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Abstract. The current  article  aims to  perform stabilized finite  element  approximations for inertia  flows of  SMD  
(Souza Mendes and Dutra, 2004) viscoplastic materials. The viscoplastic model is approximated by a multi-field  
Galerkin least squares method in extra-stress, pressure and velocity. This methodology does not need to satisfy the  
compatibility conditions arisen from finite element sub-spaces for extra-stress–velocity and pressure–velocity. That is  
accomplished by adding mesh-dependent terms, which are functions of residuals of flow governing equations, to the  
classical Galerkin formulation.  Numerical simulations of the flow around a cylinder inside a planar channel are  
carried out. To evaluate the influence of yield stress limit and inertia on material yield surfaces, the dimensionless  
flow-rate U* is investigated from 0.01 to 1.0 and a rheological definition for the Reynolds number from 1.0 to 50. The  
results generated in this work reassure the fine stability features of the GLS formulation and the adequacy of the  
SMD equation in describing the stress-strain relation for non-linear viscoplastic fluid flows.
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1. INTRODUCTION 

During the past several decades the emphasis in rheology and continuum mechanics has been in one-phase materials  
with particular attention to polymer solutions and melts. Slurries, pastes and suspensions, frequently, encountered in 
industrial applications, have received less attention than they deserve. Many of these materials have an yield-stress, a  
critical value of stress below which they do not flow; they are usually called viscoplastic materials. Another examples 
of materials that fall in this category are xanthan gum, drilling mud, cement, paints and grease.

The present article concerns stabilized finite element approximations for non-linear viscoplastic materials flowing 
under inertia influence. The employed material equation is the viscoplastic one introduced by Souza Mendes and Dutra 
(2004) – henceforth named SMD fluid. This model is approximated by a multi-field Galerkin least squares method in  
terms of extra-stress, pressure and velocity. This methodology – introduced by Hughes  et al. (1986), for the Stokes 
problem, and later extended to mixed and multi-field Navier-Stokes equations in Franca and Frey (1992) and in Behr et  
al. (1993), respectively – does not need to satisfy the compatibility conditions arisen from finite element sub-spaces for 
extra-stress–velocity and pressure–velocity fields.  It  enhances the stability of the classical  Galerkin method adding 
mesh-dependent terms, which are functions of the residuals of flow governing equations, evaluated element-wise.

Numerical simulations of the flow around a cylinder inside a planar channel are carried out. In order to evaluate the  
influence of yield stress and inertia on yield surfaces of viscoplastic materials, the dimensionless flow-rate U* is varied 
from 0.01 to 1.0 and a new definition for the Reynolds number – introduced by Souza Mendes (2007) – is ranged from 
1.0 to 50, with the SMD dimensionless number J set as 104. In all computations, a combination of equal-order bilinear 
finite element interpolations are used to approximate the primal variables of the problem, thence violating the involved  
compatibility conditions. The results generated in this work proved to be physical meaningful and are in accordance to  
the viscoplastic literature 

2. MECHANICAL MODELING

Assuming an isothermal flow around a cylinder inside a planar channel, it suffices to solve only the mass and linear 
momentum balance equations,  since the Cauchy stress tensor is a symmetric one– thence automatically satisfying the 
balance of angular momentum (Astarita and Marrucci, 1974). For incompressible fluids, the continuity equation may be 
written as

div u=0    (1)

where u is the fluid velocity field.
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Assuming  the  stress  tensor  T decomposition  in  a  spherical  and  deviatoric  portions, T=−p I –  with  p 
representing a non thermodynamic pressure,  I the unity tensor, and  τ  the extra-stress tensor, the momentum balance 
equation for steady flows may be stated as (Astarita and Marruci, 1974)

∇ uu∇ p−div=f    (2)

with ρ representing the fluid density and f the body force vector. 
In inelastic non-Newtonian fluid flows, the extra-stress tensor may be related to fluid kinematics by a generalization  

of Newton law for viscosity, the so-called generalized Newtonian (GNL) law (Bird et al., 1987),

