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Abstract. In production of oil and gas wells in deepwatehe tflowing of hydrocarbon through pipeline is a
challenging problem. This environment presents tngtirostatic pressures and low sea bed temperatuwhih can
favor the formation of solid deposits that in a@#i operating conditions, as unplanned shutdownd@mnms, may
result in a pipeline blockage and consequently inouarge financial losses. There are differentthuoals to protect
the system, but nowadays thermal insulation andnéta injection are the standard solutions normaliged. An
alternative method of flow assurance is to heatgheeline. This concept, which is known as actigatimg system,
aims at heating the produced fluid temperature @basafe reference level in order to avoid the ftrom of solid
deposits. The objective of this paper is to intrela Bayesian statistical approach for the statevestion problem, in
which the state variables are considered as thadient temperatures within a pipeline cross-secteamd to use the
optimal control theory as a design tool for a tygliheating system during a simulated shutdown dmrdi An
application example is presented to illustrate hBayesian filters can be used to reconstruct theptature field
from temperature measurements supposedly availabléhe external surface of the pipeline. The tewrupees
predicted with the Bayesian filter are then utitiz& a control approach for a heating system usedngintain the
temperature within the pipeline above the crititeinperature of formation of solid deposits. Thespdat problem
consists of a pipeline cross section represented biycular domain with four points over the pipallwepresenting
heating cables. The fluid is considered stagnammdgeneous, isotropic and with constant thermodiphls
properties. The mathematical formulation governting direct problem was solved with the finite vadumethod and
for the solution of the state estimation problemsidered here, we used the Particle Filter. Tharoat control was
based on a linear quadratic controller and an asated quadratic cost functional, which was minirdizerough the
solution of Riccati’'s equation.

Keywords: Flow Assurance, Pipeline Heating System, Statiration Problem, Particle Filter, Optimal Control
1. INTRODUCTION

The key ingredient to the success of flow assuraperations is the subsea thermal management. &t cases,
thermal management determines the requirementsomse the best design in order to maintain the tieimperaturén
the interior of the pipelines and in subsea pradacéquipments abova minimum temperature. Thus, in deepwater
fields the flowing of hydrocarbon through subsepefines is a challenging problem. This environnyaetsents high
hydrostatic pressures and low sea bed temperatwhésh can favor the formation of solid depositattin critical
operating conditions, such as unplanned shutdowditions, may result in a pipeline blockage andseguently incur
in large financial losses (Jamaluddih al, 1991, Su and Cerqueira, 2001, Su, 2003). Fiduilkustrates a typical
hydrate blockage inside a production pipeline.

Thermal management includes both steady-staterandi¢nt studies for the different stages of te&l® lifetime
and must serve as a design tool for the selectianathods to avoid the formation of solid depoditssteady state
operations, the production fluid temperature desgeaas it flows along the pipeline due to heatsfeanthrough the
pipe walls. This steady state temperature profdenfthe produced fluid is used to identify the floates and insulation
systems that are needed to keep the system abewitical temperature during production. If at ®@moment the
steady state flow conditions are interrupted, saglin shut-down conditions, a transient heat teanahalysis for the
subsea system is necessary to ensuretlieatemperature of the fluid be above that of fdromasolid deposits. The
main solid deposits formed inside subsea pipelareswax and hydrates. For a given fluid, thesedsalieposits are
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formed at certain combinations of pressure and &ratpre. Wax deposits typically appear in tempeestuanging
from 30 to 50 C. Hydrate formation temperatures on the othedhare typically around 2@ at 10(ar (Su, 2003).

Figure 1 — Hydrate blockage in pipeline

There are different methods to protect the systedhtachniques to avoid and/or minimizing the foriorabf these
solid deposits, which have been supported by @&ngiNe research and field experience. The basiemustrategies to
avoid these problems are thermal insulation andnatead injection, but an alternative method is taththe pipeline.
This concept, which is known as active heating,saéithheating the produced fluid temperature abosafa reference
level in order to avoid the formation of solid dsjis.

The pipeline can be heated by several methodstypidal concepts are based on the so-called defstrical
heating system (DEH) (Hansen and Clasen, 1999)iraticect electrical heating system (IEH) (DenniedalLaouir,
2001). In the direct electrical heating systemcteie current flows axially through the pipe walusing Joule heating.
On the other hand, in the indirect electrical hepgystem, the electric current flows through mepélements (e.g., one
or more electrical cables) on the pipe surface.

