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Abstract. In this work is presented the modeling of the flow through hermetic compressor automatic valves using the 
Immersed Boundary Method. The Immersed Boundary Method is attractive for modeling this problem once the 
displacement of the valve is ruled by the force applied on the valve reed by the refrigerant flow, establishing a fluid-
structure interaction problem. Traditional methods, like body-fitted meshes, are computationally expensive for this 
kind of problem, due to re-meshing requirement in order to fit domain modifications. The Immersed Boundary Method 
is simple and computationally cheap when compared with body-fitted meshes. The governing equations are solved with 
a fixed orthogonal mesh, called eulerian mesh, while the solid immersed in the flow is modeled using a lagrangian 
mesh. These two meshes are independents and the coupling between them is made through the addition of a force term 
in the momentum equations. Using this approach, the displacement of the valve reed can be modeled only with the 
movement of the lagrangian mesh, without mesh adaptation. In this work, it is presented a preliminary study of the 
application of the Immersed Boundary Method together with the Virtual Physical Model (VPM) for modeling the flow 
through a static valve. The solution of the governing equations in cylindrical coordinates is accomplished by the Finite 
Volume Method, using the SIMPLEC algorithm to solve the velocity-pressure coupling problem. The Power-law is 
used to treat the advective-difusive terms and the three-time level is used to advance the time solution in a fully implicit 
approach. A staggered mesh for the velocity is used in relation to the pressure. The valve was simulated for Reynolds 
numbers equal to 500 and 1500, diameter ratio D/d = 1.5, and dimensionless gap s/d equal to 0.03, 0.05, and 0.07. The 
results were confronted with numerical data obtained through traditional methods. The main conclusion  is that the 
Immersed Boundary Method is capable to model the valve flow and can be tested in future studies for considering the 
dynamic displacement of the valve reed. 
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1. INTRODUCTION 
 

The valve is one of the main components of a hermetic compressor, given it controls the mass flux inside the 
compressor. The opening and closing movements are governed by the pressure difference applied by the refrigerant 
flow over the reed. Therefore, it is essential to fully understand the flow through the valve in order to improve the valve 
design and to enhance the overall efficiency of the compressor. 

Several studies have been made to characterize the main features of the flow through the valve. Numerical solutions 
for incompressible laminar flows have been obtained by Hayashi et al. (1975), Raal (1978), Piechna and Meier (1986), 
Ferreira et al. (1989), Gasche et al. (1992) and Possamai et al. (2001). Numerical solutions for incompressible turbulent 
flows have been obtained by Deschamps et al. (1996) and Colaciti et al. (2007). Experimental work on this subject has 
been performed by Wark and Foss (1984), Ferreira and Driessen (1986), Tabakabai and Pollard (1987), Ervin et al. 
(1989) and Gasche et al. (1992). Nevertheless, most of these studies are limited to static analysis of the problem, 
disregarding the movement of the valve reed and flow-structure interaction. Only few works in this area have taken into 
account the movement of the reed, although without considering the real problem of fluid-structure interaction (Matos 
et al., 2000 and Matos et al., 2001). 

One of the main challenges for modeling the problem is the complex geometry of the valve. For this reason, simpler 
geometries have been adopted, specially the radial diffuser. Despite the valve geometry, the treatment of valve reed 
movement is challenging for the current computational fluid dynamics methods. The use of body-fitted meshes, where 
the computational mesh is set to fit to the body, introduces several computational penalties once that, for each 
displacement of the valve reed, the mesh must be updated for the discretization of the new computational domain. This 
procedure is not an easy task and requires extensive computational resources. 

The Immersed Boundary Method has been successfully used for different applications, especially for problems 
involving fluid-structure interaction. The Immersed Boundary Method uses a simple fixed grid (Eulerian grid) for 
solving the flow equations and models the presence of an interface using a moving Lagrangian grid with the addition of 
a force field in the momentum equations for the cells located around the Lagrangian points. Therefore, the re-meshing 
procedure used in other methods is not necessary, which saves computation time.  

