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Abstract. Two-dimensional detached eddy simulations were conducted on the turbulent flow over a circular cylinder close
to a ground wall. This type of flow receives heavy interference from the boundary layer developed by the wall. The ground
effect can be identified by the presence of a recirculation zone at the wall, which moves downstream as the time passes.
Although there are several researches concerning the flow over cylinders close to walls, many obscure points exists. The
present work uses a hybrid turbulence modeling, discretized by a finite element incremental projection scheme, which is
based in a methodology of pressure correction. The present work uses the following implementation: The pressure is
maintained at the first substep and corrected at the next substep to be used to project the velocity at the final substep. The
results showed the generation and development of vortex shedding. The aero dynamical coefficients show the oscillatory
pattern of the flow. The obtained results are similar with other results at the literature.
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1. INTRODUCTION

The complete understanding of the flow around bluff bodies is an aim for several researches. It has an engineering
interest in several engineering areas, such as flow induced vibration, hydrodynamical loads in planes and ships for instance.
Complete solutions of the boundary layer behavior are necessary because it can answer questions about the separation
point, the transition to turbulence and how the viscous wake is influenced by the surface of the cylinder (Bimbato et al.,
2009). Generated vorticity close to the cylinder surface is projected to the viscous flow, which develop and produces
harmonic loads in solid structures, which synchronized with vortex shedding, can affect its structural integrity.

Experimental studies of the flow over cylinders close to a ground are conducted by Zdravkovich (1985), Bearman and
Zdravkovich (1978), and Lei et al. (1999), amongst others. The authors stated that the characteristics of the dynamical
loads are not only dependant of the Reynolds number, but also to the non-dimensional parameter h/d. On this parameter,
h is the height between the ground and the center of the cylinder and d is the diameter of the cylinder. The relation
height-diameter is appointed as the main non-dimensional parameter for this kind of flow. Studies of the vortex shedding
characteristics at the wake of a cylinder close to a ground plane were conducted by Nishino et al. (2008). The simulated
Reynolds number were put as 104 and 105. Four values of h/d were simulated. The authors found three fundamental
vortex shedding regimes: large-gap regimes (h/d > 0, 50), intermediate gap regimes (0, 35 < h/d < 0, 50) and small
gap regimes (h/d < 0, 35). The numerical simulation showed that the Von Kármán vortex shedding occurred at the
immediate downstream of the cylinder for large gaps. For other regimes, the shedding were halted, producing wakes with
little vortex formations.

The present study will show results of the simulation of the flow over a cylinder close to a plane for a h/d value of
0,50. Detached eddy simulation based on the SST turbulence model will be employed in a finite element method context.
A projection method will be used as the numerical algorithm. This paper will show flow visualization and instantaneous
values of the drag and lift coefficient. Those results will be compared with the results of Nishino et al. (2008)

2. Problem Statement

The mass conservation and momentum equations for incompressible flows are written in a framework of turbulence
modeling and defined in an open connected bounded domain Ωt× [0, T ] in Rd (where d=2 or 3) with boundary Γt = ∂Ωt

such as:

∇.u = 0 (1)

∂u
∂t

+ u · ∇u = −1
ρ
∇p+ (ν + νT )∇2u + f (2)

In those equations u and p are the mean velocity and pressure fields, ν and νT are the kinematic and turbulent viscosity,
respectively, ρ is the fluid density and f is the source term. One can note that the problem is open, since the turbulent
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viscosity needs modeling. The modeling approach is given by the SST turbulence model (Menter et al.,2003):

∂k

∂t
+ u · ∇k = Pk − β′kω +∇ ·

[(
ν +

νt

σk

)]
∇k (3)

∂ω

∂t
+ u · ∇ω = αS2 + βω +∇ ·

[(
ν +

νt

σω

)]
∇ω

+ 2(1− F1)σω2 +
1
ω

(∇k)(∇ω) (4)

Here, k and ω are the turbulent kinetic energy and turbulent frequency respectively. The eddy viscosity is defined by:

νt =
α1k

max(α1ω, SF2)
(5)

S is an invariant measure of the rate-of-strain tensor and the blending functions F1 and F2 are given as follows:

F1 = tanh(arg4
1) (6)

arg1 = min

[
max

( √
k

β′ωy
,

500ν
y2ω

)
,

4k
CDkωσω2y2

]
(7)

CDkω = max(2
1

ωσω2
∇k∇ω, 1, 0× 10−10) (8)

F2 = tanh(arg2
2) (9)

arg2 = max

(
2
√
k

β′ωy
,

500ν
y2ω

)
(10)

