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Abstract. This paper presents results for coupled heat and mass transport under laminar flow regime in a horizontal 
cylindrical annulus filled with a fluid saturated porous medium. Two driving mechanisms are considered to contribute 
to the overall momentum transport, namely temperature driven and concentration driven mass fluxes. Aiding and 
opposing flows are considered, where temperature and concentration gradients are either in the same direction or of 
different sign, respectively. Modeled equations are presented based on the double-decomposition concept, which 
considers both time fluctuations and spatial deviations about mean values.  
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1. INTRODUCTION  
 

The study of double-diffusive natural convection in porous media has many environmental and industrial 
applications, including grain storage and drying, petrochemical processes, oil and gas extraction, contaminant 
dispersion in underground water reservoirs, electrochemical processes, etc. The importance of double diffusive natural 
convection can be better appreciated by the volume of papers published in this field, which was reviewed by Nield and 
Bejan (1999). The analyses of natural convection in a horizontal cylindrical annuli filled by a porous material has been 
subject of a number of studies in recent years. Thermal insulators, cryogenics, thermal storage systems, electronic 
cooling, inert gas insulation of high-voltage electric cables and the determination of the requirements for aircraft cabin 
insulation. 

Accordingly, double diffusive convection in a vertical cavity subject to horizontal temperature gradients has been 
investigated by Trevisan and Bejan (1985, 1986), Goyeau et al. (1996), Mamou et al. (1995, 1998), Mohamad and 
Bennacer (2002), Nithiarasu et al. (1997), Bennacer et al. (2001, 2003), among others. In most of the aforementioned 
papers, the intra-pore flow was assumed to be laminar and it was demonstrated that, depending on the governing 
parameters of the problem and on the thermal to solute buoyancy ratio, various modes of convection prevail.  

The natural convection in cylindrical annular geometry filled with porous material also have been studied by distinct 
numerical approaches, such as the finite-difference method reported by Caltagirone (1976) and Burns and Tien (1979). 
Finite element method is found in the work of Motjabi et al. (1987). 

This work intends to present a set of macroscopic mass transport equations derived under the recently established 
double decomposition concept, Pedras and de Lemos (2003), through which the connection between the two paths a) 
and b) above is unveiled. That methodology, initially developed for the flow variables, has been extended to heat 
transfer in porous media where both time fluctuations and spatial deviations were considered for velocity and 
temperature, Rocamora and de Lemos (2000). Buoyant flows, Braga and de Lemos (2004-2009), and mass transfer, de 
Lemos and Mesquita (2003), have also been investigated. Recently, a general classification of all proposed models for 
turbulent flow and heat transfer in porous media has been published de Lemos and Pedras (2001). 

 The purpose of this contribution is to show numerical results for laminar double-diffusive in porous media, which 
are obtained with the mathematical model earlier proposed in de Lemos and Tofaneli (2004). Here, double-diffusive 
laminar natural convection flow in porous media is considered. 
 
2. MATHEMATICAL MODEL 
 

The problem considered here is showed schematically in Figure 1a and refers to a concentric annulus completely 
filled with porous material with outer and inner radii 0r  and ir , respectively, and 20 == irrR . The top and bottom 
walls are kept insulated and the porous medium is considered to be rigid. The binary fluid in the cavity of Figure 1a is 
assumed to be Newtonian and to satisfy the Boussinesq approximation. 

 
2.1 Local instantaneous transport equation 
 

The steady-state microscopic instantaneous transport equations for an incompressible binary fluid mixture with 
constant properties are given by: 
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where u  is the mass-averaged velocity of the mixture, ∑=

l

lluu m , lu  is the velocity of species l , lm  is the mass 

fraction of component l  defined as ρρll =m , lρ  is the mass density of species l  (mass of l  over total mixture 

volume), ρ  is the bulk density of the mixture ( ∑=
l

lρρ ), p  is the pressure, µ  is the fluid mixture viscosity, g  is 

the gravity acceleration vector, pc  is the specific heat, T  is the temperature and λ  is the fluid thermal conductivity. 