The main purpose of this work is to apply the Immersed Boundary Method together with the Virtual Physical Model 
(VPM) for modeling the flow through compressor valves, in this first application in a static configuration, just to verify 
the applicability of the method. 
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 In this work the flow through a radial diffuser representing the valve is solved numerically by using the Immersed 
Boundary Method with the Virtual Physical Model (Lima e Silva et al., 2003), used for calculating the force field. The 
radial diffuser is simulated using a two-dimensional approach, through the cylindrical coordinate system. Only the valve 
reed is modeled with the Immersed Boundary Method, while the valve seat is modeled by imposing infinity viscosity in 
the control volumes located inside the valve seat. The most important conclusion of the work is that the methodology 
showed to be suitable for studying the flow through the radial diffuser, indicating that it can be used in the future for the 
real geometry of the valve system, including the fluid-structure interaction between the reed and the flow. 
 
2. MATHEMATICAL FORMULATION 
 

In this study a two-dimensional, unsteady, incompressible, and isothermal flow of a Newtonian fluid in cylindrical 
coordinates was considered to solve the flow through the radial diffuser. The governing equations are the mass 
conservation and the momentum equations written in the r direction (radial) and x direction (axial), given by: 
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where u and v are de velocity components in the axial and radial directions, respectively; p is the pressure; and ρ and µ 
are the density and the viscosity, respectively. The terms Fr and Fx are Eulerian force density fields  responsible for 
representing the immersed body inside the flow. The Eulerian forces are calculated through the distribution of the 
Lagrangian interfacial forces,if , with the following equation: 
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where kV∆  is the Lagrangian volume, ijV∆  the Eulerian volume, kx  the Lagrangian point position, ijx  the Eulerian 

point position, and ijD  is the distribution function having Gaussian function properties (Lima e Silva et al.,2003). 

Several models to calculate the Lagrangian interfacial force, if , have been developed (Mittal and Iaccarino, 2005). In 

this work, the Virtual Physical Model proposed by Lima e Silva et al. (2003) is used to calculate the interfacial 
Lagrangian force, which is defined as: 
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where fpand,fv,fi,fa  represent, respectively, the inertial, acceleration, viscous, and pressure forces (by unit volume) 

acting on the fluid particle at the interface. The terms of Equation (5) are calculated using the Eulerian field data. 
Details of the implementation are founded in Lima e Silva et al. (2003). 

 
3. NUMERICAL METHOD 

 
The Finite Volume Method is used to discretize the governing equations, using a staggered grid. The Power-law 

scheme is used for interpolating the convective-diffusive terms and the SIMPLEC algorithm is used to treat the 
pressure-velocity coupling. The discretization of the transient term is accomplished by using the three-time level 
scheme, a fully implicit second order scheme. The algebraic equation systems are solved iteratively using the TDMA 
algorithm. Figure 1 shows the computational domain, the boundary conditions, and also the geometric parameters of the 
valve. 
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Figure 1. Computational domain and boundary conditions for the valve simulation. 
 

In this work, the following geometric parameters were considered: the valve orifice diameter is d=3 cm and the 
diameter ratio is equal to D/d = 1.5; the height of the valve seat is l = 0.5 cm; dimensionless gaps, s/d, are equals to 
0.03, 0.05 and 0.07; the dimensions of the computational domain are 1 cm and 2.75 cm in the x and r directions, 
respectively. 

The mesh used to perform the simulation is showed in Figure 2. The region with uniform mesh configuration 
(shadow region) is the region where the valve reed is modeled. The mesh employed is composed by 127x491 volumes, 
totalizing 62357 elements. The valve seat is modeled by setting the viscosity to infinity in the correspondent control 
volumes. 

 

 
 

Figure 2. Mesh employed in the simulations. 
 
 
 
 
4. RESULTS AND DISCUSSION 

 
The simulations were performed for Reynolds numbers equals to 500 and 1500, which is defined as follows: 

 

µ
ρ= dU

Re in  (6) 

 
where Uin is the uniform velocity at the inlet of the flow. A important result for the radial diffuser flow is the 
dimensionless pressure profile on the valve reed surface, P*, which is defined by Eq. (7): 
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Figures 3 and 4 present the dimensionless pressures profiles for Reynolds numbers equals to 500 and 1500, 

respectively, which are confronted with numerical results obtained with the traditional method (Finite Volume Method). 
 