Here, y is the distance to the nearest wall. A production limiter is used to avoid the excessive generation of turbulence
in stagnation points:

Pk = µtS
2 (11)

P̃k = min(Pk, 10 · ρβ∗kω) (12)

The constants of the model are accounted as a linear combination of the corresponding constants of the k − ε and
k − ω models:

α = α1F1 + α2(1− F1) + ... (13)

The constants are β = 0.09, α1 = 5/9, β1 = 3/40, αk1 = 0.5, σω1 = 0.5, α2 = 0.44, β2 = 0.0828, σk2 = 1,
σω2 = 0.856. The ω-equation allows a near-wall formulation, which gradually switches from wall-functions to low-
Reynolds near wall formulations (Menter et al.,2003).

The DES SST formulation uses the SST turbulence model formulation with a modification of the k-equation destruc-
tion term (Strelets (2001)):

kβ′ω ⇒ kβ′ωFDES (14)

The DES blending function is given as follows:

FDES = max

( √
k

CDES∆β′ω
, 1

)
(15)

Here, ∆ is the maximum local grid spacing and CDES = 0, 61 is a calibration constant. The boundary conditions are
given by:

u(x, t) = ud; on Γd (16)

p(x, t) = pref; on Γo (17)

k(x, t) = kd; on Γd (18)

ω(x, t) = ωd; on Γd (19)

For the above mentioned conditions, Γd represents the boundary where Dirichlet-type boundary conditions (ud, kd,
ωd) are prescribed. Γo denotes the boundary where a reference pressure pref is prescribed.
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3. Numerical Methodology

The following methodology is designed to solve the equation system (1)-(4) by a semi-explicit iterative strategy, after
time and spatial discretization. A framework of projection methods, given by Donea and Huerta (2003), Goldberg and
Ruas (1999) and Lohner et al. (2006). is employed. One can define a time step ∆t > 0 where a set of variables denoted
by (un, pn, kn, ωn) is defined. The set of variables (un+1, pn+1, kn+1, ωn+1) at the time t+ ∆t, is obtained by velocity
and pressure splitting and calculation of turbulent quantities, given as follows:

1
∆t

(u∗ − un) + un · ∇un = −1
ρ
∇pn + (ν + νT )∇2un + f (20)

1
∆t
(
un+1 − u∗

)
= −1

ρ
∇(pn+1 − pn) (21)

∇.un+1 = 0 (22)

1
∆t

(k∗ − kn) + un · ∇kn =
(
ν +

νt

σk

)
∇2kn + fk (23)

1
∆t

(ω∗ − ωn) + un · ∇ωn =
(
ν +

νt

σω

)
(∇2ωn) + fω (24)

Where:

fk = Pk − β′kω (25)

fω = αS2 + βωn + 2(1− F1)σωn2 +
1
ωn

(∇k)(∇ωn) (26)

This algorithm introduces predicted quantities u∗, k∗ and ω∗. From those, only u∗ will be corrected at each step. This
algorithm transforms one problem into a sum of two problems: One made by a pure advection and other made by pure
diffusion. Both are solved sequentially at each step of the time integration (Donea and Huerta (2003)). When one takes
the divergent of equation 21 and uses on equation 22, the pressure equation assumes the form of a Poisson equation:

∇2
(
pn+1 − pn

)
=

ρ

∆t
∇.u∗ (27)

The boundary condition for this equation is given as follows:

∇
(
pn+1 − pn

)
.n =

ρ

∆t
u∗.n on Γo (28)

Remark:
The described projection algorithm is called Incremental Projection Scheme (Minev, 2001, Zhang, 2007). It is based

on a pressure correction methodology. These schemes are time-marching techniques composed of substeps at each time
step. The pressure can be treated explicitly or ignored at the first substep. Its solution will be used to project the velocity
into a divergent-null field. The present work uses the following implementation: The pressure is maintained at the first
substep and corrected at the next substep to be used to correct the velocity at the final substep. This implementation
improves convergence properties, as reported at the literature (Guermond et al., 2006, Codina, 2001).

3.1 Standard Weak Form

Some definitions must be presented in order to show the standard weak form. One can denote L2(Ωt) as the space of
squared integrable functions over the domain Ωt and H1(Ωt) as the Sobolev space where its derivatives are also squared
integrable. The internal product of L2(Ωt) is denoted by (., .) =

∫
Ωt
.. dΩt and H1

0 (Ωt) is the sub-space of functions with
zero value on boundaries.

