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Abstract. This work presents an application of the virtual boundary method for simulations with ultra-low Reynolds
number over an profile NACA0012 airfoil type. The incompressible flow is solved through numerical solution of the
Navier-Stokes equations (direct simulation - DNS), using amodel of immersed boundaries to model the airfoil. This
methodology allows the modeling of complex geometries immersed in the flow through two independent grids: one Eu-
lerian to represent the fluid and a Lagrangian to model the fluid-structure interface. The analysis of the boundary layer
is widely studied phenomena in turbulence, by definition, are observed in three-dimensional flows. This work treat of an
approximation of laminar boundary layer in the case of two-dimensional flow. Results for modeling the laminar boundary
layer are presented for the airfoil profile ,subject to attack angles 2, 8 and 30 degrees, and the phenomena of thickening
of the boundary layer and the bubble separation are discussed..
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1. INTRODUCTION

The effects of the boundary layer and the phenomenon of turbulence are purely three-dimensional characteristics.
As Ferziger (2000), the Direct Numerical Simulation (Direct Numerical Simulation - DNS) is the most accurate method
to simulate turbulent flows. In a DNS, simply solve the Navier-Stokes equations and to treat exactly all the conditions
imposed on the flow. To resolve all scales of turbulence is necessary a number of degrees of freedom, related to the
number of points of the computational mesh, excessively high for Reynolds numbers of practical interest in aeronautical.
Thus its application is restricted to flows until lowRenumbers. However, the Micro Aerial Vehicle (MAV) design treat
with ultra-low Reynolds number and DNS simulations become interesting. Still, the computational cost is high and, to
a first approximation of the behavior of the boundary layer, because this it uses 2-D simulation. Although the transition
and turbulent flow around a two-dimensional airfoil is inherently three- dimensional, the two-dimensional simulationstill
helps us gain a better understanding of the development of the flow separation, instability, and vortex shedding, Alam
et al. (2010).

However not the most appropriate model to address the analysis of boundary layer and present significant errors for
large attack angles, the approximate results serve to show the applicability of the method and provide parameters for the
study of the flow with ultra-low Reynolds the number over profile NACA0012 airfoil, keeping in view the scarcity of data
for this type of problem. The work of Mittal and Balachandar (1995) shows a comparison of results from simulations
of 2-D and 3-D flow over a cylinder with elliptical base. As fordrag, there is a variation of 1% to 39%, respectively
attacck angles of 0o and 45o, showing that, quantitatively, the drag coefficient in the 2-D simulation is greater than in 3-D
simulation. Characteristics of the non-separated boundary, there are virtually no differences between the simulated 2-D
and 3-D. The variation in drag coefficient occurs because of the Reynolds shear stress in 2-D simulation is significantly
larger than in 3-D simulation. This is given by the Reynolds shear stress decrease with increasing three-dimensionality in
the wake of circular cylinder (260<Re<1500).

This paper presents a computational study of steady state incompressible viscous fluid flow over a NACA 0012 air-
foil with accurate and efficient code to perform simulations of complex geometry flow ona regular grid . Schemati-
cally,SILVESTRINI and LAMBALLAIS (2002), the main difficulty is to obtain an accurate description of the turbulent
structure dynamics with a realistic shape of the body geometry. In engineering flow simulations, the description of the
external geometry is traditionally favored by the use of body-fitted curvilinear or unstructured grids. The major drawbacks
of such approach are the considerable increase of the computational cost and the significant degradation of the accuracy.

