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Abstract. An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured 
compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass 
balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, 
for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the 
available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be 
presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix 
equation, each element is divided into three sub-elements and then the mass balance equations for each component are 
integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the 
contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are 
discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a 
conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary 
pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the 
matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture 
interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the 
applicability of the method. 
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1. Introduction 
 

Naturally fractured reservoirs play an important role in petroleum reservoir simulations since a large amount of oil 
and gas around the world are stored inside these types of reservoirs. According to Monteagudo and Firoozabadi (2004), 
about 20 percent of all the oil and gas production around the world is produced from naturally fractured reservoirs. 
Several approaches have been proposed to model the fluid flow in the naturally fractured reservoirs, such as the dual 
porosity model (Warren and Roog, 1963; Odeh, 1965; Kazemi, 1969; Kasemini et al., 1976, Reza et al., 2007). In the 
dual porosity model, the reservoir is divided in blocks also known as sugar cubes. The region inside each block 
represents the matrix, a region of highly stored capacity but of low permeability. The region surrounding each block 
represents the discrete fractures, which have higher permeability values than the matrix region. A transfer function is 
necessary in order for these two regions to communicate as there is no communication between matrix blocks. Another 
approach commonly used is the dual porosity/dual permeability model (Lingen et al., 2001; Magras et. al., 2001; Al-
Huthali and Datta-Grupta, 2004). In this method, there is communication between the matrix blocks and fractures. The 
drawback of the mentioned above methods is the representation of complex discrete fracture configurations. One 
method that can accommodate most of the features of complex fracture configurations is the discrete fractured model 
(Noorishad and Mehrn, 1982; Monteagudo and Firoozabadi, 2004; Baca et al., 2005). In this method, as discussed by 
Monteagudo and Firozabadi (2004), the conservation equations for both matrix and discrete fractures are summed up in 
order to obtain a final equation for both media. 

In this paper, we used an approach similar to the one used by Monteagudo and Firoozabi (2004) to model the 
compositional fluid flow in naturally fractured reservoirs. The discrete fractured model was implemented in an in-house 
compositional simulator called GPAS (General Purpose Adaptive Simulator). GPAS was developed at the Center for 
Petroleum and Geosystems Engineering at The University of Texas at Austin for the simulation of enhanced recovery 
processes. GPAS is a fully implicit, multiphase/multi-component simulator which can handle the simulation of several 
enhanced oil recovery processes. The approximate equations for the matrix are obtained through the EbFVM –Element 
based Finite-Volume Method (Cordazzo, 2004; Cordazzo, et al., 2004a-b; Marcondes and Sepehrnoori, 2007; 
Marcondes and Sepehrnoori, 2010). For 2D reservoirs, the discrete fractures are located along the edges of the elements 
as shown in Fig. 1. In this approach, we just apply the classical control-volume method to obtain the approximate 
equations for the discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both 
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matrix and discrete fracture potentials. In the implemented model, the saturation field in the matrix and the discrete 
fracture can be different, but the potential of each phase in the interface of the matrix and the discrete fracture needs to 
be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the 
method.  
 
2. Physical Model 
 

Isothermal, multi-component, multiphase fluid flow in a porous medium can be described using three types of 
equations: the component-material balance equation, the phase equilibrium equation, and the equation for constraining 
phase saturations and component concentrations (Wang et al., 1997). 

The material balance equation for the i-th component for a full symmetric permeability tensor using the Einstein 
notation can be written as 
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In Equation (1), nc is the number of hydrocarbon components, np is the number of phases present in the reservoir, φ 

is the porosity, Ni is the moles of the i-th component per unit of pore volume, ξj and λj are the molar density and relative 

mobility of the j-th phase, respectively, xij is the molar fraction of the i-th component in the j-th phase, K is the absolute 
permeability tensor, and Vb is the volume of control-volume that has a well. Φj is the potential of the j-th phase and is 
given by 

 
,j j jP ZγΦ = −  (2)

 
where Pj denotes the pressure of the j-th phase and Z is depth, which is positive in a downward direction. 

