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Abstract. This work aims to perform effectiveness tests for optimized nonreflecting boundary conditions in a finite 
difference time domain (FDTD) scheme applied to acoustic wave modelling. Our goal is to enhance the classical 
absorbing boundary methods – namely Absorbing Boundary Condition (ABC), Damping Zone (DZ) and Perfect 
Matched Layer (PML) – in order to minimize the spurious reflections associated with, improving the quality of the 
numerical results and reducing its computational effort. ABC, PML and DZ methods are presented and optimized 
aiming to reduce wave reflection at the borders, with results shown in terms of the total energy for “infinite” and 
nonreflecting models for varying absorbing layers. It has been found that both optimizations increase the effectiveness 
of the absorbing layer, with better absorption efficiencies for the optimized Cerjan and PML methods. Results also 
show that side effects are very sensitive to the number of grid points used in the absorbing layer, with better results 
found for larger discretization points. 
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1. INTRODUCTION 

 
The appearance of fast processing computers and the continuous advances in numerical analysis have allowed new 

developments in acoustic wave modelling. For imaging the subsurface, many articles have been published dealing with 
numerical simulations of wave propagation using finite difference, finite element and boundary integral methods 
(Virieux 1986, Marfurt 1984, Schuster 1985, Durran 1999). A typical difficulty that arises when solving numerically 
such boundary value problems is how to express the radiation condition mathematically at a contour which is only at a 
finite distance from the energy source (Sommerfeld 1949). The boundary condition should allow travelling disturbances 
to pass through the contour without generating spurious reflections that propagate back toward the interior, which may 
eventually override the original emitted seismic signals. 

To avoid these side effects, researchers used to enlarge the computational domain, delaying the backward 
reflections, though increasing the numerical mesh and its computational demand. In the late 70’s, nonreflecting 
boundary condition techniques were introduced aiming to treat such problems. Clayton and Engquist (1977) proposed 
the Absorbing Boundary Condition (ABC) technique by applying a one-way wave equation in the boundary region, 
which proved to be efficient for events not at shallow angles on the contour. In the early 80’s, Cerjan et al. (1985) 
introduced the Damping Zone (DZ) concept in which a gradual reduction of the wave amplitude is imposed along an 
absorption layer, without any loss of effectiveness due to shallow angles of wave incidence. More recently, Berenger 
(1994) proposed the Perfect Matched Layer (PML) method for solving electromagnetic and elastic wave equations. A 
new matched medium is designed to absorb without reflection the incident waves at any frequency and at any incidence 
angle. 

This article presents numerical simulations obtained via a 10th order in space and 4th order in time staggered-grid 
finite difference scheme applied to acoustic waves. Figure 1 exemplifies the wave propagation domain with its 
absorbing boundary layers. Our main motivation is to reduce the number of grid points at the absorbing boundary layer 
for the least reflected waves inside the medium. Our goal is to enhance the existing absorbing boundary methods in 
order to minimize the errors associated with, improving the quality of the numerical results and reducing its 
computational effort. First, DZ, PML and ABC methods are presented and optimized aiming to reduce wave reflection 
at the borders, with results shown in terms of the total energy for “infinite” and nonreflecting models for varying 
absorbing layers. 
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Figure 1. Wave propagation domain with absorbing boundary layers. 
 
2. PML METHOD 
 
2.1. Conventional PML 
 

When the disturbances generated by a source reach the limits of the computational domain, reflected waves are 
spread throughout the medium. To avoid this problem, Berenger (1994) developed the PML technique, in which a new 
region that surrounds the FDTD is defined, where a set of non-physical equations are applied giving a high attenuation 
of the incident waves.  

For acoustics, the 2D linearized continuity and Euler equations take the following form at the PML absorbing layer, 
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where ρ, p and ur  are, respectively, the medium density and the acoustics’ pressure and velocity, while α is the 
attenuation coefficient and B ( 2cρ= ) the medium bulk modulus. c is the medium wave speed. 

Differentiating in time and space equations (1) and (2) and subtracting the resulting expressions give the PML 
acoustic equation, 
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The conventional attenuation coefficient α varies accordingly to, 
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in which the maximum applied absorption rate rPML is equal to 1/10 and the exponent k=2. Therefore α oscillates from 0 
(when x is at the border of the absorbing layer, thus satisfying the acoustic wave equation) to ln(10)/(Bδt), where δt is 
the time step and nPML the number of PML grid elements. The integer i represents the grid element such that 

PMLni ≤≤1 . 
 
2.2. Optimized PML 
 

In a general form, α can be rewritten as, 
 

( ) ( )[ ]ixfci PML=α .              (5) 
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Changing the values of cPML and the function ( )[ ]ixf , for a fixed nPML, improves the effectiveness of the absorption, 
reducing its side effects by increasing the absorption rate and using smoother polynomials at the absorbing layer. Figure 
2 shows some of the tested attenuation functions ( )[ ]ixf  for nPML=20. 

