Improved ← false; 
6  while |D| ≤≤≤≤ NumDirToTry and not Improved do 
7   r ← UnifRand(1, 3n – 1) ∉ D; 
8   D ← D ∪ { r}; 
9   d ← Ternary’(r); x ← x* + h.d; 
10   if  l ≤≤≤≤ x ≤≤≤≤ u then 
11    if  f(x) < f*  then 
12     x* ← x; f*  ← f(x); 
13     D ← 0; 
14     Improved ← true; 
15    end if 
16   end if 
17  end while 
18 end while 
19 return (x*); 
end LocalImprovement; 
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and the directional vector that corresponds to the new direction. There are 3n – 1 possible directions, and min(3n – 1, 
MaxDirToTry) defines the exact number of directions to be evaluated, that is the least value between the total possible 
directions and the parameter MaxDirToTry. UnifRand(1, 3n – 1) ∉ D defines a random whole number r between 1 and 
3n – 1, with uniform distribution and non-belonging to D. Ternary’(r) converts r from decimal base to ternary base, then 
exchanges each ‘2’ digit for a ‘–1’ digit, forming a n-dimensional vector of ‘1’s, ‘0’s and ‘–1’s, which corresponds to 
the directional vector d. 

The local improvement phase approximates the role of the objective function gradient. From a given initial solution, 
this phase generates a series of directions, and determines in which of the directions, if any, the objective function value 
improves. This procedure runs until a solution is found which is better evaluated then the other corresponding solutions 
on all analyzed directions. 

For more details on C-GRASP the reader is referred to Hirsch et al. (2006). 
 

 
4. SIMULATION RESULTS 
 

The case study of 15 thermal units must satisfy a load demand of PD = 2650 MW and a system spinning reserve 
requirement of 200 MW. The system data are presented in Tab. 1 (Lee and Breipohl, 1993; Papageorgiou and Fraga, 
2007). The prohibited zones are given in Tab. 2. Among the thermal units, four of them (units 2, 5, 6 and 12) have 
prohibited operating zones. The remaining units have simple operational zone. 

The optimization method was implemented in Matlab (MathWorks). All the programs were run on a 3.2 GHz 
Pentium IV processor with 2 GB of random access memory. In the case study, 50 independent runs were made for the 
optimization method involving 50 different initial trial solutions. 
 
 

Table 1. Data for the benchmark of 15 thermal units. 
Thermal unit ai($/h) bi($/MWh) ci($/MWh2) Pi

min(MW) Pi
max(MW) spinning reserve Si

max(MW) 

1 671.03 10.07 0.000299 150 455 50 

2 574.54 10.22 0.000183 150 455 0 

3 374.59 8.8 0.001126 20 130 30 

4 374.59 8.8 0.001126 20 130 30 

5 461.37 10.4 0.000205 150 470 0 

6 630.14 10.1 0.000301 135 460 0 

7 548.2 9.87 0.000364 135 465 50 

8 227.09 11.5 0.000338 60 300 50 

9 173.72 11.21 0.000807 25 162 30 

10 175.95 10.72 0.001203 20 160 30 

11 186.86 11.21 0.003586 20 80 20 

12 230.27 9.9 0.005513 20 80 0 

13 225.28 13.12 0.000371 25 85 20 

14 309.03 12.12 0.001929 15 55 40 

15 323.79 12.41 0.004447 15 55 40 
 
 

Table 2. Prohibited zones for the benchmark of 15 thermal units. 

Thermal 
unit 

Zone 1 
(MW) 

Zone 2 
(MW) 

Zone 3 
(MW) 

2 [185–225] [305–335] [420–450] 

5 [180–200] [260–335] [390–420] 

6 [230–255] [365–395] [430–455] 

12 [30–55] [65–75] – 
 
 



Proceedings of ENCIT 2010                                                                         13th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2010 by ABCM December 05-10, 2010, Uberlandia, MG, Brazil 

 
 
 

Table 3. C-GRASP input parameters values used. 

Parameter MaxIters MaxNumIterNoImprov NumTimesToRun MaxDirToTry α 

Value 200 20 20 30 0.4 
 
 

The values for C-GRASP input parameters used in this work are given by Tab. 3. A key factor in the application of 
optimization methods is how the algorithm handles the constraints relating to the problem. In this work, a penalty-based 
method inspired in Noman and Iba (2008) was used. In this context, to avoid the violation of equality constraint given 
by Eq. (1) of the power balance criterion, a repair process is applied to each solution in order to guarantee that a 
generated solution by C-GRASP will be feasible. 
 
 

Table 4. Convergence results (50 runs) of a case study of 15 thermal units 

Optimization 
Method 

Minimum 
Cost ($/h) 

Maximum 
Cost ($/h) 

Mean 
Cost ($/h) 

Standard 
Deviation ($/h) 

QEA (Neto et al., 2010) 32548.48 32806.89 32679.54 6.4⋅10-3 
C-GRASP 32544.97 32699.56 32575.35 5.4⋅10-3 

 
 

 
Figure 4. Convergence of mean of f*  value for C-GRASP and QEA approaches in 50 runs. 

