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Abstract. Interfacial tension plays an important role in a large variety of problems, such as ink-jet printing, 
emulsification and break-up of liquid jets. Flows involving interfacial tension effects can be simulated numerically by 
the inclusion of these effects in the equations for conservation of momentum through a model. When a volume method – 
like the Volume of Fluid (VOF) method – is employed to track the position of the interface, the treatment of the 
interfacial tension effects becomes a complex task, as they must be considered at such a narrow region as is the 
interface. In order to deal with this difficulty the Continuum Surface Force model (CSF) was developed. In this model 
the force due to interfacial tension is included in the Navier-Stokes equations as a body force, which acts in a limited 
region around the interface. One of the variables considered in the evaluation of this force is the curvature of the 
interface. The major aim of this paper is to present some models of assessment of this variable and to compare the 
results obtained by each one of them. In this work the following curvature-models were implemented: Height Function 
method (HF), Convolution technique, Height Function filtered by a convolution kernel (HF-fc), and an enhanced 
Height Function method (HF2). This last model is proposed by the authors as it was observed that the spurious 
currents generated by the HF method were associated to the local anisotropy of the curvature field and to errors in its 
estimation. In order to compare these models two test cases were simulated: the static drop in equilibrium and the 
rising bubble in a resting fluid. The results were compared to those published in the literature. In the static drop case 
when the L2 error norm of the velocity was analyzed, it was observed first-order convergence for the convolution 
technique, while it was verified second-order convergence for the three other models. However, there is an increasing 
tendency in this error for the HF method when fine meshes are used. This is also the overall behavior for the L2 error 
norm for the curvature. The results for the rising bubble show that good agreement to those published in literature is 
achieved by the HF and HF2 methods, while the effects of spurious currents are more pronounced in the results 
obtained by the other two models.  
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1. INTRODUCTION 
 

Interfacial tension plays an important role in a large variety of problems, such as ink-jet printing, emulsification and 
break-up of liquid jets. This property of the fluids represents the action of the molecules in the interface between the 
fluids: while the molecules in bulk fluid are subjected to equal attractive forces from all the sides, those molecules in the 
interface are subjected to a weaker force of the neighbour fluid molecules – considering a lighter neighbour fluid. Thus 
the resultant force acting in these molecules tends to “pull” them to the bulk fluid. As a result the surface interfacial area 
is decreased. This behaviour explains why a resting drop of water has a spherical shape. 

The force due to interfacial tension acts only at the interface between the fluids, which is a narrow region with only 
some angstroms thickness. This characteristic makes the computational modeling of interfacial tension effects a hard 
task: in two-dimensional flows these effects must be considered only at a line while in three-dimensional flows, they are 
considered at a surface. 

To overcome this difficulty Brackbill and coworkers (1992) developed the Continuum Surface Force (CSF) model. 
In this model the interfacial tension effects are included in the Navier-Stokes equations through a body force, which acts 
in a limited region around the interface.  

One of the variables considered in the evaluation of this force is the curvature of the interface. Then the major aim 
of this paper is to present some models of assessment of the curvature in the calculation of the force and to compare the 
results obtained by each one of them. In this work the following curvature-models were implemented: Height Function 
method (HF), Convolution technique, Height Function filtered by a convolution kernel, and an enhanced Height 
Function method (HF2). This last model is proposed by the authors as it was observed that the spurious currents 
generated by the HF method were associated to the local anisotropy in the curvature field and to the errors in its 
estimation. In order to compare these models two test cases were simulated: the static drop in equilibrium and the rising 
bubble in a resting fluid. The results were compared to those published in the literature. 
 



Proceedings of ENCIT 2010                                                                         13th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2010 by ABCM December 05-10, 2010, Uberlandia, MG, Brazil 

 
2. NUMERICAL MODEL 
 

The numerical simulations carried out considered two-dimensional transient flow of two fluids with different 
physical properties. Both the fluids are considered incompressible.  