The strategy is to employ the methodology of immersed boundaries to model the airfoil, more specifically the method
to study ribbled surfaces in turbulent flows, called VirtualBoundary Method (VBM). In recent years, many authors have
implemented new cases and new variations of these techniques, Saiki and Biringen (1996), Silva et al. (2003), Marques
et al. (2006), etc. In immersed boundary method, the domain is composed of an Eulerian mesh, used to represent the
field of flow and a Lagrangian mesh, used to represent the immersed boundary. The interaction between the immersed
boundary and the fluid is obtained via a smoothed Dirac delta function. The principle of the Virtual Boudary Method is in
the application of a force field to the fluid so that it takes thesame shape of the boundary immersed and speed of the flow.
This is the classic model of the Virtual Boundary Method for non-slip boundary condition. The Virtual Boundary Method
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Saiki and Biringen (1996), designates a class of boundary methods where the calculations are performed on a Cartesian
mesh that does not fit the shape of the “virtual body” that serves as a barrier to the flow. The boundary conditions on the
surface of the body are not enforced directly. Instead, an extra term, called the forcing term is added to the governing
equations. The behavior of incompressible flows can be described by the Navier-Stokes equations, which undergo a
process of coupling of the fields of pressure and speed in order to solve them properly. The fluid-structure interaction
is modeled by Navier-Stokes equations and the Virtual Boundary Method via a Runge-Kutta for time integration and
VONOS scheme for the discretization of spatial variables. One of the goals is to verify the efficiency of the numerical
method by mapping the velocity profile in the vicinity of the airfoil of the airfoil for various attack angles. Through
a preliminary study of boundary layer, the computational results are compared with results from literature and other
simulator - Xfoil. The results for ultra-low Reynolds number analise the behavior of sepparation bubble and the transition
of laminar to turbulent flow.

2. FLOW CONFIGURATION AND PARAMETERS

The flight regime of micro-aircraft poses difficulties for the aerodynamic analysis and design, but littleexperimental
or computation work exists for aerodynamic surfaces operating at ultra low Reynolds numbers. The reduced scale and
low flight speeds of these vehicles result in Reynolds numbers on the order of 103. Aerodynamics at these Reynolds
numbers are considerably different from those of more conventional aircraft. The flow is laminar and viscously dominated.
Boundary layers are quite thick, often reaching a significant fraction of the chord length. Flow separation is an issue, even
at low angles of attack.

The analyses make use of three assumptions about the flow field. The flow is incompressible by the formulation of
the flow solver, the flow is fully laminar, and the flow field is steady. The assumption of incompressibility is well justified
for this application. The justification of the fully laminarflow assumption seems reasonable for the Reynolds number and
geometry of interest (profile NACA0012 airfoil, Fig. 1). In the absence of separation, the flow will be entirely laminar.
Even slight separation will likely result in laminar reattachment in a smooth airfoil.

Figure 1. Ilustration of profile NACA0012 airfoil (Alam et al, 2010)

We used a rectangular Cartesian mesh with non-regular grid 216× 250 with∆xmin = 0,01,∆ymin = 0,01,∆xmax = 0,35
and∆ymax= 0,35 over a domain 6×3 dimensionless units, Marques et al. (2008). The geometriccenter of the NACA0012
airfoil was positioned at the coordinate point 1,5 in directionx and 1,5 in directiony, Fig. 2, with Reynolds number 1.000.
The free-stream velocityu∞, the free-stream pressurep∞ and the chord length of the airfoilc, are selected as the reference
parameters for nondimensionalization. The upstream boundary is one chord lengths away from the leading edge of the
airfoil. The upper and lower boundaries are about one chord lengths from the airfoil surface. The outflow boundary is
located at four chord lengths downstream of the trailing edge. The no-slip condition is used on the surface of the airfoil.

The assumptions of the laminar boundary layer are: the thickness of the boundary layer is small enough rope to
the profile (c >> δ); the component of the longitudinal velocity is greater than the transverse component (u >> v);
the transversal pressure gradient is neglected ((δpδy) = 0); the forces of weight are neglected; and the gradient of the
longitudinal velocity in the transverse direction is much higher than the gradient speed transverse (δuδy) >> (δvδy).