 
 
 
 
 
 
 
    Discrete fracture   
 
 
 

Figure 1. Zoom of the reservoir mesh with two discrete fractures included. 
 

The first partial derivative of the total Gibbs free energy, with respect to the independent variables, gives the 
equality of component fugacities among all phases, 
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i xf φln= , where φij is the fugacity coefficient of component i in the j-th phase, r denotes the 

reference phase, and nc is the number of components, excluding the water component. The restriction of the molar 
fraction is used to obtain the solution of Eq. (3), 
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where zi is the overall molar fraction of the i-th component, Ki is the equilibrium ratio for the i-th component, and ν is 
the mole fraction of the gas phase in the absence of water. The closure equation comes from the volume constraint, i.e, 
the available pore volume of each cell must be filled by all phases present in the reservoir. This constraint gives rise to 
the following equation: 
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where Vb is the bulk volume, Vp is the pore volume, and jν  is the molar volume of the j-th phase. Equation (1) is 
conservation equation for the matrix media. A similar conservation equation for the discrete fracture media is written as 
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where the subscript f denotes discrete fracture media.  

Using the continuity of capillary pressure at the interface of the matrix and the discrete fracture, we can evaluate the 
saturation field in the discrete fracture as a function of the saturation field in matrix media. As shown in Monteagudo 
and Firoozabi (2004), the saturation in the discrete fracture is given by 

 
1

, ,( ) ( ) ,wf c f c m wS P P S−=            (7) 
 

where Pc denotes the capillary pressure for the oil-water system, and the subscript m denotes the matrix media. Equation 
(6) can be rewritten in terms of Ni using the chain rule and using Eq. (7) to evaluate the derivative of Ni with relation to 
Sw as  
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In GPAS, the unknown primary variables are water pressure Pw, N1,..,Nnc, lnK1,.., lnKnc. 

 
3. Aproximate Equations 
 

In the EbFVM, each element is divided into sub-elements. These sub-elements will be called sub-control volumes. 
The conservation equation, Eq. (1), needs to be integrated for each sub-control volume. Figure 2 presents a triangular 
element and all of the sub-control volumes associated with each element. By integrating Eq. (1) in time and for each 
one of the sub-control volumes, and applying the Gauss theorem for the advective term, we obtain: 
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To evaluate the first and second terms of Eq. (9), it is necessary to define the shape functions. The linear shape 

functions as defined by Eqs. (10) will be used. 
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Figure 2. Triangular element and its respective sub-control volumes. 

 
Using the shape functions, any physical properties or positions can be evaluated inside an element as 
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where Nv denotes the number of vertex for each element. Using the shape functions, gradients of potentials can be easily 
evaluated as 
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To evaluate the gradients, it is necessary to obtain the derivatives of shape functions relative to x and y. These 
derivatives are given by 
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where Jt is the Jacobian of the transformation, given by 
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To perform the integration of Eq. (9), it is necessary to define the volumes of each sub-control volume and the area 

of each interface. The volumes of each sub-control is given by 
 

det( )
,

6
t

i

J s t h
Vscv

Δ Δ
=           (15) 

 
where h is the thickness of the reservoir. The area of each interface, reading a counterclockwise, is given by 
 

.dA h dy i h dx j= −            (16) 
 

By substituting Eqs. (15) and (16) into Eq. (9), for the accumulation term and the advective flux term, respectively, 
and evaluating the fluid properties through a fully implicit procedure, the following equations for the two mentioned 
terms are obtained: 
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where the subscript o denotes properties evaluated in the previous time-step. By inspecting Eq. (17), it can be inferred 
that it is necessary to evaluate molar densities, molar fraction, and mobilities in two interfaces of each sub-control 
volume. To evaluate these properties, an upwind scheme based on Cordazzo et al. (2004a) will be used. For instance, 
the mobilities and other fluid properties are evaluated at the integration point 1 in Fig. 2 by 
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Inserting Eqs. (16) and (17) into Eq. (6), the following equation for each element is obtained: 
 