As the interface between the fluids is well-defined in both the test-cases, the Navier-Stokes (NS) equations are 
solved for each phase, and the physical properties of the mixture (named the viscosity and the density of the fluid) are 
considered in the NS equations when assessing the flow in the interface region. Thus the governing equations of this 
flow are 
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which is the equation of continuity applied to both fluids, 
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which is the equation of continuity for the mixture, and 
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which is the momentum equation. 
 In these equations fk denotes the volume fraction of the fluid k, u denotes the velocity vector u = (u,v), t represents 
time and p denotes pressure. The last two terms in the right-hand side of Eq. (3) correspond to the body forces and to 
the force due to the interfacial tension, respectively. The density and the dynamic viscosity of the mixture are denoted 
by ρ and μ, respectively. These physical properties are estimated by averaging each fluid property weighted by its 
volume fraction. Therefore for a two-phase flow: 
 
 ρ ρ ρ= +1 1 2 2f f   (4) 
 
 μ μ μ= +1 1 2 2f f  (5) 
 
where the subindexes denote the fluid. 

In order to numerically solve the flow, i.e., to determine the fields of u, v, p, ρ and μ, the Finite Volume method 
(FVM) was applied to the governing equations, by dividing the domain into discrete volumes and integrating these 
equations over these volumes and over time intervals. The PRessure Implicit Momentum Explicit (PRIME) method was 
used to treat the pressure-velocity coupling problem (Maliska, 2004). 

 
2.1. Interface tracking 
 
  Since the main objective of this work is to evaluate different curvature-models, the interface must be well-defined 
and its position must be determined accurately. Thus the Volume-of-fluid (VOF) method is applied in the simulations 
(Hirt and Nichols, 1981). In this method Eq. (1) is solved by determining the volume fraction field. As this task 
involves the assessment of the fluxes of f advected through the boundaries of the control volume, the Piecewise-Linear 
Interface Calculation (PLIC) technique, which approximates the interface by linear oriented-segments, was employed 
(Malik and Bussmann, 2004; Kothe et al., 1996). The association between the VOF method to this reconstruction 
technique should provide a well-defined interface, whose position is also well-determined. 

 
2.2. Interfacial tension effects 
 

When the VOF method is employed to track the position of the interface, the treatment of the interfacial tension 
effects becomes a complex task, as these effects must be considered only at such a narrow region as is the interface 
between the fluids. 

In order to deal with this problem Brackbill and coworkers (1992) developed the Continuum Surface Force (CSF) 
model. In this model the force due to interfacial tension is included in the Navier-Stokes equations as a body force (Fsv), 
which acts in a limited region around the interface. This force is the product among the interfacial tension coefficient 
(σ), the curvature of the interface (κ), the unit vector normal to the interface ( ) and the Dirac Delta function (δ), given 
by: 

n̂
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σκ δ=sv ˆF n   (6) 

 
As the vector normal to the interface is defined as the gradient of the volume fraction, it was evaluated by 

employing a finite difference approach in a 3x3-volumes stencil. The Dirac delta function was taken to be equal to 
∇ 1f , constraining the action of this force to the interfacial volumes. 

 
2.3. Curvature models 

 
The curvature of the interface is defined as  

 
κ = −∇ ⋅ n̂   (7) 

 
In the literature there are plenty works about the estimation of this variable, where various different models are 

proposed. Four of these models were employed in this work and their results were compared among each other and to 
those of the literature. These models are: Height Function (HF) method, Convolution technique, Height Function 
filtered with a convolution kernel (HF-fc), and an enhanced Height Function method (HF2). 
 
2.3.1. Height function method 
 

In the HF method the interface is approximated by a height function (Sussman and Ohta, 2006; Malik, Fan and 
Bussmann, 2007; López et al., 2009). And, since the curvature is defined by Eq. (7) it results that  
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x

H

1 H
  (8) 

  
where H is the discrete height function evaluate at the volume (i,j), and the subindexes denote differentiation. 