The generation rate of species l  per unit of mixture mass is given in Eq. (4) by lR . 
An alternative way of writing the mass transport equation is using the volumetric molar concentration lC  (mol of l  

over total mixture volume), the molar weight lM  (g/mol of l ) and the molar generation/destruction rate ∗
lR  (mol of l  

/total mixture volume), giving: 
 

∗+⋅∇ lllll RMCM  = ) ( Ju  (5) 
 

Further, the mass diffusion flux lJ  (mass of l  per unit area per unit time) in Eq. (4) or Eq. (5) is due to the 
velocity slip of species l , 

 
llllllll CDMmD ∇−=∇−=−= ρρ )( uuJ  (6) 

 
where lD  is the diffusion coefficient of species l  into the mixture. The second equality in Eq. (6) is known as Fick’s 
Law, which is a constitutive equation strictly valid for binary mixtures under the absence of any additional driving 
mechanisms for mass transfer Hsu and Cheng (1990). Therefore, no Soret or Dufour effects are here considered. 

Rearranging Eq. (5) for an inert species, dividing it by lM  and dropping the index l  for a simple binary mixture, 
one has, 

 
)( = ) ( CDC ∇⋅∇⋅∇ u  (7) 

 
If one considers that the density in the last term of Eq. (2) varies with temperature and concentration, for natural 

convection flow, the Boussinesq hypothesis reads, after renaming this density Tρ , 
 

)]()(1[ refCrefT CCTT −−−−≅ ββρρ  (8) 
 
where the subscript ref indicates a reference value and β  and Cβ  are the thermal and salute expansion coefficients, 
respectively, defined by, 
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Equation (8) is an approximation of Eq. (9) and shows how density varies with temperature and concentration in the 

body force term of the momentum equation. 
Further, substituting Eq. (8) into Eq. (2), one has, 
 

)]()(1[)( 2
refCref CCTTp −−−−+∇+∇−=⋅∇ ββρµρ guuu                  (10) 

 
Thus, the momentum equation becomes, 
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where gρ−∇=∇ pp *)(  is a modified pressure gradient. 

As mentioned, there are, in principle, two ways that one can follow in order to treat turbulent flow in porous media. 
The first method applies a time average operator to the governing Eq. (4) before the volume average procedure is 
conducted. In the second approach, the order of application of the two average operators is reversed. Both techniques 
aim at derivation of a suitable macroscopic turbulent mass transport equation. 

Volume averaging in a porous medium, described in detail in references Slattery (1967), Whitaker (1969) and Gray 
and Lee (1972), makes use of the concept of a Representative Elementary Volume (REV), over which local equations 
are integrated. After integration, detailed information within the volume is lost and, instead of, overall properties 
referring to a REV are considered. In a similar manner, statistical analysis of turbulent flow leads to time mean 
properties. Transport equations for statistical values are considered in lieu of instantaneous information on the flow. 

Before undertaking the task of developing macroscopic equations, it is convenient to recall the definition of volume 
average. 

 
2.2 Volume average operator 
 

The volume average of ϕ  taken over a Representative Elementary Volume in a porous medium can be written as: 
 

∫
∆
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V
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The value vϕ  is defined for any point x surrounded by a Representative Elementary Volume, of size V∆ . This 

average is related to the intrinsic average for the fluid phase as: 
 

i
f

v
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where VV f ∆∆=φ  is the medium porosity and fV∆  is the volume occupied by the fluid in a REV. Furthermore, one 
can write: 
 

ϕϕϕ ii+〉〈=  (14) 
 
with 0=〉〈 iiϕ . In Eq. (14), ϕi  is the spatial deviation of ϕ  with respect to the intrinsic average iϕ . 