=2̇D    (3)

in which  ̇ is a  shear-rate-dependent viscosity, a function of the second invariant of the tensor D, 

̇=2 tr D21/2    (4)

In the present work, the employed viscoplastic function is the one recently introduced by Souza Mendes and Dutra 
(2004) for non-linear viscoplastic materials. According the SMD model, the shear stress is expressed by

=1−exp−0̇ /00K ̇n    (5)

where 0 is the yield stress limit of the material, K is the consistency index, η0 is the Newtonian viscosity for very low 
values  of the shear  rate,  n is  the power-law exponent – that  controls the shear-thinning of  the viscosity when the 
material stats to flow – and  is the magnitude of the extra-stress tensor,

=1 /2 tr 21/ 2    (6)

From Eq. (4) and (5), the SMD viscosity function may be written as

 ̇=1−exp−0 ̇/0
0

̇
K ̇

n−1
    (7)

The Eq.(5)  may be  written  in  a  non-dimension  form through the  introduction of  the  jump number  J,  a  SMD 
dimensionless parameter, that gives the relative measure of the shear rate jump that occurs when =0,

J≡
̇1−̇0

̇0

=
00

1−n /n

K1/n
   (8)

where ̇0 is the shear rate at the end of the Newtonian-like behavior – in which the viscosity is equal to  η0 – and
̇1 corresponds to the shear rate at the beginning of the shear- thinning region on the SMD flow curve – see, for 

details, Souza Mendes et al. (2007). Hence, the SMD function may be written in a dimensionless form as

*=1−exp− J1̇*1̇*n    (9)

3. FINITE ELEMENT APPROXIMATION

The problems considered herein are defined on a bounded open domain  Ω ⊂  with a polygonal or polyhedral 
boundary  Γ, formed by the union of  Γg – the portion of  Γ wherein Dirichlet conditions are imposed – and  Γh – the 
boundary  portion subjected to Neumann conditions. A partition Ωh of Ω  into finite elements is performed in the usual 
way, namely no overlapping is allowed between any two elements, the union of all element domains ΩK reproduces Ω  
and a combination of triangles and quadrilaterals for the two-dimensional case can be accommodated (Ciarlet, 1978).

As usual, L2(Ω), L2
0(Ω),H1(Ω) and H0

1(Ω) stand for Hilbert and Sobolev functional spaces, respectively, as follows,



Proceedings of ENCIT 2010                                                                         13th Brazilian Congress of Thermal Sciences and Engineering
Copyright © 2010 by ABCM December 05-10, 2010, Uberlandia, MG, Brazil

L2={q∣∫
q2 d0}

L2
0
={q∈L2∣∫


q d=0}

H 1={v∈L2∣ ∂x i
v∈L2 , i=1, N }

H 0
1 ={v∈H 1∣ v=0 on g , i=1, N }

                                                                                                     (10)

From Eq. (1)-(4) and (7), a multi-field boundary-value problem for inertia steady flows of SMD viscoplastic fluids  
may be stated as,

[∇u ]u∇ p−div=f in 

−2 1−exp −02tr D2


1 /2
/002tr D2


−1/2

K 2tr D2

n−1/2

D u=0 in 

div u=0 in 

u=ug on g
u

= g on g


[−p I ]n=t h on h

 (11)

where n the outward unit vector, th the stress vector, and the remaining variables are defined as previously.
The finite element approximation for the multi-field boundary-problem defined by Eq. (11) may be built employing  

the following finite element subspaces for extra stress (h), velocity (Vh) and pressure (Ph) fields,

V h={v∈H0
1 N∣v| K∈Rk K

N , K∈h}

V g
h
={v∈H 1


N
∣v| K∈Rk K 

N , K∈h, v=ug on g}

Ph
={p∈C0

∩L2
0
∣p| K∈R lK , K∈

h
}


h
={S∈C0


NxN
∩L2

NxN
∣Sij=S ji , i , j=1, N , S | K∈Rm K 

NxN , K∈
h
}

 (12)

with Rk, Rl and Rm denoting polynomial spaces of degree k, l and m, respectively. Based on these definitions, a multi-
field Galerkin least-squares formulation for inertia flows of SMD fluids may be written as: given the functions of body 
force f and Dirichlet and Neumann boundary conditions g and ug, and th respectively, find the triple ( h,ph,uh) ∈  h×Ph 