The values of H are determined by taking a stencil according the direction at which the volume fraction most varies 
(dominant direction of f): if the dominant direction is the x-direction, then a 7x3-volumes stencil should be taken, 
otherwise a 3x7-volumes stencil should be employed. The differentiation in Eq. (8) depends on this dominant direction: 
if this direction is the x-direction, the derivatives relative to y should be calculated, and vice-versa. 

Figure 1 shows an example of such a stencil applied to the estimation of the curvature of the central volume. 
 

 
 

Figure 1. Example of the volume fraction field (gray = fluid 1 and white = fluid 2). 
 

 As in this figure the gradient of the volume fraction is higher in the y-direction, a 3x7 volumes stencil is chosen and 
the Height function is expressed as: 
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where ∆y denotes the increment in space in the y-direction. 
 The derivatives in Eq. (8) are estimated by employing a finite difference approximation. Thus for the volume 
fraction field illustrated in Fig. 1 the curvature obtained numerically for the volume (i,j) is equal to 0.5004 m-1, while its 
exact value is 0.5 m-1. 

An important detail about this method is that Hi must satisfy the following criterium: 
 

− +< <j 1 2 i j 1 2h H h   (10) 
 
where the limits hj-1/2 and hj+1/2 are shown in Fig. 1. 
 If this criterium is not satisfied κi,j must assume the same value of the curvature of the nearest volume at which the 
condition (10) is satisfied. 
 As will be shown in section 4 this constrain implies a local anisotropy in the curvature field. A suitable treatment of 
this anisotropy leads to the development of the HF2 method, as will be further discussed. 
 
2.3.2. Convolution technique 
 

The main objective of this technique is to smooth the volume fraction field in a region around the interface, resulting 
in a smoothed volume fraction field ( f ), and therefore in a diffuse interface only for curvature calculation purposes 
(Williams et al., 1998). 

In this model a convolution operation between the volume fraction field and a kernel K(x) is applied, resulting in the 
f  field. As the derivatives of the smoothed volume fraction can be determined by applying a convolution between the 

original volume fraction field and the derivatives of the kernel, the unit vector normal to the interface using the f field 
can be determined.  

In both tests carried out in this work it was employed a sixth-order kernel (K6), like the one used by Francois et al. 
(2006). 
  
2.3.3. Height function filtered by a convolution kernel (HF-fc) 
 

This model is presented by Francois et al. (2006) as an interpolation scheme to estimate the curvature in the faces of 
the volume from its value in the center. In this work this model was employed to treat the anisotropy in the curvature 
field, which results from the HF method. 

This model consists in applying a convolution operation to the curvature field obtained by the HF method, and 
therefore acts like a filter by considering the neighborhood in the average of the curvature in each volume: 
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2.3.4. HF2 method 
 

This last model is proposed by the authors as it was observed that the spurious currents generated by the HF method 
were associated to the local anisotropy of the curvature field and to errors in its estimation. The effects of these spurious 
currents are more pronounced in fine meshes. 

As mentioned in the Section 2.3.1 the anisotropy in the curvature and the errors in its evaluation are generated by the 
scheme employed to estimate κ when the constrain imposed by Eq. (10) is not satisfied.  

In the HF2 method an approach similar to that developed by Ferdowsi and Bussmann (2008) is used instead of the 
scheme applied in th HF method. 

According to this approach the curvature in the volumes where Eq. (10) is not satisfied and where 0<fij<1 is 
evaluated by a Taylor series centered at the nearest volume center, at which Eq. (10) is obeyed. This is the case 
illustrated by the volume (i,j+1) in Fig. 1: in this volume Hi<hj-1/2. 

Thus in this new method the curvature in this volume can be approximated by 
 

 κκ κ+ = + Δi , j 1 i , j t
i , j

d x
dx

  (12) 

 
where the derivative is evaluated by differentiating Eq. (8) and by employing a 5x7-volumes stencil in order to estimate 
the third-order derivative of H, approximated by finite difference. The term ∆xt corresponds to the distance between the 
center of volume (i,j) and the middle-point of the interface at volume (i,j+1), when it is approximated by a line (Fig. 2). 
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Figure 2. Examples of volumes at which the HF2 model can be applied. 
 

