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Abstract. Unstructured meshes presented one upgrade in modeling the main important features of the reservoir such as 
discrete fractures, faults, and irregular boundaries. From several methodologies available, the Element based Finite 
Volume Method (EbFVM), in conjunction with unstructured meshes, is one methodology that deserves large attention. 
In this approach, the reservoir, for 2D domains, is discretized using a mixed two-dimensional mesh using quadrilateral 
and triangle elements. After the initial step of discretization, each element is divided into sub-elements and the mass 
balance for each component is developed for each sub-element. The equations for each control-volume using a cell 
vertex construction are formulated through the contribution of different neighbored elements. This paper presents an 
investigation of an element-based approach using the black-oil model based on pressure and global mass fractions. In 
this approach, even when all gas phase is dissolved in oil phase the global mass fraction of gas will be different from 
zero. Therefore, no additional numerical procedure is necessary in order to treat the gas phase appear/disappearance. 
In this paper the above mentioned approach is applied to multiphase flows involving oil, gas, and water. The mass 
balance equations in terms of global mass fraction of oil, gas and water are discretized through the EbFVM and 
linearized by the Newton’s method. The results are presented in terms of volumetric rates of oil, gas, and water and 
phase saturations. 
 
Keywords: Black-oil model, Global mass fractions, EbFVM, Multiphase flow. 

 
1. INTRODUCTION  
 

Unstructured mesh is one important tool for modeling important features of the reservoirs such as discrete fractures, 
faults, and irregular boundaries, and as well deviated wells. From several options available, the EbFVM is one 
methodology that has received a lot of attention in the literature (Cordazzo, 2004; Cordazzo et al. 2004a-b; Marcondes 
and Sepehrnoori, 2007; Karpinski et al. 2009; Marcondes and Sepehrnoori, 2010), mainly because is locally 
conservative. In this paper, this EbFVM approach is applied to the black-oil model in terms of Global mass fraction and 
pressure (Maliska et al., 1997; Prais and Campagnolo, 1981; Nunes et al., 2009) for simulating three phase flow (oil, 
gas, and water). 

The EbFVM approach combines the flexibility obtained by the Finite Element Method with the property of locally 
and globally conservation from the classical Finite Volume Method. It employs the ideas of Baliga and Patankar (1988), 
and Raw (1985) to develop the method of FIELDS to solve the Navier-Stokes equations. In the literature, this method is 
generally known as the Control Volume Finite Element Method (CVFEM). However, a better denomination would be 
Element based Finite Volume Element Method (EbFVM) as defined by Maliska (2004), since this approach is still a 
finite volume method, which only borrows, from the finite element technique, the concept of elements and their 
functions. On the other hand, CVFEM erroneously suggest a finite element formulation that meets the conservation 
principles at the discrete level. Therefore, the name EbFVM will be used throughout this paper.  

This paper proposes a methodology for numerical simulation of multiphase flow using the black-oil model in 
conjunction with the EbFVM approach and unstructured meshes using quadrilateral and triangles. The black-oil model 
considers the system with only three components - oil, water and gas - and three phases, also known as oil, water and 
gas. It is assumed that the component oil and water only exist in the oil and water phase, respectively, and the gas 
component can be found either in the gas phase or in oil phase. This model also considers that the temperature of the 
reservoir is constant and that there are no chemical reactions between components. This model is recommended for 
heavy oils with low volatility, like those ones found in Brazil (Cordazzo, 2006).The mass balance equations in terms of 
global mass fraction of oil, gas and water are discretized through the finite-volume method and linearized by the 
Newton’s method. The results are presented in terms of volumetric rates of oil, gas, and water, and as well as phase 
saturation fields. 
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2. PHYSICAL MODEL  
  