×Vg
h  such that

B  h, ph ,uh;Sh, qh , v h=F Sh , qh ,v h ∀ Sh , qh ,vh ∈  h× Ph× Vg
h  (13)

with 

B h , ph , uh;Sh , qh ,v h
=[2 1−exp−02tr D2


1 /2
/002tr D2


1 /2
K 2tr D2


n−1 /2

]
−1∫




h
⋅Shd

∫

[∇ uh

]uh
⋅v hd−∫




h
⋅D vh

d−∫


ph div v hd∫


div uh qh d∫


ph qh d−∫


Duh
⋅Sh d

∑
K∈h

∫
K

 [∇ uh] uh∇ ph−div h⋅ ReK  [∇ vh]uh∇ q h−div Shd∫


div uhdiv vhd

2 1−exp−02tr D2

1 /2
/002tr D2


1 /2
K 2tr D2


n−1 /2

 .

.∫

[21−exp−0 2tr D21/2/00 2tr D2−1 /2K 2tr D2n−1 /2]−1 h−Duh.

⋅[2 1−exp −02tr D21/2/002tr D2−1/22tr D2n−1/2]−1 Sh−Dv hd
  (14)

and 

F Sh , qh, vh
=∫


f⋅vh d∫

 h

th⋅v
hd ∑

K∈h

∫
K

f⋅  ReK [ ∇ vh
]uh

∇ qh
−div Sh

d  (15)

where the grid Reynolds number ReK and the stability parameters  α(ReK) and  δ are defined as in Franca and Frey 
(1992), 
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ReK =
hK

2∣uh∣p

ReK

ReK={ReK , 0ReK1
1, ReK1 }

ReK=
hK∣u

h∣pmk

4 1−exp−02tr D2


1/2
/002tr D2


−1 /2

K ̇
n−1


mk=min {1 /3,2C k}

 (16)

and the stability parameter for the SMD equation  β is defined as an arbitrary positive value according to Behr  et al. 
(1993), and mk is a positive scalar that takes in to account the the k-degree of the polynomial interpolations – see Franca 
and Frey (1992), for details.

4. NUMERICAL RESULTS

In this section, the multi-field GLS formulation defined by Eq. (13)-(16) has been employed to approximate SMD 
fluid flows around a cylinder kept between two parallel plates. The dimensionless parameters employed to characterize 
the flows are, first, the dimensionless flow rate U* (see Souza Mendes et al., 2007),

U *=
u0

̇1 Lc

 (17)

where u0 is the flow rate at the channel inlet and the the characteristic length Lc is taken as the cylinder radius. Secondly, 
to account for inertia effects, the Reynolds number ReRH,  a dimensionless parameter based only on fluid properties 
(Souza Mendes, 2007),

Re RH=
 ̇1

n−1 L2

K
 (18)

and, finally, the jump number  J introduced by Eq.(8). It is worth mentioning that  ReRH may be related to the usual 
Reynolds  definition  accounting  for  the  shear-thinning of  the  viscosity  (see,  for  instance,  Jay  et  al.,  2001)  by  the 
expression (see Santos et al. (2010), for details)

Re PL=ReRH U *2−n   (19)

Figure 1a schematically shows the employed boundary conditions in the numerical simulations: uniform parallel 
velocity  u0 at channel inlet and outlet, no-slip and impermeability on channel walls and on the cylinder surface, and 
symmetry conditions on the channel centerline (∂2u1=u2=12=0). The channel aspect ratio, i. e. the half of channel width 
(H) divided by the cylinder radius (R), is set as two. In order to guarantee fully-developed flow regions upstream and 
downstream of the cylinder, the mesh lengths either upstream or downstream of th cylinder are set equal to 17R. After a 
mesh independence procedure that compares the dimensionless pressure drop for each consecutive mesh refinements,  
the selected mesh, with 11,584 bilinear Lagrangian (Q1) finite elements, presents an overall error less then 1% when 
compared to the next more refined mesh – see Fig.1b for a blown-up view around the cylinder of the selected mesh.