One can write weight functions v ∈ V = H1
0 (Ωt) and q ∈ Q = L2(Ωt)/R, and consider u ∈ U = H1(Ωt). The

weak form of equations 20, 21, 23, 24 and 27 can be written as follows:

mu(∆u∗,v) + cu(un,un,v) + (ν + νT ) au(un,v) +
1
ρ
b(p,v) = (f,v) (29)

a(∆p, q) = − ρ

∆t
b(u∗, q) (30)
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m(∆un+1,v) = −1
ρ
b(∆p,v) (31)

mk(∆k∗,v) + ck(kn,un,v) + Dkak(kn,v) = (fk,v) (32)

mω(∆ω∗,v) + cω(ωn,un,v) + Dωaω(ωn,v) = (fω,v) (33)

Where:

Dk =
(
ν +

νT

σk

)
(34)

Dω =
(
ν +

νT

σω

)
(35)

Where the following forms are introduced:

mu(u,v) :=
1

∆t
(u,v) ; cu(u,u,v) := (u · ∇u,v) (36)

a(u,v) := (∇u,∇v) ; b(q,v) := (q,∇.v) (37)

mk(k,v) :=
1

∆t
(k,v) ; ck(k,u,v) := (u · ∇k,v) (38)

mω(ω,v) :=
1

∆t
(ω,v) ; cω(ω,u,v) := (u · ∇ω,v) (39)

The increments of all calculated fields are denoted by:

∆u∗ = u∗ − un

∆un+1 = un+1 − u∗

∆p = pn+1 − pn

∆k∗ = k∗ − kn

∆ω∗ = ω∗ − ωn (40)

Remark:
The incremental projection method described here is based on a first-order time discretization. Superior order dis-

cretizations can be used accordingly with the problem and with desired precision and computational cost. Therefore, the
solution of equations 29 to 33 will lead to a consistent formulation of all calculated fields at time t+ ∆t.

3.2 Spatial Discretization

Let Th(Ωt) a regular partition of the domain Ωt where the finite element spaces Qh ⊂ Q, Vh ⊂ V and Uh ⊂
U are constructed. The discrete problem equivalent to the weak form can be written as: Given un

h, p
n
h, k

n
h , ω

n
h , find

un+1
h , pn+1

h , kn+1
h , ωn+1

h ∈ Uh ×Qh, such as ∀ {vh, qh} ∈ Vh ×Qh:

mu(∆u∗h,vh) = −cu(un
h,u

n
h,vh)− ν au(un

h,vh)−

− 1
ρ
b(ph,vh)− su(un

h,u
n
h,vh) + (f,vh) (41)

a(∆ph, qh) = − ρ

∆t
b(u∗h, qh) (42)

m(un+1
h ,vh) = −1

ρ
b(∆ph,vh) (43)

mk(∆k∗h,vh) + ck(kn
h ,u

n
h,vh) + Dkak(un

h,vh) = (fk,vh) (44)

mω(∆ω∗h,vh) + cω(ωn
h ,u

n
h,vh) + Dωaω(ωn

h ,vh) = (fω,vh) (45)
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The extra term at equation 41(su(un
h,u

n
h,vh)) is responsible to ensure stability in convective-dominated regimes. It is

written as:

su(un
h,u

n
h,vh) = (un

h · ∇un
h,∆t(u

n
h · ∇v)) (46)

Considering the dimension of the spaces given by dim(Vh) = dim(Uh) = dim(Qh) = N and base functions denoted
by {Ni; i = 1, N} and {Nj ; j = 1, N}, the discrete problem matrix form is given as follows:

Step 1: Velocity Calculation:

Mu.∆u∗h = F∗u(un
h,v

n
h , p

n
h) (47)

Step 2: Pressure Calculation - Poisson problem:

A.∆ph = Fp(u∗h) (48)

Step 3: Velocity projection in a divergent-free space:

Mu.∆un+1
h = Fu(∆ph) (49)

Step 4: Kinetic turbulent energy calculation:

Mk.∆k∗h = F∗k(kn
h ,v

n
h) (50)

Step 5: Turbulent frequency calculation:

Mω.∆ω∗h = F∗ω(ωn
h ,v

n
h) (51)

Where the matrices Mu,Mk and Mω are the mass matrices for the velocity and turbulent quantities respectively and
A is the Laplacian matrix for the pressure. Those matrices are given as follows:

Mij =
1

∆t
(Ni,Nj) ; Ai,j = (∇Ni,∇Nj) (52)

The vectors F∗u, Fp and Fu are related to the right hand side discretization of the matrix equations on steps 1 to 3. The
boundary integral terms, related to the boundary conditions, are added into these vectors.

Remarks:

• The linear system solution of steps 1 and 3 involve the mass matrix. In order to enhance the convergence rate, this
matrix is lumped in a diagonal form. The lumping is performed once in the beginning of the iterative process.