The distances ∆xt and ∆x  illustrated in Fig. 2 are obtained by considering similarity of triangles and are equal to 
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where ny is the vertical component of the vector normal to the interface evaluate at the volume in which the curvature is 
desired.  

The equations presented here correspond to the case in which the y-direction is dominant. Otherwise, the equations 

sulting curvature field obtained by the HF2 method is filtered by just taken a simply arithmetic average 
m

 T

In order to compare these curvature-models two two-dimensional test-cases were simulated: the static drop in 
ble in a resting fluid (Fig. 3). 

y i , j 10,5 1 sign n f

 
are analog. 
 The re
a ong the curvature of the volume and that of its neighbours which lie inside a circle with radius R.  
 
3. ESTS AND RESULTS 
 

equilibrium and the rising bub
 

 
(a)  

(b) 
Figure 3. Test-cases: (a) Static drop and (b) Rising bubble. 
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Cartesian uniform meshes mployed in all the numerical 

mulations.  
 

p 

two-dimensional static drop rests in the center of a square-domain immersed in another fluid. As the 
ravity is neglected, the interfacial tension effects are balanced by the gradient of pressure. Thus there should be no 

vel

all these cases are shown in Tab. 1. 

 of the parameters (static drop). 
 

Case Density Fluid 2 
(kg/ m³) 1 (Pa s) 2 (Pa s) 

e 
criterium (u 

Convergence 
criterium (p) 

Convergence 
criterium (f) 

, as well as staggered arrangement of the variables, were e
si

3.1. Static dro
 

In this case a 
g

ocity field.  
This test is divided into four cases. The values of the physical properties of both fluids and the parameters of the 

simulations for 
 

Table 1. Values

Viscosity Fluid Viscosity Fluid Convergenc

and v) (m/s) (Pa) 
a. Inviscid 1 0.001 - - 
b. Viscous 1 0.001 0.01 0.001 
c. Inviscid 2 0.1 - - 
d. Viscous 2 0.1 0.01 0.001 

1E-14 1  1E-12 E-12

 
The following para s were equa l simulation 1 kg/m3, σ = 73 N/m (implying in an exact pressure 

jump equal to 36.5 Pa), and Δt = 10-6 s. The simulations were carried out employing boundary condition of free-slip and 
im

160 and 320x320 volumes. 
 

t the velocity field should vanish. However, errors in evaluating the curvature of 
e interface result in the generation of spurious currents. In their paper, Francois and coworkers (2006) show that the 

gen

of the curvature by the model. For this purpose the L  and L   
err

meter l in al s: ρ1 = 

permeable walls in all boundaries and an initial field of Fsv. The pressure as well as the components of velocity are 
null at t=0. 

In order to estimate the order of the error in the main variables, five different mesh sizes where used: 20x20, 40x40, 
80x80, 160x

3.1.1. Results of the static drop case 
 

As previously mentioned in this tes
th

eration of such currents is not limited to the CSF model, and conclude that the order of magnitude of these currents 
depends on the curvature-model employed. 

Therefore the accuracy of the curvature-model can be measured in terms of the norm of the velocity field error: 
smaller this error, the more accurate is the evaluation 2 ∞

or norms will be employed. For the modulus of the velocity they are expressed as 
 

( )
=

= ∑
N

2
2

n 1
L Nu u   (15) 

 
( ) ( )L max∞ =u u   (16) 

 
where N is the total num r of volumes. 

In order to compare the results for the pressure field, the numerical jump in pressure is evaluated as (Francois et al., 

(17) 
 
where the subscript “in” denotes inside the drop (averaged for volumes with r ≤ R) and “out” means outside the 

veraged for volumes with r > R). 

hese results are compared to those obtained in this work in Fig. 4. 
 

be

2006) 
 

totalPΔ in outP P= −   

drop 
(a

Francois and coworkers presented in their paper the error norms curves for the velocity and the jump in pressure 
only for the first case (Inviscid 1). T
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Error norms for the Inviscid 1 case: (a) L2 norm of the velocity, (b) L∞ norm of the velocity, (c) Error in the 
pressure jump and (d) L2 norm of the curvature evaluated at the faces of the volumes. 