3. NUMERICAL METHODOLOGY

In this study an inviscid incompressible flow was consideredin a two-dimensional rectangular domainΩ with an
immersed boundary in the form of a simple closed curveΓ. The configuration of this curve will be represented in the
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Figure 2. Ilustration of mesh and NACA0012 airfoil

parametric formX(s, t), 0 ≤ s ≤ Lb, X(0, t) = X(Lb, t), wheres is the surface point in the immersed boundary. Capital
letters are used to represent the vector variables in the Lagrangian mesh. The governing equations in conservative form
are given by:

ρ

(

∂u
∂t
+ u · ∇u

)

+ ∇p = µ∆u + f , (1)

∇ · u = 0 , (2)

f (x, t) =
∫ Lb

0
F(s, t)δ2(x − X(s, t))ds , (3)

0 ≈
∂X(s, t)
∂t

= u(X(s, t), t) =
∫

Ω

u(x, t)δ(x − X(s, t))dx , (4)

u(x, t)→u∞ com |x|→∞ (5)

In Eq.(1) to Eq.(5)x = (x, y) is the position vector,u(x, t) = (u(x, t), v(x, t)) is the velocity field of fluid andp(x, t) is the
pressure field. The force actuating in the fluid (with respectto dx = dxdy) is f (x, t) = ( f1(x, t), f2(x, t)). Equations (1)
and (2) are the two-dimensional incompressible Navier-Stokes equations. Equations (3) and (4) represent the interaction
between fluid and the immersed boundary. The Delta Dirac function in both equations is a functional composed by two
others delta functions,δ2(x) = δ(x)δ(y). In Eq.(3) the force is applied to the fluid by the immersed boundary.

3.1 Virtual Boundary Approach

The Virtual Boundary Method uses the finite differences in Eulerian-Lagrangian meshes for interaction between the
fluid and the structure. Two distinct discretized meshes arenecessary: a two-dimensional mesh to represent the fluid and
a point mesh to represent the immersed boundary. The fluid variables are defined in an Eulerian mesh and a set ofM
Lagrangian pointsX = (Xk,Yk) with k = 0,1, ...,M − 1 to discretize the immersed boundary, with initial grid spacing
between the points∆s= Lb

M , whereLb is the curveΓ length. The force exerted in the boundary is defined on these points.
It is important to observe that the points in the Eulerian mesh, which represent the fluid, are fixed while the points in the
Lagrangian mesh, which represents the Virtual Boundary, are movable. The Virtual Boundary Method was used in an
explicit scheme and the numerical solution is processed as follows:

1. The force field is calculated on the Lagrangian points withthe initial conditions. The forceFn(s) is imposed in the
Immersed Boundary and next the forceFn(s) is used in the force field of fluid to determinefn(x) (Eq.(3)), using the
following equation:

F(X(s), t) = α
∫ t

0
(U(X(s), t) − V(X(s), t))dt+ β(U(X(s), t) − V(X(s), t)), (6)

what guarantee that the fluid velocity is zero on the points, which define the no-slip boundary condition. The
negative constantsα andβ will be chosen large enough in magnitude to bring the fluid velocity close to the interface
velocity and are adjusted to obtain the expected physical behavior of the flow.

f n(x) =
∑

s

Fn(s)δ2h(x − Xn(s))∆s , (7)

where a discretized delta function is given by:
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δ2h(x) = δh(x)δh(y) , (8)

with
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(9)

This function was chosen because it presented better results in convergence order than others presented in the paper
by Griffith and Peskin (2005).

2. The Navier-Stokes equations, defined by Eq.(1) and Eq.(2)with the force termfn(x) to update the velocity field
un+1(x), is solved by the fourth order Runge-Kutta method:
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(10)

whereV is a generic vector.

The spatial variables are solved using the projection method described in Harlow and Welch (1965). The convective
derivatives are solved using the high order upwind method VONOS, described in Varonos and Bergeles (1998). The
Navier-Stokes equations for viscous and incompressible flow in a Cartesian square domainΩ, containing an immersed
boundary, can be modeled by equations (1), (2), (6) and (7). In this caseF is the external force imposed on the discrete
surface points defined byX(s), U is the fluid velocity at these surface points, and the velocity of the body itself is controlled
by specifyingV = (Vxb,Vyb) at the boundary points (see Saiki and Biringen (1996)). In the present work the body does
not move, i.e.V = 0. The pressure and velocity coupling was solved using the projection method (see Harlow and Welch
(1965)). The algorithm resolution is given by:

1. Calculate the force fieldF(X(s), t), over the Lagrangian pointsX(s), using Eq.(6) and the initial conditions with
constantβ;