 
 

Figure 3. Dimensionless pressure profiles for Re = 500. 
 

 
 

Figure 4. Dimensionless pressure profiles for Re = 1500. 
 

It can be observed a good general agreement between the profiles obtained with both approaches. Table 1 shows the 
comparison of the maximum pressure (for r/d=0) obtained from both approaches. Except for Re = 1500 and s/d = 0.07, 
all the results showed a error lower than 5 %. 
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Table 1. Comparison between the maximum pressures obtained from both approaches. 
 

Reynolds s/d 
P* 

Traditional Method 
P* 

Present Work 
Error [%] 

500 0,03 173,45 180,79 4,63 
500 0,05 51,27 51,46 0,38 
500 0,07 24,75 24,07 2,82 
1500 0,03 120,37 123,71 3,33 
1500 0,05 42,99 41,66 3,02 
1500 0,07 25,32 19,99 20,94 

 
One important parameter used to evaluate if the non-slip and impermeability conditions are been satisfied at the 

immersed boundary surfaces is the L2 norm, defined as: 
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where ku  is the prescribed velocity at the immersed boundary surface, fku  is the velocity of the fluid at the interface 

and n is the number of Lagrangian points. The time evolution of the L2 norm is presented in Fig. 5 for the simulated 
cases. 

 
 

 
(a)                                                                                           (b) 

 
Figure 5. Time evolution of the L2 norm for (a) Re = 500 and (b) Re = 1500 

 
It can be observed that the worst values for the L2 norm were obtained for Re = 1500. It is also clear a tendency for 

the L2 norm reaches better values for increasing gaps s/d. This means that the method deals better with velocity fields 
with smaller magnitudes, once that for increasing Reynolds numbers and decreasing relations s/d, the flow is highly 
accelerated in the diffuser region. Despite this, the values obtained for the L2 norm were satisfactory to produce good 
results for the dimensionless pressure profiles on the reed surface, which demonstrates a good performance of the 
method. In order to obtain better results a refined mesh must be used. 
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Figures 6 and 7 present the streamlines for Re = 500 and 1500, respectively, in the diffuser region. 
 

  
(a) 

  
(b) 

  
(c) 
 

Figure 6. Streamlines for Re = 500 considering the Immersed Boundary Method (left side) and the 
traditional method (right side) approaches for (a) s/d = 0.03, (b) s/d = 0.05 and (c) s/d = 0.07. 
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(a) 

  
(b) 

  
(c) 
 

Figure 7. Streamlines for Re = 1500 considering the Immersed Boundary Method (left side) and the 
traditional method (right side) approaches for (a) s/d = 0.03, (b) s/d = 0.05 and (c) s/d = 0.07. 

 
One can note that the streamlines obtained from both approaches are slightly different, mainly for s/d=0.07, where 

the vortex obtained from the traditional method is much larger. This explains the higher pressure for this case, once that 
the consequent reduction of the cross section area of the flow in the diffuser region increases the flow resistance. 
According to Roma et al., (1999), the Immersed Boundary Method has low resolution at the vicinity of the immersed 
boundary. The resolution can be improved by increasing the mesh density at the vicinity of the immersed boundary. In 
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this work, the coarse mesh at the region of the immersed body can be the explanation for the different flow patterns 
observed. 

 
5. CONCLUSIONS 

 
In the present work the Immersed Boundary Method, together with the Virtual Physical Model, was used for 

modeling the flow through valves of refrigeration compressors. The main aim of the work is to evaluate the reliability 
of the method for modeling the valve in a static configuration with future purposes to consider the simulation of the real 
problem of fluid–structure interaction present in the valve dynamics. 

The dimensionless pressure profiles on the valve reed surface showed a good agreement with numerical results 
obtained from the Finite Volume Method. As a consequence, one can conclude that the method can be used in further 
studies considering the motion of the valve reed, including also the fluid–structure interaction for modeling the valve 
dynamics. 
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