The objective of this paper is to introduce a Baymestatistical approach for the state estimati@blem, in which
the state variables are considered as the transisgeratures within a pipeline cross-section, @ndse the optimal
control theory as a design tool for a typical heggystem during a simulated shutdown conditiorusTlan application
example is presented to illustrate how Bayesidarfilcan be used to reconstruct the temperatudefifien temperature
measurements supposedly available on the exteurédce of the pipeline. The temperatures predicidith the
Bayesian filter is then utilized in a control apach for a heating system used to maintain the teatyre within the
pipeline above the critical temperature of formatad solid deposits. The physical problem consi$ta pipeline cross
section represented by a circular domain with fbeating cables. The fluid is considered stagnamtdgeneous,
isotropic and with constant thermo-physical propsrtThe optimal control was based on a linear atadcontroller
and an associated quadratic cost functional wasnizad through the solution of Riccati’s equation.

2. STATE ESTIMATION PROBLEM

In state estimation problems (Maybeck, 1979, Kagd Somersalo, 2004, Scott and McCann, 2005, @eletrmal.,
2008) observations obtained during the evolutiorthef system, are used together with prior knowledigeut the
physical phenomena and the measuring devices,derdo sequentially produce estimates of the degiynamic
variables. State estimation problems can be solitll the so-called Bayesian filters (Maybeck, 19K&jpio and
Somersalo, 2004, Scott and McCann, 2005, Orlatbdé, 2008).

In order to define the state estimation problenmster a model the evolution of the state varialslesthe form:

X = freo1(Xp—1, Wiem1, Vi—1) Q)

wheref is, in the general case, a non-linear functiow,off the control input to the systemand of the state noise or
uncertainty vector given by € R™v.

The vectorx;, € R™ is called the state vector and contains the visato be dynamically estimated. This vector
advances in time in accordance with it@te evolution mod€l). The subscripgt =1, 2, 3, ..., denotes a time instapt

in a dynamic problem.
The observation model describes the dependencebptthie state variableto be estimated and the measurements
z through the general, possibly non-linear, funchorhis can be represented by

zj = hy (xy, my) ()
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wherez, € R™z are available at time§ , k=1, 2, 3,.... Eq. (2) is referred to as thleservation/measurement madel
The vectom,, € R™ represents the measurement noise or uncertainty.

The evolution and observation modglgiven by Egs. (1) and (2), respectively, are tdasa the following
assumptions (Kaipio and Somersalo, 2004, ScotiMafdann, 2005):

(a) The sequence, for k=1, 2, 3, ..., is a Markovian process, that is,

T1(X, [Xor X Xig ) = 71(X, X, o) (3.a)
(b) The sequence, for k=1, 2, 3, ..., is a Markovian process with respec¢h#ohistory ofx,, that is,

71(z, [Xg Xy X, ) =71(Z, )X, ) (3.b)
(c) The sequence, depends on the past observations only throughwitshistory, that is,

(X, X, 10 20,250 Z0) = 7(X X ) (3.c)
where ﬂ(a|b) denotes the conditional probability @fvhenb is given.

For the state and observation noises, the followisgumptions are made (Kaipio and Somersalo, 28€ztt and
McCann, 2005):

(@) Fori#] , the noise vectors, and v, , as well ag, andn; , are mutually independent and also mutually indelpat
of the initial statex,,.

(b) The noise vectors; andn; are mutually independent for aéndj.

Different problems can be considered for the evomhibbservation model described above, such aspi&aind
Somersalo, 2004, Scott and McCann, 2005):

(i) The prediction problem, when the objectiveasbtain IT(Xk |lek—l);
(ii) The filtering problem, when the objective & abtain ﬂ(xk |Zl:k) ;
(iii) The fixed-lag smoothing problem, when the etfjve is to obtairw(xk |zl:k+p), where p 21 is the fixed lag.

(iv) The whole-domain smoothing problem, when thédjeotive is to obtain ﬂ(xk|zlj,<), where

Zy :{zi Jd=1 ,K} is the complete set of measurements.