 (a)
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 (b)

Figure 1. Flow around a cylinder: (a) the problem statement; (b) a blown-up view of the selected mesh.

The influence of yield stress effects on the development of yielded and unyielded regions (black zones) in inertia  
flows  of  SMD fluids  is  shown in Fig.  2,  for  U*=0.01-1.0, ReRH=1.0,  J=104 and  n=0.5.  One may observe  that  all 
unyielded regions at the cylinder vicinity are strongly reduced as  U*  grows – namely, the plug-flows upstream and 
downstream of the cylinder, the island over the cylinder equator and the tiny polar caps only visible in Fig. 2a, for 
U*=0.01. Such kind of behavior may be explained by the decreasing of yield stress effects thanks to the increasing of  
U*.

 (a)

 (b)

 (c)
 

Figure 2. Yielded and unyielded regions, for ReRH=1.0, J=104 and n=0.5: (a) U*=0.01; (b) U*=0.1; (c) U*=1.0.

Fig. 3 shows the influence of yield stress on the shear-stress (Eq.(6)) profiles, along the rectified channel centerline 
S, for  ReRH=1.0, J=104 and n=0.5. It may be observed that the more U* increases, the more shear stress increases, too. 
Besides, shear stress peaks occur over the cylinder (around  S=0) and an asymmetrical profile pattern may be clearly 
verified for the highest value of the flow-rate (U*=1.0). Both behaviors may be credited to the decreasing of the yield 
stress  effect,  owing to the increasing  of  U*.  In the first  case,  the decreasing of  the yield stress  effect  –  or,  for  a 
regularized viscoplastic fluid, of the viscous effect – leaves the flow subjected to higher values of shear stress. In second 
one, for the same reason, the flow becomes advective dominated with the decreasing of the yield stress effect.
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Figure 3. Longitudinal profile of shear stress, for ReRH=1.0, J=104 and n=0.5 and U*=0.01-1.0. 

In Fig. 4 the investigation of the influence of inertia on SMD fluid dynamics is carried out, for  J=104,  U*=0.1, 
n=0.5 and ReRH=1-50. As expected, the more inertia effects increase the more the vortex size increases, too. It is worth 
observing that, due to the uncoupled way in which the ReRH is defined, from flow kinematics, by Eq.(18), the increasing 
of ReRH does not affect the material yielded stress, as observed in inertia flows parametrized by power-law Reynolds 
and Herschel-Bulkley numbers – see, for instance, Jay et al., 2001.

 (a)

 (b)

 (c)

Figure 4. Streamlines for J=104, U*=0.1 and n=0.5: (a) ReRH=1; (b) ReRH=20; (c) ReRH=50.

Figure 5 shows the influence of inertia effects on shear stress profiles along rectified channel centerline, for J=104, 
U*=0.1, n=0.5 and ReRH=1-50. From the figure, the shear stress peaks over the cylinder surface significantly increase as 
ReRH increases. In addition, the shear stress profiles present an asymmetrical pattern with the increasing of ReRH, due to 
the flow being more advective dominated 
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Figure 5. Shear stress along the S coordinate varying the rheological Reynolds number.

5. FINAL REMARKS

In  this  article,  some  numerical  simulations  of  inertia  flows  of  viscoplastic  fluids  have  been  undertook.  The 
viscoplastic fluid is the one introduced by Souza Mendes and Dutra (2004) and the mechanical model is approximated  
via a multi-field Galerkin least-squares method in extra-stress, pressure and velocity. Due to the good stability features  
of the GLS method, all computations have employed a combination of equal-order bilinear Lagrangian finite elements  
and high Reynold flows have been stably achieved. The numerical results have evidenced the strong influence of yield  
stress  effects  on the size  of  unyielded material  regions,  and  the inertia  ones  proved to play a  relevant  role when 
streamlines patterns and the vortex characterization are concerned.
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