• The linear system for the pressure correction problem, step 2, is solved by the Conjugated Gradient Method, pre-
conditioned by the partial Cholesky factorization. This matrix is stored by a Morse strategy, and the preconditioning
is also performed once when this matrix is firstly computed.

• The time step is controlled by a weighted average between convective (∆tcov) and diffusive (∆tdiff ) time steps,
given as follows:

∆t 6
∆tcov∆tdiff

∆tcovdv + ∆tdiff
(53)

4. RESULTS AND ANALYSIS

The present paper simulated the two-dimensional case of h/d = 0.5 displayed on Nishino et al. (2008):
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Figure 1. Simulation Domain

Figure 2. Used Mesh

For the inlet, the velocity was set to give a Reynolds number of 4 × 104. A zero reference pressure was imposed at
the outlet boundary condition. At the cylinder nodes, a no-slip condition was imposed. It was imposed at the plane nodes
the inlet velocity to recover the moving ground condition. The used grid has 15992 nodes e 28072 P1 elements. The drag
and lift coefficients are given as follows:

Cl =
Fl

0.5ρU2
0A

(54)

Cd =
Fd

0.5ρU2
0A

(55)

Figures 3 to 6 show the instantaneous flow visualizations. One can note the fast formation of low pressure zones at
the cylinder surface. Those zones are converted into vortices that detach from the cylinder, presenting a wake topology
close to the classic Von Kármán wake. It is noted that the vortices show a "mushroom" pattern, as seen on Bimbato et al.
(2009). Close to the ground, a vorticity region can be seen with symmetrical values of the vortices above, which are shed
from the cylinder. This vorticity originates itself at the lower part of the cylinder. Part of the turbulent structures shed
from the cylinder adheres to the ground and the other part is transported downstream of the flow. One can note that the
ground vorticity moves simultaneously as the shed vortices.

Figure 7 shows the temporal evolution of the aerodynamical coefficients. One can note that the lift coefficients present
similar oscillatory behavior. This behavior is related to the vortex shedding, since its frequency has proximity to the
Strouhal number for this case. The calculated Strouhal is of 0.2186. Therefore, it can be stated that the vortex shedding
has an oscillatory pattern. The drag coefficient showed an oscillatory pattern, but one can note different amplitudes at
certain moments. This different amplitudes are explained by the vortices shed and direct themselves to the ground. The
average drag coefficient is 1.5167. The delay of boundary layer separation with the variation of the h/d relation is an aim
of analysis by Nishino et al. (2007) e Nishino et al. (2008). This delay is an indication of ground effect that affects vortex
shedding and formation.

Formation of Von Kármán Vortex Street in two-dimensional bluff bodies is related with the formation of instabilities at
the near wake. These instabilities propagate and transition the flow towards the turbulence, generating the vortex shedding
(Nishino and Roberts, 2008). The activation of the DES filter that separates large and small scales has a close relationship
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with that formation. So, a modification of this filter can anticipate the formation or delay it. The modification can be made
in a same way as altering the Smagorinsky constant in Large-eddy simulations. Future work must be made to confirm that
assertive. It is important to stress that there are few experimental data about this flow. Therefore, the present simulation
was compared with the numerical data obtained by Nishino et al. (2008). The results show resemblance with the results
obtained by the reference.

Figure 3. Velocity Vectors

Figure 4. Streamlines
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Figure 5. Pressure Contours

Figure 6. Vorticity
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Figure 7. Aerodynamical Coefficients

5. CONCLUSIONS

Results of two-dimensional detached eddy simulation of the turbulent flow around a cylinder close to a plane were
showed. Visualizations of instantaneous flow in the form of velocity vectors, streamlines, pressure and vorticity contours
were presented. Instantaneous lift and drag coefficient results were showed, as well as the calculated Strouhal number and
average drag.

The instantaneous flow visualizations showed the fast formation of low pressure zones at the cylinder surface. It is
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noted that the vortices show a "mushroom" pattern. The lift coefficients present similar oscillatory behavior. This behavior
is related to the vortex shedding. Therefore, it can be stated that the vortex shedding has an oscillatory pattern. The drag
coefficient showed an oscillatory pattern, but one can note different amplitudes at certain moments.

One can conclude that the obtained results can be considered as consistent, because they are similar with numerical
data for the same conditions at the literature. Experimentation must be conducted to validate the obtained data and to
evaluate the physical mechanisms that are present on the flow. Besides, modifications at the DES formulation can be
made to analyze the behavior of hybrid formulations on the turbulence.
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