3.PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION

The idealized problem in this work considers aicaltoperational condition involving the cooling thie pipeline.
The physical problem consists of a pipeline cresgisn represented by a circular domain filled vatistagnant fluid
and bounded by a constant thickness pipe wall fwith points over the external surface represerttiegheating cables
(Denniel and Laouir, 2001, Denniet al, 2004). The fluid is considered as homogene®adrdpic and with constant
thermal properties. The idealized pipeline will toeated here with a transient heat conduction prabin a single
medium, thus not taking into account the pipe waljure 2 illustrates the hypothetic pipeline hegtaystem applied
on this work, wherehte indirect electrical heating system describedrali® assumed in this analysis. The heat flow rate
resulting from Joule’s effect is considered in ftvan of a transient heat flux appearing in the lamy condition of the
fluid domain. Thus, for representing this physigaibblem it was proposed a simplified model invotyitwo-
dimensional transient heat conduction.
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® Measurement Poi
® Heater
_. ). (1) R=0
(2) R=1 at neutral point
(3) R=1 at heating

Figure 2 — Hypothetic heating system on a pipetiss section

The dimensionlesmathematical formulation for this problémcylindrical coordinates is given by

2 2
99(R,0,0) _ 9*60(R,8,D) 106(RO,T) 1 3*0(R,0,7) 0 <R<1.0<0<2mt>0 4.2
ot ORZ R~ OR RZ~ 9p?

where6(R, @, t) is the dimensionless temperature distribution thi pipeline. This equation was solved subjected t
the following boundary and initial conditions:

06(R,0,7)
oR
0(R,0,7)=1 0 <R<1,0<0<2m1=0 (4.c)

+ Bi6(R,0,7) =Q(0,7) R=1,0<0<2r 7>0 (4.b)

where the following dimensionless groups were defin

_ T(T, ¢' t) - Too
R (TR 52
at
T=— (5.b)
R=~ 5
== (5.0)
Bi = hTr (5.d)
_q@0r
=i - ()

Here, T, is the surrounding environment temperatiirés the convective heat transfer coefficidngnd a are the
fluid thermal conductivity and diffusivity, respéaly, r* is the external radiugi is theBiot number and (@, 7) is the
heat flux imposed on the external surface resuftiogy the heating cable.

The mathematical formulation governing the heatdogtion problem given by egs. (4.a-c), was solvéith the
finite-volume method. The computer code developadtiiis purpose was verified by using an analytealution
obtained with the Classical Integral Transform Tregbe.
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4. OPTIMAL CONTROL BASED ON PARTICLE FILTER OBSERVER

The state space representation of a dynamicalmystasists of the specification of the evolutiondmlofor the
state variables and observation model that links dhservations/measurements to the state variabfes, for the
classical linear time-invariant discrete stateneation problem, the evolution model may be writtethe form

X = Fr_qXxp_1+ Gr_qU_q + Uy 4)

whereF is the linear evolution matrix of the state valésbyx,_; andG is the input matrix. The state uncertainty or
noisev,_, is assumed to be a Gaussian random variable etithrmean and known covarian@g.

The linear observation equation is given in therfor
zy = Hpxp + ny ®)

wherez,, is the measurement vector alids the linear observation matrix. The observatioisen,, is assumed to be a
Gaussian random variable with zero-mean and knawariance(),,. The state and observation noises are assumed to
be mutually independent.

In the application under study, the evolution maddajiven by the finite-volume representation o.e@.a-c). The
state vectow, contains the values of the temperatures at eatiieofolumes and the control varialdés given by the
heat flux imposed on the external boundary.

Uncertainties in the evolution model come from thet that different quantities in the formulatiore anot exactly
known, such as thBiot number.

The main objective of the pipeline heating systenoi keep the fluid temperature above the critieedperature.
Such critical temperature is approached by thed fllliring cooling periods. Thus, for the applicatiminthe control
strategy in accordance with the optimal controbtigdfor linear problems, the case under analysthigwwork is to find
the control inputsu (the boundary heat flux) that minimizes the diéfece between the fluid temperature field and a
desired profiler.

For the implementation of the control strategy wasider (Scott and McCann, 2005):

ﬁk = u;; — Ug (6a)
fk = x;; — Xq (6b)
whereu, andx, refer to the steady values of the control input stade variables, respectively. Hengg,andx, are
considered as deviations from their steady stdteega

In terms of the linear quadratic regulator probleghe optimal values of the control inpuj, are obtained by
minimizing the following quadratic cost function@cott and McCann, 2005),

J=limg,, B [BOT Q) + R ™
where the weighting matricésandR are symmetric positive definite.