2. Distribute the forceF(X(s), t) to the Eulerian grid using Eq.(7);

3. Calculate the fluid velocity field under the influence of theforce fieldf (x, t) using the projection method;

4. Verify if ‖E‖∞ ≤ 10−6 whereEs = ‖U(s)‖2. If true go to step 5 else go to step 1.

5. Verify the continuity using Eq.(2).

6. Advance one time interval and go back to step 1.

4. RESULTS

The studies of external flows around bodies are of great importance, especially in cases of separation predicting. It
occurs when the main stream separates from the surface of thebody, and causes a large drag. A laminar boundary layer
over a solid surface will separate as a result of curvature changes or adverse pressure gradient. With separated flows,
the separation zone is complex and the characteristics of a separation structure may depend on whether the boundary
layer is laminar or turbulent upstream of separation. To understand the basic characteristics of boundary layer separation,
many investigators (as Lin and Pauley (1996)) have studied two-dimensional, steady, laminar separation. The separation
phenomenon may be ilustraded by Fig. (3)b.

The two-dimensional simulation starts from a uniform flow field, which is not the solution of the governing equations
and may bring the initial perturbation resulting from the residual of the numerical solution. If this perturbation doesnot
dissipate in the simulation, it may increase instability ofthe results of the two-dimensional simulation even though all the
specified boundary conditions are steady and no external disturbances are enforced. Experimental values of NACA0012
airfoil behavior subject to incompressible flow for ultra-low Reynolds numbers are treated by HUANG et al. (2001) and
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Purtell et al. (1981). In these works, there is variation in the attack angle up to 90o and an analysis of the separation
bubble phenomenon. Considering the behavior of the velocity field, the figures (4) to (6) presents the contours of the
mean streamwise velocityu for differentα (Re= 1000). The region enclosed byu = 0 is characterized by negativeu or
a reversed flow. There seems to be an asymmetry in the reversalflow; the recirculating flow region near the leading edge
appears larger than that near the trailing edge. The highestvalue obtained by HUANG et al. (2001), for Reynolds number
Re= 1200, for u

u∞
wasumin

u∞
= 1.489 to−0.34. Purtell et al. (1981) obtained, for Reynolds numberRe= 1340,umin

u∞
= 0.382.

Computationally, for MFV and Reynolds numberRe= 1000, we obtainedumin

u∞
= 0.5051. The maximum velocitiesumax

in the leading and trailing-edge shear layers and the minimum velocity umin in the recirculation are connected to drag;
an increase in the magnitude ofumax and/or umin corresponds to an increased drag, as table (1). Table (1) presents the
dependence ofCL on a atack angleα and in Fig. (3)a the results are disposed with values presented for Alam et al. (2010)
for Re= 5.3× 103.

Table 1. Computational results todrag coefficientandlift coefficient.

atack angleα 0 2 4 8 10 16 20 30
CL 0 0.1221 0.2639 0.4254 0.4650 0.6644 1.0284 1.4444
CD 0.1232 0.1239 0.1286 0.1590 0.2801 0.3006 0.5414 1.0537
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Figure 3. a) Dependence ofCL onα; b) Scheme of laminar separation bubble (Horton 1968)

The evolution of the flow structure with increasing at ultra low Rehas not been documented in the literature. HUANG
et al. (2001) observed five different flows, depending onα (0o < α < 90o) for Re= 1.2 × 103to2.3 × 103. The flow at
α < 3o corresponded to an attached flow, where the flow was completely attached on the entire length of the airfoil without
the formation of vortices, as figure Fig. (4)a. The trailing edge vortex was observed at 3o < α < 8o, where the flow on
the suction surface separated from the trailing edge, forming vortices, as figures Fig. (4)b and Fig. (5)a. At 8o < α < 17o,
the boundary layer on the suction surface separated betweenthe leading and trailing edges, forming vortices rolling on
the surface, and eventually an alternate vortex street was established in the wake, as Fig. (5)b. At 17o < α < 60o, the
boundary layer separating from the leading edge formed vortices, which grew in size as advected downstream, as Fig.
(6)a. The contour of the instantaneous spanwise vorticity from the two-dimensional simulation, forα = 34o is shown in
Fig. (6)b, where the presence of the vortex shedding is visible on the upper surface of the airfoil. The laminar boundary
layer starts near the leading edge of the airfoil and forms a separated shear layer, which becomes unstable due of large
scale vortical structures. The vortices are generated through streamwise growth of the disturbance in the separated shear
layer and the vortices are carried downstream by the mean flowalong the airfoil surface. The present simulation do not
show evidence of small scale vortical structures or flow transition. It is also interesting to note that the flow in the near
wake contains shear layer as a result of the two flows with opposite vorticity sweeping off the upper and lower surface of
the airfoil and the streamwise growth due the separated layer disturbance results and the shedding of vortices.