, , 0 ; 1, ; 1, 1.m i m i i v cAcc F q m N i n+ + = = = +         (20) 
 
Equation (20) denotes the conservation for each sub-control volume of each element. Now, it is necessary to 

assemble the equation of each control volume to ascertain the contribution of each sub-control volume sharing the same 
vertex. This process is similar to assembling the stiffness global matrix in the finite element method. 
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4. Test Problems 
 

This section presents three simulation case studies using the EbFVM approach. The first two case studies were used 
to validate the present formulation with the results presented by Firoozabadi and Monteagudo (2004). The third case 
study presents a generic reservoir with six discrete fractures. Figure 3 presents the two-grid configurations used for case 
1 and case 2 as well the discrete fracture configurations used for each case study. Table 1 presents the fluid and physical 
properties used for case studies 1 and 2. The Corey’s relative permeability model was used for all case studies as given 
in Table 2, for both matrix (m) and discrete fractures (f). For case study 1, the discrete fracture is represented by a single 
line whose end point coordinates are: (0.2, 0.2) m and (0.8, 0.8) m. Table 3 presents the line coordinates used for case 
study 2. The general view of reservoirs used for case study 3 along with the discrete fracture configuration is presented 
in Fig. 4. For this case study, we have two injectors and two producers. We injected 2.3148x10-6 m3/s of water into each 
well. The reservoir area was equal to 4,480.81 m2 and reservoir thickness was equal to 3.048 m. The other physical 
parameters for this case are given in Table 1. 

 
Table 1. Input data for case studies 1 and 2. 

Reservoir data Initial conditions Physical properties and well 
conditions 

Reservoir dimension (Lx = Ly = Lz 
= 1 m 
Matrix: Absolute permeability: 
(Kxx= Kyy) = 9.87x10-16 m2 (1 mD) 
Porosity = 0.2 
Discrete Fracture: 
(K) = 8.26119x10-10 m2 (837,000 
mD) 
Porosity: 1.0 
Width: 10-4 m 

Water saturation Swi = 0.0001 
Reservoir pressure = 3.45 MPa 
(500 psi) 

Water viscosity = 0.8x10-3 Pa.s 
Oil viscosity = 0.45x10-3 Pa.s 
Water injection rate = 2.3148x10-8 
m3/s 
Bottom hole pressure = 3.45 MPa 
(500psi) 
  

 
Table 2. Corey’s relative permeability model data 

 Matrix (m) Discrete fracture 
(f) 

 Water Oil Water Oil 
End point relative permeability 1.0 1.0 1.0 1.0 

Residual saturation 0.2 0.1 0.0 0.0 
Exponent of relative permeability 5.0 5.0 3.0 3.0 

 

(a) (b) 
Figure 3. Mesh and discrete fracture configurations. a) Case study 1. b) Case study 2. 

 
The capillary pressure used in this work is the same as the one used by Monteagudo and Firoozabadi (2004), given 

by 
 

( ) ln( ),w i wPc S B S=−            (20) 
where i denotes the matrix (m) or discrete fracture (f) media. The unit used for Pc is in Pa. 
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Table 3.  Fracture coordinates for case study 2. 
Fractures Coordinate of pont 1 (m) Coordinate of point 2 (m) 

1 (0.18, 0.40) (0.75, 0.70) 
2 (0.30, 0.83) (0.85, 0.33) 
3 (0.55, 0.74) (0.87, 0.53) 
4 (0.50, 0.75) (0.40, 0.16) 
5 (0.25, 0.70) (0.65, 0.90) 
6 (0.35, 0.30) (0.80, 0.15) 

 

 
Figure 4. General reservoir with six discrete fractures. 