The solution to the optimal control problem is #tate feedback control law [6, 11]

u, = —Kx; (8)
where the discrete-time state feedback dais of the form

K=R+G'SG)1GTSF (9)

The matrix S is the steady state solution to tkerdie-time Riccati equation
FTSF— S+ Q — FTSG(R + GTSG)"1GTSF = 0 (20)

Thus, the control input;, can be calculated from the control law (8) as:

w = ug — K(xp — x4) (11)
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However, when state variables are not directlylatséé for control, an observer must be built tdreate the state
variables from the input and output variables & siystem. For this case, the solution of the stienation problem
considered here, which involves the estimationhef transient temperature field in the medium framperature
measurements taken at the surface of the pip€fi(aee 2), is obtained with the Particle Filter imad (Arulampalam
et al, 2001, Andrietet al, 2004, Scott and McCann, 2005).

The particle filter is a Monte Carlo technique diger the solution of state estimation problemseretthe main idea

is to represent the required posterior density tiancby a set of random samples with associatedyiwgiand to
compute the estimates based on these samples aglkitsud_et{xf,:k, i=0, 1} be the particles with associated
weights {w}, i = 0,...,I} and x,, = {x;, j =0,...,k} be the set of all states up tp, wherel is the number of

particles. The weights are normalized, so that, w. = 1. Then, the posterior density at can be discretely

approximated by:

I
T[(XO:klzlzk—l) ~ Z Wlit 6(X0:k - XlO:k) (12)
i=1
whered(.) is the Dirac delta function. By taking hypotheg@s-c) into account, the posterior density in 8@) can
be written ast(x|Zic_1) = Yioqwi 8(x, — x')).

A common problem with the Particle Filter methedhe degeneracy phenomenon, where after a feasstitbut
one particle may have negligible weight. The degene implies that a large computational effort isvoted to
updating particles whose contribution to the appnation of the posterior density function is almastro. This
problem can be overcome by increasing the numbegradicles, or more efficiently by appropriatelylesging the
importance density as the prior densi(yck|xik_1). In addition, the use of the resampling techniguecommended to
avoid the degeneracy of the particles (Arulampadaiad,, 2001, Andrielet al, 2004, Scott and McCann, 2005).

Resampling involves a mapping of the random mm{sdj;, w}{} into a random measufa’,, N~} with uniform
weights. It can be performed if the number of dffec particles with large weights falls below ateér threshold
number. Alternatively, resampling can also be agupindistinctively at every instant, as in the Sampling Importance
Resampling (SIR) algorithm used here (Arulampaddral, 2001, Andrielet al, 2004, Scott and McCann, 2005). This
algorithm can be summarized in the steps presént€dble 1, as applied to the system evolution ftpm to t;.

Table 1 — Sampling Importance Resampling Algorithm

Step 1
For i=1---,N draw new particles;, from the prior densityn(xk|xik,1) and then

use the likelihood density to calculate the coroesient weightsw, = n(zk|x‘k) .
Step 2
N .
Calculate the total WeighTWZZV\)K and then normalize the particle weights, that

i=1

is, fori=1--,N letw, =T w,

Step 3
Resample the particles as follows :

Construct the cumulative sum of weights (CSW) bynpating ¢ =¢_,+w for
i=1---,N, with ¢, =0.
Let i =1 and draw a starting point from the uniform distributiorJ [O, N'1]
For j=1,--,N
Move along the CSW by making =u, + N*( j-1)
Whileu, >¢ makei=i +1.

Assign samplex) = X,

Assign sampley) =N™
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Although the resampling step reduces the effecth@idegeneracy problem, it may lead to a losswarsity and
the resultant sample can contain many repeatedtleart This problem, known as sample impoverishmeanh be
severe in the case of small evolution model ndisehis case, all particles collapse to a singletiga within few
instants. Another drawback of the particle filterrelated to the large computational cost due ¢oMonte Carlo
method, which may limit its application only to fa®mputing problems.

5. RESULTSAND DISCUSSION

In order to examine a test case involving typiaahditions resulting from a shut-down of the flowahgh the
pipeline, a hypothetical situation was simulatedemhthe stagnant fluid was assumed to be initiailyhe uniform
temperature of 8 in a circular domain with external diameter af@B2 m (6”). The surrounding temperature was
considered ofT, = 4°C. The thermophysical properties were assumed @onand given bk = 12.54 W it °C*?, p =

933.59 kg it andc, = 1826.80 J kg °C™. The objective of the heating system was to dtive stagnant fluid
temperature to a reference value of@G0 The heating system was turned on when the lopredicted temperature in
the domain reached the critical value of formatiadrsolid deposits, which was assumed to b¥C2@or the results
presented below, tHgiot number was taken as 1.