Further, the local volume average theorem can be expressed as Slattery (1967), Whitaker (1969) and Gray and Lee 
(1972): 
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where iA  and iu  represent the area and velocity of the interface fluid/solid, respectively, and n  is the external unit 
vector to the fluid and normal to the iA . It is important to emphasize that Ai should not be confused with the surface 
area surrounding volume V∆ . 
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2.3 Macroscopic equations for buoyancy free flows 
 

For non-buoyant flows, macroscopic equations considering turbulence have been already derived in detail for 
momentum Pedras and de Lemos (2001), heat de Lemos and Braga (2003) and mass de Lemos and Mesquita (2003) 
transfer and for this reason their derivation need not to be repeated here. They read: 

 
Momentum transport 
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Heat transport 
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The subscripts f and s refer to fluid and solid phases, respectively, and coefficients K’s come from the modeling of 

the following mechanisms: 
 

• Tortuosity: ( ) i
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• Thermal Dispersion: i

disp
i

f
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Mass transport  
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The coefficients dispD  in Eq. (21) appear due to the nonlinearity of the convection term. They come from the 

modeling of the following mechanisms: 
 

• Mass dispersion: i
disp

iii CC 〉∇〈⋅=〉−〈 Du                   (24)  
                                                                                      

2.4 Macroscopic double-diffusion effects 
 

Focusing now attention to buoyancy effects only, application of the volume average procedure to the last term of 
Eq. (11) leads to, 
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Expanding the left hand side of Eq. (25) in light of Eq. (14), the buoyancy term becomes, 
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where the third and forth terms on the r.h.s. are null since 0=〉〈 iiϕ . Here, coefficients φβ and φβC  are the macroscopic 
thermal and salute expansion coefficients, respectively. Assuming that gravity is constant over the REV, expressions for 
them based on Eq. (26) are given as, 
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Including Eq. (26) into Eq. (16), the macroscopic time-mean Navier-Stokes (NS) equation for an incompressible 

fluid with constant properties is given as, 
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Coefficients φβ  and 

φ
βC  are used to compose the Grashof numbers associated with the thermal and solute drives, 

in the form, 
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where T∆ = 21 TT −  and C∆ = 21 CC −  are the maximum temperature and concentration variation across the cavity, 
respectively. One should note that for opposing thermal and concentrations drives, such maximum differences are of 
opposing signs. 

The ratio of Grashof numbers define the buoyancy ratio N  in the form 
 

φ

φ

Gr

Gr
N C
= =

T

CC

∆

∆

φβ

β
φ  (30) 

 
giving for Eq. (28), 
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Either 0=

φ
βC  or 0=∆C  results in 0=N , or say, only thermal drive applies in Eq. (31). Also, for 0=

φ
βC  and 

0≠∆C  in Eq. (31), although no concentration drive is considered, a distribution of C within the field will occur due to 
the flow established by the thermal drive. 

 
2.5 Integral parameter 

 
The local Nusselt number on the heated inner cylinder for the horizontal cylindrical annuli considering half domain 

is given by, 
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The average Nusselt number is then given by, 
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3. NUMERICAL DETAILS  

 
The numerical method employed for discretizing the governing equations is the control-volume approach. A hybrid 

scheme, which includes both the Upwind Differencing Scheme (UDS) and the Central Differencing Scheme (CDS), 
was used for interpolating the convection fluxes. The well-established SIMPLE algorithm Patankar and Spalding 
(1972), was followed for handling the pressure-velocity coupling. Individual algebraic equations sets were solved by the 
SIP procedure of Stone (1968). In addition, concentration of nodal points closer to the walls reduces eventual errors due 
to numerical diffusion which, in turn, are further annihilated due to the hybrid scheme here adopted. Calculations for 
laminar and turbulent flows used a 5050×  stretched grid for all cases (Fig. 1b). For turbulent flow calculations, wall 
log laws were applied. 
  