The black-oil equations for the water, oil, and gas components in terms of the global mass fractions and pressures 
are given by: 
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By summing Eqs. (1)-(3), the following global mass conservation equation is obtained: 
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In this work, Eq. (4), is called pressure equation. In Eqs. (1) through (4), φ denotes the porosity, ρm denotes the 

average density, Zw, Zo, Zg are the water, oil, and gas global mass fractions, respectively, Xoo denotes the mass fraction of 
component oil in oil phase, λw, λo, λg  are mobilities of the water, oil, and gas phases, respectively, multiplied by the 
density of the each phase, wm , om , gm  are the mass flow rate of water, oil and gas phases, respectively per unit of bulk 
volume of the reservoir. These terms represent the sink or source terms for the control volumes which could contain a 
well. K is the absolute permeability tensor which is assumed, in this work, as a diagonal tensor. The potential of each 
phase (Φ) is given by 
 

,p p pP g zρΦ = −            (5) 
 
where p denotes the water, oil, or gas phase, P is the pressure, ρp is the density of phase p, g is gravity, and z is the 
depth, which is positive in the upward direction. Inspecting  Eqs. (1) through (5), we can be inferred that there are 6 
unknowns (Zw, Zo, Zg, Pw, Po, and Pg) and only three equations, since Eq. (4) is just a combination of Eqs. (1)-(3). The 
closing equations comes from capillarity pressure relations and the mass conservation equation which requires 
 

1w o gZ Z Z+ + =            (6) 
 

The problem under consideration is a multiphase flow in porous media. For reasons of simplicity, some effects are 
neglected in this work: chemical reactions, thermal effects and capillary.  
 
3. APPROXIMATE EQUATIONS  
 

In order to obtain the approximate equation for each component, the conservation equations need to be integrated in 
time and for each sub-control volume shown in Fig. 1. Considering the Eqs. (1)-(3), for a generic component p, the 
following equation is obtained:  
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Applying the Gauss theorem to the first term in the right-had side of Eq. 7, one obtains: 
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By performing the time integrations and dividing the right-hand side terms by the time step (Δt), we obtain the 

following equation: 
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where the surface integral is performed over all edges of each sub-control volume. No matter the element shape, there 
are two integration points where integral surface needs to be evaluated (see Fig. 1). In order to evaluate the first term in 
the right-hand side of Eq. (9), it is necessary to define the shape functions. The shape functions, for triangular and 
quadrilateral elements are respectively, given by 
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Figure 1. Triangular and quadrilateral elements, and its respective sub-control volumes (SCV). 
 

By using the shape functions any physical properties or positions can be evaluated inside an element as 
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where NNE denotes the number of vertex for each element. Elements using the same shape function for coordinates and 
physical properties are known as isoparametric elements (Hughes, 1987). Using the shape functions, gradients of 
potentials can be easily evaluated as  
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To evaluate the gradients, it is necessary to obtain the derivatives of shape functions relative to x and y. These 

derivatives are given by  
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where Jt is the Jacobian of the transformation and it is given by 
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To perform the first integral in the left and right-hand size of Eq. (9), it is necessary to define the volumes of each 

sub-control volume and the areas of each interface. The volumes of each sub-control for triangles and quadrilaterals, 
respectively, are given by: 
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where h is the thickness of the reservoir. For quadrilateral det(Jt) needs to be evaluated at the center of each sub-control 
volume. The area of each interface, reading a counterclockwise, is given by 
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By using a midpoint approximation along each integration point in Eq. (9), results in the following equation for each 
sub-control volume: 
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By substituting Eqs. (16) and (17) for the accumulation term, and Eq. (18) for the advective flux into Eq. (19), and 

evaluating the fluid properties through a fully implicit procedure the following equations for the two mentioned terms 
are obtained: 
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By inspecting Eq. (21), it can be inferred that it is necessary to evaluate mass densities, mass fraction and mobilities 

in two interfaces of each sub-control volume. To evaluate these properties, an upwind scheme based on Cordazzo 
(2004) will be used. The mobilities and other fluid properties are evaluated at the integration point 1 of Fig. 1, for 
instance, by 
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where the node j considered in the above equations is correspondent to the sub-control volume whereby the normal 
vector associated to ΔS points outward. Note that this scheme is based on the evaluation of the flow direction, even 
though the mobility term was omitted in Eq. (10), because it yields always a positive value. The scheme outlined in Eq. 
(22) assures that the mobilities that will be used at the interfaces are the ones located on the upstream direction, even in 
cases where the medium is anisotropic. Differently from the classical finite volume method where elements and control 
volumes are coincident (cell centered construction), in the EbFVM approach control volumes are built around grid 
nodes, joining the center of the elements to its medians (cell vertex construction). The resulting control volume is 
formed by portions (sub-control volumes) of neighboring elements, as shown in Fig. 1. Equation (19) represents the 
conservation equation for each sub-control volume of each element. Now, it is necessary to assemble the equation of 
each control volume obtaining the contribution of each sub-control volume that shares the same vertex. 
 