 
The values of the kernel smoothing length and of the filter’s radius employed in the simulations performed in this 

work are shown in the legends of Fig. 4. Francois et al. (2006) also set a kernel smoothing length equal to 1.9(Δx)0.5 in 
the convolution technique simulations – where Δx denotes the mesh resolution. But there is a lack of information in 
their paper concerning the value of this parameter used in the HF-fc model. 

As can be seen in Fig. 4, although there is a good agreement between the results obtained in this work and those 
obtained by Francois and coworkers for the error in pressure jump, there are significant discrepancies between them in 
the L2 and L∞ error norms for the velocity. This difference is more expressive when the errors obtained by the HF 
method for the 160x160 volumes mesh (Δx=0.05 m) are compared in Fig. 4(a). While the errors for this method 
obtained in this work increase when meshes finer than 80x80 volumes are employed, in their paper the error obtained 
for a 160x160 volumes mesh maintain its decreasing tendency but not at the same rate of the remaining meshes. 

When observing Fig. 4(b) it can be verified that this increasing tendency is also presented in the results obtained in 
this paper, as well as in those of Francois et al. This growth in the norm error is also verified in Fig. 4(d) for the L2 norm 
of the curvature when employing a 320x320 volumes mesh, suggesting that there is a link between the error in 
evaluating the curvature of the interface and the generation of spurious currents. This association is supported when 
analyzing both the fields of the velocity norm and of the curvature errors: the regions with larger magnitudes of velocity 
correspond to those where the errors in the curvature are also larger. Besides this a local anisotropy can also be verified 
in the curvature errors field, which is due to the strategy adopted when the condition expressed in Eq. (10) is not 
satisfied. 

The impact of such errors is softened when the approach implemented in the HF2 method is used in evaluating the 
curvature, while the effects of local anisotropy in curvature are expressively reduced when a kind of average – like the 
ones employed in the HF2 and in the HF-fc models – is applied to the curvature field, as can be seen in the results 
shown in Fig. 4 (a) and (b). This can also be concluded from the results of Francois and coworkers in Fig. 4(b). 

Another important conclusion concerning the HF2 method is that as the filter’s radius increases, the spurious 
currents decreases. However this model does not seem to be so efficient as the HF-fc method. Nevertheless these two 
models in addition to the HF method are better options to evaluate the curvature than the convolution technique, which 
results in first order errors for the three variables considered. These conclusions can also be drawn from the results of 
the other three cases of Tab. 1. 

Comparing the errors obtained by each model for all the four cases it can be concluded that: the viscosity ratio 
between fluids 1 and 2 plays no role in the generation of spurious currents after one time step, and there is a slight 
difference among the results when the density ratio increases.   
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The spurious currents can also be measured by the total kinetic energy of the flow, as shown by Francois et al. 

(2006): 
 

N

i i i i
i 1

1TKE V
2

ρ
=

= ⋅∑ u u   (18) 

 
where i denotes the volume at which the kinetic energy is evaluated, and V represents its volume. 

The estimation of TKE along time is an useful test of the capability of the curvature-models to damp the spurious 
currents, which is the desired behaviour. 

After 500 time steps, as illustrated in Fig. 5, this behaviour is only reached by the HF method for the Inviscid 1 and 
Viscous 1 cases. These results were obtained by simulations employing a 40x40 volumes mesh and a ∆t equal to 0.001 
s. 
 

 
(a) 

 
(b) 

Figure 5. Temporal evolution of TKE for the (a) Inviscid 1 and (b) Viscous 1 cases after 500 time steps. 
 
As time goes on the spurious currents are amplify when the Convolution technique (the almost vertical dotted line 

near the origin of both graphs), the HF-fc and the HF2 models are employed. Whereas the TKE obtained by the former 
two methods grows indefinitely, that provided by the HF2 method increases in a smaller rate until it stabilizes and 
reaches the equilibrium at TKE values of about 10-2 J.  