To check this phenomenon were analised 3 cases: attack angles α = 2o, α = 8o e α = 34o, ie, the case where there
is not separation - only laminar boundary layer; the case with the inicial instability formation, but no separation occurs,
and the case where the separation occurs. Figures 7, 8 e 9 showthe thickness boundary layer (δ∗), produced by VBM and
software Xfoil, andu velocity component. The Xfoil model for calculating the boundary layer uses the integral method
with Runge-Kutta scheme of 2a order. Usually this procedure works well for 5· 105 < Re< 2 · 107, but was adapted by
Drela (1988) for low Reynolds numbers with the following empirical criterion of transition:

Reδ2 > Reδ2,crit , (11)
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a) b)

Figure 4.u velocity field: a)α = 2o; b) α = 4o.

a) b)

Figure 5.u velocity field: a)α = 8o; b) α = 16o.

a) b)

Figure 6.α = 34o: a)u velocity field forα = 34o; b) vorticity .

δñ
δReδ2

= 0.028· (H12 − 1)−
0.0345

e−( 3.87
H12−1−2.52)2

, (12)

log10(Reδ2,crit ) = 0.7 · tanh(
14

H12 − 1
− 9.24)+ 2.492̇(

1
H12 − 1

)0.43+ 0.62 (13)

whereReδ is the Reynolds number for the thickness of momentum, ñ is theexponent of maxin Tollmien-Schlichting
wave amplitude,H12 is the form factorδ1

δ2
with δ1 displacement thickness of boundary layer,δ2 thickness of momentum

boundary layer. For the laminar case, the separation is assumed whenH23 < 1.51509, whereH23 form factor δ3
δ2

with δ3
thickness loss energy.
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Figure 7.alpha= 2 a) thickness boundary layer - MFVx Xfoil e b) u component profile
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Figure 8.alpha= 8 a) thickness of boundary layer - MFVx Xfoil e b) u component profile
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Figure 9.alpha= 34 a) thickness of boundary layer - MFV e Xfoil e b)u component profile

As expected, for the attack angleα = 2 there is no separation, only a small instability in the trailing edge due to the
discontinuity of the airfoil geometry. For the attack angleα = 8 ocurr the initial formation of separation, but there the
changing of the boundary layer - just thickening the thickness. In the case of the attack angleα = 34 ocurr the formation
of the separation and votices downstream of the trailing edge of the airfoil. In neither case was possible to observe the
formation of the bubble separation, possibly because this phenomenon requires further mesh refinement.

5. CONCLUSIONS

Two-dimensional direct numerical simulation (DNS) has been carried out to study flow separation around a NACA
0012 airfoil with an attack angle of 2o, 4, 8, 16o, 34o and a Reynolds number of 103. The incompressible Navier-Stokes
equations whith force field are solved by Virtual Boundary Method together with the central difference scheme, VONOS
scheme and Neumann boundary conditions. The first sign of theinstability appears in the near wake region and the
disturbances in the near wake may propagate upstream and introduce a disturbance to the separated shear layer over
the upper surface of the airfoil. The comparison between thenumerical results shows that numerically computed ones
agree with others authors to obtain the behavior of vorticeswake and boundary layer. But, two-dimensional simulation
do not appear to represent adequately the characteristics of the short separation bubbles. The Virtual Boudary Method
presents itself as an efficient simulation for analysis of laminar boundary layer flowover NACA0012 airfoil with ultra low
Reynolds number.
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