4. TEST PROBLEMS 
 

In order to show the application of the methodology employed in the present work four case studies were carried 
out. The first one is the simulation of a square undersaturated reservoir with a producer well in its center. Table 1 
presents the fluid and physical properties. The relative permeability curves for the all case all studies shown in this 
paper are given in Tabs. 2 and 3. Also, the capillary pressure was set to zero for all simulated case studies. 
 
 

Table 1 – Input data for case 1. 
 

Reservoir data Initial condition Physical properties Well conditions 
K = 9.9 x 10-13 m3 

A = 2.1404 x 106 m2 

h = 15m 
φ = 0.2 
cr = 0.0 
rw = 0.122 m 

P = 20 x 106 Pa 
Swi = 0.12 
Soi = 0.88  

Bw = 1 at 0 Pa 
cw  = 1.00 x 10-10 Pa-1 

co = 1.985 x 10-9 Pa-1 

 

Pwf = 20x106 Pa 

 
Table 2 – Oil-gas relative permeability as a function of liquid saturation (Sw+So). 

    
Slt krg krog 

0.00000 
0.03409 
0.20454 
0.31818 
0.43182 
0.48864 
0.54545 
0.65909 
0.71591 
0.77273 
0.86364 
0.94318 
0.97727 
0.99886 

0.984 
0.980 
0.940 
0.870 
0.720 
0.600 
0.410 
0.190 
0.125 
0.075 
0.025 
0.005 
0.000 
0.000 

0.0000 
0.0000 
0.0000 
0.0004 
0.0010 
0.0100 
0.0210 
0.0900 
0.2000 
0.3500 
0.7000 
0.9800 
0.9970 
1.0000 

 
Table 3 – oil-water relative permeability as a function of water saturation (Sw). 

  
Sw Krw Kro 

0.12 
0.82 

0.00 
1.00 

1.00 
0.00 

 
The second and third case studies refer to a simulation in a saturated quarter of five spot, but water is injected in the 

former second case study, and gas is injected for the latter one. Figure 2 shows the unstructured meshes employed for 
case study one, two and three.  
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(a) (b) 

 
Figure 2.  Unstructured meshes. a) Triangular mesh with 162 vertices; b) Quadrilateral mesh with 75 vertices. 

 
Table 4 presents the fluid and physical properties for case studies 2 and 3, where qi denotes the injected volumetric 

rate of water or gas. 
 
 

Table 4 – Input data for case 2 and 3. 
 

Reservoir data Initial condition Physical properties Well conditions 
K = 9.9 x 10-13 m3 

A = 2.1404 x 106 m2 

h = 15m 
φ = 0.2 
cr = 0.0 
rw = 0.122 m 

P = 20 x 106 Pa 
Swi = 0.12 
Soi = 0.88  

Bw = 1 at 0 Pa 
cw  = 1.00 x 10-10 Pa-1 

co = 1.985 x 10-9 Pa-1 

 

qi = 17280 m³/d  
Pwf = 20x106 Pa 

 
The case study 4 is used to demonstrate the applicability of EbFVM approach to represent complex geometries. For 

this case, water is also injected in an undersaturated reservoir. Figure 3 shows a hybrid mesh composed of quadrilateral 
and triangular elements employed for this case study. The input data for this case is presented in Table 5. 
 

Table 5 – Input data for case 4. 
 