This figure also shows the results obtained by the HF-fc enhanced model (dashed line). In this model the effects of 
the filter decrease exponentially with time, since its kernel smoothing length has the form 
 

( ) ( )d 1.9 x exp 2t= Δ −   (19) 

 
By softening the action of the filter along time, the spurious currents are damped, and therefore the total kinetic 

energy decreases in a smaller rate than that of the HF method. On the other hand, such a strategy was not able to 
produce the same behaviour when applied to the HF2 method and to the convolution technique. 

Therefore the HF and the HF-fc enhanced methods are more able to deal with the unphysical velocity field effects 
than the other models when the temporal evolution is considered. 
 
3.2. Rising bubble in a resting fluid 
 

This test consists in simulating the flow of a bubble immersed in a tank filled with a heavier fluid. As the bubble 
raises toward the top of the domain, its shape changes. The rate of change depends on the magnitude of the interfacial 
tension coefficient: higher the value of this parameter, lesser the deformation of its surface. 

Two cases were performed according the papers of Francois et al. (2006), Ginzburg and Wittum (2001) and Unverdi 
and Tryggvason (1992) and the values of the parameters employed in the numerical simulations are listed in Tab. 2 and 
3. 

 
Table 2. Values of the parameters of Francois case (rising bubble). 

 
Parameter Value 

Density of Fluid 1 (kg/m3) 1.226 
Density of Fluid 2 (kg/m3) 1000 
Viscosity of Fluid 1 (Pa s) 1.137 
Viscosity of Fluid 2 (Pa s) 1.78E-5 
Interfacial tension (n/m) 728 

Time step (s) 1E-5 
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Convergence criterium u and v (m/s) 1E-4 
Convergence criterium p (Pa) 1 

Convergence criterium f  1E-5 
Mesh size 80x120 volumes 

 
In the Francois case the following values of the dimensions indicated in Fig. 3b were employed: R=1/3 m, L=2 m, 

L0=1 m, H=3 m and H0=1 m. Therefore the Eötvös (Eo) number of the Francois case is equal to 5.98. 
On the other hand, the values of these parameters used in the Ginzburg/Unverdi case are: R=1.67E-3 m, L=0.01 m, 

L0=0.005 m, H=0.02 m and H0 =0.75E-2 m. In both cases all the boundary conditions were set to free-slip and 
impermeable walls.  
 

Table 3. Values of the parameters of Ginzburg/Unverdi case (rising bubble). 
 

Case Eötvös 
number 

Morton 
number 

μ2/μ1 Interfacial 
tension 
(N/m) 

Time 
step (s) 

Conv. crit. 
u and v 
(m/s) 

Conv. 
crit. p 
(Pa) 

Conv. 
crit. f 

Mesh 
size 

A 1 1E-4 493 0.109 1E-4 1E-6 1E-3 1E-5 32x64 
B 10 1E-4 88 0.0109 5E-5 1E-5 1E-3 1E-5 64x128 
C 104 1E-1 85 0.00105 5E-5 1E-5 1E-3 1E-5 256x512 

 
In the Ginzburg/Unverdi case the values of the densities of fluid 1 and fluid 2 were set equal to 25 kg/m3 and 1000 

kg/m3, respectively, while the dynamic viscosity of fluid 1 is equal to 1.22E-4 Pa s in all the simulations. 
 

3.2.1. Results of the rising bubble case: Francois case 
 
The numerical simulations of this case were carried out up to 0.5 s. And since the Eötvös number for this case is 

equal to 5.98, the interfacial tension plays an important role in defining the shape of the bubble.  
Figure 6 illustrates the interface of the bubble obtained by each curvature-model at the end of simulations. The 

interface drawn in this figure was constructed by applying the PLIC technique. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6. Bubble’s interface obtained by (a) HF method, (b) HF2 method (Rfilter=0.15 m), (c) Convolution technique 
(d=3Δx), (d) HF-fc (d=6Δx), (e) HF-fc (d=1.9Δx0.5), and (f) HF-fc enhanced model (d= 6Δx exp[-10t]). 