For the prediction of the state variables, onelsisgnsor was considered available, located asuiface of the
circular domain (see figure 2). The simulated meaments contain additive, uncorrelated, Gaussiesrgrwith zero
mean and a constant standard deviatior’Gf & corresponds to 3.75% of the maximum tempeeaituthe region, that
is, the initial temperature of the stagnant fl8@°C). Errors in the evolution model are also suppdsebe additive,
Gaussian, uncorrelated, with zero mean and constantdard deviation. The effects of the errorshia ¢volution
model, on the prediction of the temperature figidthe region, are examined below by considering tifterent
standard deviations for such errors, namely@®dnd 8C. For the results presented below, 5000 partigle used in
the Particle Filter method. Numerical experimergsealed that such number of particles would beigefft to
represent the posterior distribution of the presticstates.

Figures 3.a,b present the simulated measured taemapes, both during the cooling and heating perifatsstandard
deviations in the evolution model of 8Cland 3C, respectively.
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Figure 3 — Exact normalized temperatures, simulatedsurements and predicted normalized temperdtarras
standard deviation in the evolution model erroa3:0. £C and (b) 3C

We now present the results obtained for the ststienation problem and optimal control under analyby using
simulated experiments. For test case 1 the sindilxensient measured temperatures contain Gaussiars with
standard deviation of°8 and the standard deviation in the evolution mededr is of 0.1C. For test case 2 the same
Gaussian errors are used for the measured tempessahuit with standard deviation in the evolutiomde error of 8C.
For both cases, we compare the exact temperatbtaifed with the numerical solution with finite uohes) and
predicted temperatures at three positions at RirdOR = 1.0 (see figure 2).

The temperatures predicted by the particle filiemp{emented in accordance with the SIR algorithmjhe whole
domain were used in the control strategy descritmnve. The control strategy was applied with thggteng matrices
Q =R =1 (identity matrix).Figure 4 shows the time evolution of the predidiemiperatures at three positions in the
domain R= 0 andR = 1), for test cases 1 and 2, respectively. Onecterly see that the heating is turned on when the
lowest temperature in the domain Rat 1) reaches the critical value.

It is possible to notice in figure 4 different termgaere levels inside the domaiwvhere the aim of heating was to
drive the lowest fluid temperature to the refereteraperature. Then, the temperature at point 2ugdbdapproaches
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the reference value through the action of the cbrgystem on the boundary heat flux. It is alsoeobsd that he
temperature at point 3 (see figure 2) reachesia@ees due to the heater position.

OPTIMAL CONTROL BASED ON PARTICLE FILTER OBSERVER OPTIMAL CONTROL BASED ON PARTICLE FILTER OBSERVER
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Figure 4 — Evolution of the predicted temperatu@spared with exact ones under the action of thienap
control with a standard deviation in the evolutinndel errors of: (a) 0°C and (b) 3C.

Figures 4.a-b clearly reveal an excellent agreerhetween exact and predicted temperatures, evethdolarge
standard deviation of the evolution errors %3

The optimal heat flux obtained through the constoategy described above is presented in figura® 5for test-
cases 1 and 2, respectively. This figure showsttieheat flux attains large values when the hgasrturned on, but
gradually tends to a constant value that provithesrequired minimum temperature in the medium witihie time
range of interest.
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Figure 5 — Optimal heat flux on the boundary swefander the action of the optimal control with anstard
deviation in the evolution model errors of: (a)°@nd (b) 3C

A comparison of figures 3 and 4 shows the effedhefParticle filter on the temperature at the fo@msiR = 1. It is
also important to note that a completely erratiattilix would be obtained if the measurements shimfigure 2 were
directly used in the control approach.

7. CONCLUSIONS

The objective of this paper was to apply an optigmhtrol strategy to a heating system, in ordeavoid the
formation of solid deposits in pipelines. The omtlnsontrol input was determined with a linear qadidr regulator,
where a quadratic cost functional was minimizedulgh the solution Riccati’s equation. Predictedgeratures in the
whole domain, obtained with the Particle filter,rev@ised in the control strategy instead of thectlilmeasurements.
The Particle filter was capable of providing acterastimates for the temperature field in the negiven for large
errors in the observation model. With the presgmraach, the control strategy could be effectivagbplied and the
temperature in the region was maintained abovetitieal one during the time range of interest.
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