Reservoir data Initial condition Physical properties Well conditions 
K = 9.9 x 10-13 m3 

A = 2.2631 x 106 m2 

h = 15m 
φ = 0.2 
cr = 0.0 
rw = 0.122 m 

P = 20 x 106 Pa 
Swi = 0.12 
Soi = 0.88  

Bw = 1 at 0 Pa 
cw  = 1.00 x 10-10 Pa-1 

co = 1.985 x 10-9 Pa-1 

 

qwi = 17280 m³/d  
Pwf = 20x106 Pa 

 

 
Figure 3. Hybrid mesh used for case 4 with 134 vertices. 
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5. RESULTS AND DISCUSSIONS 
 

Figure 4 shows the gas saturation field at 39 days for case study 1. From this figure, it possible to verify that after 
the reservoir depletion gas that was initially miscible with the oil phase appears as free gas into the reservoir 
demonstrating the ability of black-oil model in terms of global mass fraction to deal with gas the gas phase appearing. 
Figure 5 presents the oil and gas volumetric flow rates at surface conditions. From that figure, it is possible to infer that 
results obtained with the triangular and quadrilateral elements were in good agreement. Also, these results are in good 
agreement with the ones obtained with a 10x10 Cartesian mesh using an in-house simulator. Finally, we can observe 
that after the initial depletion the volumetric rates of gas and oil become null. This fact happens due to pressure 
equalization inside the reservoir. 

Figure 5 shows the water saturation field for case study 2 at 210 days. Although, it was employed two very coarse 
meshes the saturation front are approximately the same. 

(a) (b) 
 

Figure 4.  Gas saturation field for case study 1 at 39 days. a) Triangular mesh with 162 vertices; b) Quadrilateral mesh 
with 75 vertices. 

(a) (b) 
 

Figure 5.  Standard volumetric rates for case 1. a) Oil; b) Gas. 
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(a) (b) 

 
Figure 6.  Water saturation field for case study 2 at 210 days. a) Triangular mesh with 162 vertices; b) Triangular mesh 

with 75 vertices. 
 

Figure 7 presents oil and water volumetric rates recoveries curves for case study 2 using the meshes presented in 
Fig. 2, as well as the results using a 10x10 Cartesian mesh. It is important to mention that the volumetric rate of gas 
showed in Fig. 7b, comes only from the standard gas that was previously miscible with the oil phase at reservoir 
conditions. Although the volumetric rates were obtained with very coarse meshes, a very good agreement between the 
volumetric rates was observed. The results were also in good agreement with the ones obtained with the Cartesian 
mesh. 
 

 
(a) (b) 

 
Figure 7. Transient flow rate for case 2. a) Oil; b) Gas. 

 
Figure 8 shows the gas saturation field for case study 3. Again, the gas saturation fields obtained with both meshes 

are very close to each other. Although the quadrilateral mesh is very coarse, both field are almost symmetrical.   
 

 
(a) (b) 
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Figure 8.  Gas saturation field for case study 3 at 210 days a) Triangular mesh with 162 vertices; b) Quadrilateral mesh 
with 75 vertices. 

 

 
(a) (b) 

 
Figure 9. Transient flow rate for case 3. a) Oil; b) Gas. 

 
Figure 9 presents the volumetric rates of oil and gas at standard conditions. Again the volumetric rates obtained with 

both meshes are very close to each other. On the other hand, the results obtained with the Cartesian mesh were not close 
to the ones obtained with EbFVM approach when large variation in volumetric rates occurred. 

Figures 10 and 11 present the water saturation field at 41 and 210 days, and oil and gas volumetric rates at standard 
condition, respectively. Although, the mesh is much distorted the saturation field presented in Fig. 10 is physically 
acceptable. Once again, the gas volumetric rate presented in Fig. 11b comes from gas the was miscible with the oil 
phase at the reservoir conditions. 

 

 
(a) (b) 

 
Figure 10.  Water saturation field for case study 4. a) 41 days; b) 210 days. 

 

(a) (b) 
 

Figure 11.  Transient flow rate for case study 4. a) Oil; b) Gas. 
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4. CONCLUSIONS 
 

This paper presented an element-based approach for black-oil model in terms of pressure and global mass fraction in 
conjunction with unstructured meshes. The results for water and gas flooding as well as primary recovery were 
compared with an in-house simulator using Cartesian meshes. Triangular, quadrangular and hybrid meshes were used 
for testing and verifications of the implemented approach. The results in terms of volumetric rates of oil, gas, and were 
in good agreement with the ones obtained with Cartesian meshes. 
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