 
Whereas the interface obtained by the HF, HF2 and HF-fc enhanced models present no significant difference among 

each other and also when compared to that obtained by Francois and coworkers, the other two models exhibit 
expressive discrepancies in the shape of the interface. 

The interface ondulations shown in Fig. 6 (c) and (d) seem to be a consequence of the spurious currents generated 
when the convolution technique and the HF-fc model are employed. This conclusion is corroborated by the result 
obtained by the HF-fc enhanced model, which presents no wavy interface since the filter acts only up to 0.18 s of 
simulation. 

On the other hand the result produced by the HF-fc model in Fig. 6(e) suggests that the kernel smoothing length 
employed in the simulations was oversized, considering in the evaluation of curvature the contribution of volumes far 
away from the volume of interest. 
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3.2.2. Results of the rising bubble case: Ginzburg/Unverdi case 
 

In this case the value of the Eötvös number varies from 1 to 104. The importance of interfacial tension effects 
decrease with increasing Eo.  

For Eötvös equal to 1 (case A) the bubble’s shape remains almost spherical after 600 time steps, while for Eo equal 
to 10 and 104 (cases B and C), the bubble’s shape lie in the oblate ellipsoidal and spherical cap regimes, respectively. 
These last two simulations were carried out up to 1800 time steps. 

Figure 7 shows the final shape of the bubble obtained in this work by employing the HF method for each of the 
cases listed in Tab. 3. For the cases A and B it is also illustrated the interface obtained by Ginzburg and Wittum (red 
dashed line). As can be observed there is excellent agreement between the results. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Rising bubble interface obtained in this work (continuous line) and by Ginzburg and Wittum (red dashed line): 
(a) case A, (b) case B, and (c) case C. 

 
The bubble of case C developed a “skirt” after some time steps. This characteristic can also be observed in the 

results obtained by Ginzburg and Wittum (2001). Unfortunately such results could not be reproduced in this figure. 
These results also agree qualitatively with those obtained by Unverdi and Tryggvason (1992). 
As in the previous comparison, the results for the streamlines of the flow in a frame of reference moving with the 

bubble obtained in this work agree to those published by Ginzburg and Wittum, and by Unverdi and Tryggvason, 
suggesting that the HF method can deal satisfactory with the rising bubble problem, independently of the flow regime. 

This problem was also simulated by employing the remaining curvature-models presented in this paper, in order to 
deem their performance. The results for the first two cases of Tab. 3 showed no expressive difference. However, when 
case C was carried out, the bubble obtained by the convolution technique exhibited a sequence of little bubbles in place 
of the skirt, while the results obtained by the other models show good agreement to those obtained by the HF method. 

 
4. CONCLUSIONS 
 

The performance of four curvature-models, including a model proposed by the authors (the HF2 method), was 
deemed in this work by numerically simulating two classic test-cases: the static drop in equilibrium and the rising 
bubble in a resting fluid. 

 In the static drop case when the L2 error norm for the velocity was analyzed, the errors obtained by the convolution 
technique exhibited first-order convergence, while it was verified second-order convergence for the three other models. 
However, there is an increasing tendency in this error with increasing mesh resolution for the HF method results. This is 
also the overall behavior for the L2 error norm of the curvature, suggesting that the errors in the curvature evaluation 
directly affect the generation of the spurious currents.  

This increasing tendency is reduced when the curvature of the neighbour volumes is considered in the evaluation of 
the curvature of the volume of interest, that is, when some kind of filter is applied to the HF method. That is exactly the 
idea behind the HF2 and the HF-fc models. However it was proved that the application of such a filter should be 
constrained in time, otherwise the spurious currents will be amplified.  

This conclusion can also be drawn from the results of the rising bubble tests, which show that good agreement to 
those published in literature is achieved by the HF and HF2 methods, while the effects of spurious currents are more 
pronounced in the results obtained by the other two models. It was also found that the results of the models involving 
convolution depend hardly on the chosen length of the kernel. 
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