4. RESULTS AND CONCLUSIONS 
  

The problem considered is showed schematically in Fig. 1 and refers to a concentric annulus completely filled with 
porous material with outer and inner radii 0r  and ir , respectively, and 20 == irrR . The cavity is isothermally heated 
from the inner cylinder and cooled from outer cylinder, with 21 TT >  and 21 CC > . The Rayleigh number is defined as 

( ) feffifpm kTKrcgRa νρβφ ∆= . As in the case of a square cavity filled with porous material, the parameters (Prandtl 

number, inertia parameter, conductivity ratio) are fixed. 
Many workers have focused their attention on the bifurcation and stability of the numerical solution. This work has 

not this intention and its objective is to validate the numerical tool comparing the present results with others numerical 
and experimental works, except that only considering the thermal buoyancy, i.e., 0=N . Here these results were 
extended taking into account the thrust and thermal mass acting simultaneously. 

According to Caltagirone (1976), there are three convection regimes. The first is for 8* ≤Ra  and the convective 
phenomena are very little developed and the heat transfer occurs only by conduction. This regime will be called pseudo-
conduction. The second one is in the interval where the 658 * << Ra  and the convective phenomena are found to be 
steady. The fluids warm up on contact with the inner cylinder and fall along the outer surface. The last regime is for 

65>Ra  where a new type of evolution appears. Perturbations occur in the upper part of the annular layer, and are 
shown by fluctuations in temperature. 

Figure 2 shows the isotherms and streamlines of a concentric annuli heated from the inner cylinder and cooled from 
outer cylinder completely filled with porous material for 25=Ra , 200=Ra  and 210 =rr , for buoyancy ratio, 0=N . 
The figure show a good agreement with the work of Caltagirone (1976) and reproduce the basic features of the flow. 
Figure 3 shows the isotherms and streamlines for the same Rayleigh numbers in Fig. 2, but here the value of the 
buoyancy ratio is 1=N , we can observe that the behavior of these lines compared to 0=N , has almost the same 
behavior. 

Table 1 shows, for some Rayleigh numbers, the average Nusselt number Nu  on the heated inner cylinder. It is seen 
from Tab. 1 that computations fall within the range of values presented in the literature taking into account only the 
thermal buoyancy in the case of the present work 0=N . Again, it is seen from Tab.1 that the agreement between the 
present and previous results is reasonable. 

The heat transfer coefficient is seen to increase with Rayleigh number distorting the isotherms as convection 
becomes dominant, but the streamlines do not present such intense variations, see Fig. 2a) and Fig. 2c). We also 
observed that there is a small difference when considering the buoyancy ratio 1=N . 

Is important to emphasize, that the Darcy number was considered as a constant and several runs were performed for 
different permeabilities. Although not shown here, one observes that the lower the permeability, the higher the average 
Nusselt number. In comparison with results of Tab. 1, more accurated simulations were obtained for low permeability 
media.  
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b) 

 
Figure 1. Schematic of the problem: a) geometry; b) grid. 

 

 

 

a) b) 

 
 

c) d) 
Figure 2. Laminar Isotherms and Streamlines for 25=mRa  and 200=mRa  with 2,0=φ , mmDp 3=  and 20 =irr ; 

a), c) Presents Results, 0=N ; b), d) Caltagirone (1976), ( 0=N ). 
 

 

  
a) b) 

 Figure 3. Laminar Isotherms and Streamlines for 25=mRa  and 200=mRa  with 2,0=φ , mmDp 3=  and 20 =irr  
with 1=N . 
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Table 1.  Average Nusselt Number for mRa  ranging from 25 to 500 with 29107813,0 mK −×= , mmDp 3= , 

710125,3 −×=Da , 1=fs kk , 2,0=φ , 7Pr = . 

mRa  
 25 100 150 200 500 

Caltagirone (1976) 1,0993 1,8286 - 2,6256 4,1983 
Charrier-Mojtai (1997) - 1,8670 2,3090 - - 

Braga (2006) 1,1095 1,8629 2,3023 2,6764 4,2741 
Present Results, with 

0=N  1,1076 1,8544 2,3022 2,6495 4,2631 

Present Results, with 
1=N  1,1193 2,2665 2,7744 3,1975 4,9405 
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