 
 

Table 5. Best result (50 runs) obtained for the case study proposed in Lee and Breipohl (1993) using C-GRASP. 

Power 
Generation 

(MW) 
Power 

Generation 
(MW) 

Power 
Generation 

(MW) 
Power 

Generation 
(MW) 

P1 450.0 P5 335.0 P9 25.0 P13 25.0 
P2 450.0 P6 455.0 P10 20.0 P14 15.0 
P3 130.0 P7 465.0 P11 20.0 P15 15.0 

P4 130.0 P8 60.0 P12 55.0 ∑
=

15

1i
iP  2650 

 
 

Numerical results obtained for this case study are given in Tab. 4 and Fig. 4, which showed that the C-GRASP has 
both a better economic cost and lower mean cost than the classical quantum-inspired evolutionary algorithm (QEA) 
presented in Neto et al. (2010). The best result obtained for solution vector Pi, i = 1,...,15 by C-GRASP approach with 
minimum cost of 32544.97 $/h is given in Tab. 5. Table 6 compares the results obtained in this paper with those of other 
studies reported in the literature. Note that in the studied case, the best result reported here using C-GRASP is 
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comparatively lower than results presented in Lee and Breipohl (1993). However, the C-GRASP presented the same 
best result of mixed integer quadratic programming proposed in Papageorgiou and Fraga (2007). 
 
 

Table 6. Comparison of best results for the economic dispatch optimization problem with 15 thermal units as 
presented by Lee and Breipohl (1993). 

Optimization Technique Objective function value 
Decision space decomposition method (Lee and Breipohl, 1993) 32549.80 
QEA (Neto et al., 2010) 32548.4839 
Mixed integer quadratic programming (Papageorgiou and Fraga, 2007) 32544.97 
C-GRASP (this paper) 32544.9700 

 
 

Orero and Irving (1996) presented a slightly modified version of the problem with 15 thermal units. The modified 
version of this problem is essentially the same as that presented in Lee and Breipohl (1993) except for changes to three 
parameters. Specifically, the changes are two of the cost coefficients, b8 = 11.21 instead of 11.50 and b11 = 10.21 
instead of 11.21, and one of the bounds on the power generated, the lower bound on the 5th generator being 105 MW 
instead of 150 MW (Papageorgiou and Fraga, 2007). 

Table 7 presents best result of C-GRASP (in 50 runs) and results in the literature for the 15 thermal units problem as 
presented in Orero and Irving (1996). Results using C-GRASP found a solution better than the deterministic crowding 
genetic algorithm (Orero and Irving, 1996) and the particle swarm optimization (Jeyakumar et al., 2006). The best 
solution obtained using C-GRASP in 50 runs is presented in Tab. 8. 
 
 

Table 7. Comparison of best results for the economic dispatch problem with 15 thermal units as presented by Orero 
and Irving (1996). 

Optimization Technique Objective function value 
Deterministic crowding genetic algorithm (Orero and Irving, 1996) 32514 
QEA (Neto et al. 2010) 32507.4852 
Particle swarm optimization (Jeyakumar et al., 2006) 32506.3 
Mixed integer quadratic programming (Papageorgiou and Fraga, 2007) 32506.14 
C-GRASP (this paper) 32506.1394 

 
 

Table 8. Best result (50 runs) obtained for the case study as presented by Orero and Irving (1996) using C-GRASP. 

Power 
Generation 

(MW) 
Power 

Generation 
(MW) 

Power 
Generation 

(MW) 
Power 

Generation 
(MW) 

P1 455.0 P5 260.0 P9 25.0 P13 25.0 
P2 455.0 P6 460.0 P10 20.0 P14 15.0 
P3 130.0 P7 465.0 P11 60.0 P15 15.0 

P4 130.0 P8 60.0 P12 75.0 ∑
=

15

1i
iP  2650 

 
 
5. CONCLUSION 
 

Recently, Hirsch et al. (2006) proposed C-GRASP, for minimization problems, which is a multi-start randomized 
search algorithm, where a greedy randomized procedure generates input solutions for a local improvement method. 
Each iteration of this algorithm consists of a series of construction and local improvement cycles, and the discrete grid 
of the search space is made more dense as C-GRASP evolves. 

In this paper, the performance of C-GRASP was tested by solving a benchmark economic dispatch problem of 15 
generating units, which takes into account spinning reserve and prohibited operating zones constrains. It was found that 
the C-GRASP approach handles well problems of this kind. Furthermore, C-GRASP outperformed other methods 
reported in literature in terms of best solution for the economic dispatch problem analyzed. 

In general terms, simulation results reveal that the C-GRASP algorithm works satisfactorily. In the future studies, 
other issues can also be addressed in economic dispatch problems, including transmission losses, valve-point loading 
effect, and multiple fuels. 
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