 
5. Results 
 

Figure 5 presents the results for case study 1, in terms of cumulative water and oil ratio (WOR) and oil recovery, 
respectively. The capillary pressure coefficient ratio between the matrix and the discrete fracture (Bm/Bi) varies from 
one to five. The results presented by Monteagudo and Firoozabadi (2004) are also shown in the figure. 
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Figure 5. Case study 1. a) Oil recovery curves. b) Cumulative water and oil ratio curves. 
 
From Figure 5, it is possible to observe that except for the WOR curve for Bm = Bf = 1, all the results are in good 

agreement with those presented by Monteagudo and Firoozabadi (2004). Several parameters such as the mesh size, 
maximum time step, and convergence criteria were changed, but the difference between the WOR curves for Bf = Bm=1 
of the present work and the one presented in the Montegudo and Firoozobadi (2004) did not decrease. However, it is 
important to mention that the difference between the water breakthrough was only about 0.029 PV (2.9 days). More 
importantly, the curves present almost the same trends. From Figure 5, it possible to verify that the capillary pressure 
ratio between the matrix and the discrete fracture has a strong effect in the oil recovery process. Increasing this ratio 
will delay the water breakthrough and increase the oil production. These phenomena were also observed by 
Monteagudo and Firoozabadi (2004).  

Figure 6 presents water saturation field results for various values of Bm and Bf for case study 1. As shown in Fig. 5, 
there is a long delay in the water breakthrough when capillary pressure increases. This effect is clearly demonstrated in 
Fig. 6. The saturation fields shown in Figure 6 are similar to the ones presented by Monteagudo and Firoozabadi (2004). 
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Figure 7 presents the results for case study 2, in terms of the cumulative water and oil ratio (WOR) and oil recovery 
for matrix capillary pressure 0 and 1 as well as discrete fracture 0, 1, and 0.2. Again, we can see that capillary pressure 
has a strong effect in the oil recovery process. 

Figure 8 presents the water saturation fields for the investigated parameters of case study 2 (see Fig. 7). When the 
saturation fields from Fig. 8 are compared to those presented in Fig 6, for case study 1, we observe that the main 
difference between the saturation fields is the large spread in the water saturation as shown in Figure 6. This spread in 
the water saturation fields is caused by the configuration discrete fractures.  

 
(a) 

 
(b) 

 
(c) 

 
Figure 6. Water saturation fields for case study 1 at 0.5 PV (50 days). a) Bm = Bf = 0. b) Bm = Bf = 1. c) Bm = 1, Bf = 

0.2. 
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Figure 7. Case study 2. a) Oil recovery curves. b) Cumulative water and oil ratio curves. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Water saturation fields for case study 2 at 0.25 PV (25 days). a) Bm = Bf = 0. b) Bm = Bf = 1. c) Bm = 1, Bf 
= 0.2. 
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Figure 9 presents the saturation fields for case study 3 at 0.146 PV (1000 days). Although the breakthrough did not 
occur in any producer well, it can be seen that the saturation front for the case with capillary pressure is delayed in 
comparison with the case without capillary pressure.   

 
 

  
 
Figure 9. Water saturation fields for case study 3 at 0.146 PV (1000 days). a) Bm = Bf = 0. b) Bm = 1, Bf = 0.2. 
 

 
6. Conclusions 

 
We have presented an investigation of naturally-fractured reservoirs using the discrete fractured model in 

conjunction with an element-based finite-volume approach and unstructured grids. In the discrete fracture approach, 
both the discrete fracture and the matrix mass balances are taken into account without any additional formulations to 
couple the matrix and discrete fractures. For the 2D reservoirs shown in this paper, the discrete fracture model is 1D and 
the discrete fractures are located along the edges of each element. Capillary pressure was included in both matrix and 
discrete fracture media. We have shown the results for several discrete fractures configurations. The presented results 
were in good agreement with similar approach described in the literature. In order to be more realistic from a 
compositional reservoir modeling point of view, the discrete fracture model is being implemented to include the gas 
phase. Also, the implementation of this model for  3D reservoirs is underway. 
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