 

 
 

Figure 2. Tested attenuation functions ( )[ ]ixf  for the optimized PML method. 
 

3. DZ TECHNIQUE 
 
3.1. Conventional Cerjan 
 

The DZ technique – originally proposed by Cerjan et al. (1986) – introduces a damping zone around the domain 
consisting of Na points, where the wave amplitude is absorbed by the relation, 

 
2i))(Na(factore=Fac −∗− .             (6) 

 
where the original coefficient factor is 0,015 for Na points in the damping layer and i varies from 1 to Na. The factor 
remains constant throughout the boundary absorbing layer. 

The wave amplitude gradually diminishes, but at the end of the process a small amount of energy is reflected. For a 
more accurate analysis, this reflection cannot be accepted. To minimize the reflected energy, a common procedure is to 
increase the number of points in the damping layer. At first reflection decreases, but from a certain number of points it 
tends to remain constant. A procedure to minimize the reflected energy was then developed to try to reduce that error.  
 
3.2. Optimized Cerjan: varying coefficient factors 
 

In order to try to improve the conventional Cerjan’s method, the coefficient factors are calculated varying the 
number of points from 20 to 100 at the boundary layer and computing the total reflected energy by the squared 
amplitude difference at each time step, between the model with an “infinite” domain and with the artificial boundary. 
The computed factors are shown in figure 3. 
 
3.3. Optimized Cerjan: velocity reducer 
 

A second way for optimizing Cerjan’s technique is to couple a coefficient factor that reduces the wave velocity 
propagation. It was verified that Cerjan’s coefficient factor works better for low velocities. Therefore the acoustic wave 
equation can be rewritten as, 
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The factor FRv follows a quadratic form, 
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Figure 3. Coefficient factors as a function of the number of grid points for the optimized Cerjan’s method. 
 
where FRv varies from 1 (when x=Na) to Fv (when x=1).  
 
4. ABC METHOD 
 
4.1. Conventional ABC 
 

The ABC technique – originally proposed by Clayton and Engquist (1977) – transforms the boundary conditions in 
order to minimize artificial reflections. The new boundary conditions are based on paraxial approximations of the wave 
equation, which is an extrapolation of the wave-field inside the domain. An approximation of first order is given by: 
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U is the wave amplitude and ν  the wave speed. This procedure will be tested with other techniques as described below.  
 
4.2. ABC with Liu technique 

 
In order to minimize the waves that are coming to the boundary providing a smooth variation, Liu and Sem (2010) 

proposed to insert a transition area between the domain and the boundary. They divided the whole domain into three 
blocks (see figure 4): an inner area (I), the transition (II) and the boundary (III). The wave field within the inner area is 
computed using the wave equation, while into the transition area it is computed by the wave equation and the one-way 
equation. The final wave field into area II is found by applying a weighted average between the two values, given by: 

 

312 .)1( UwUwU +−=            (10) 
 

where w is the weight factor varying linearly from 1 to zero in ten points of the area II. This procedure provides a 
smooth variation from area I to area III. In area III, the wave field is calculated by the conventional ABC extrapolation. 

 
 
 
 
 
 
 
 

 
 
 

 
 

Figure 4. The three regions of Liu´s method. 
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5. METHODOLOGY 
 

The effectiveness of the three different algorithms of wave absorption in the boundary layer was compared. For all 
algorithms, absorption layers with different thickness were tested. At time t=0, a Ricker type source is generated at the 
center of the model with waves propagating through a finite difference method. As an energy measure, the square of the 
amplitude over the whole domain was taken to evaluate the effectiveness of each absorption boundary, 

 

∑= 2)(UE essEffectiven
.                           (6) 

 
The model used was a 2D constant velocity (3000 m/s) grid. As shown in Figure 5, the region without the absorption 

layer (Region 1) has 601x601 grid points. Around this region, a boundary layer was created with thickness varying from 
20 to 150 grid points. The wave absorption algorithms were applied in these boundary layers. The finite difference 
operator used is of 4th order in time and 10th order in space. To avoid instability and divergence problems with the 
numerical method, the grid spacing used is of 5m and the time step 0,0002s. The distance between the source and the 
receiver is of 294 grid points or 1470m. 
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Figure 5. Wave propagation domain with absorbing boundary conditions. 
 
6. RESULTS 
 
6.1. PML 
 

Figure 6 compares the effectiveness of wave absorption for the original (PML2-10: k=2, rPML=1/10) and optimized 
PML methods (PML5-10: k=5, rPML=1/10; PML2-1.1: k=2, rPML=9/10; PML5-1.1: k=5, rPML=9/10; PML7-10: k=7, 
rPML=1/10) with varying absorbing layers. Results show that, for a small number of PML grid elements (nPML=25, 50), 
the application of larger maximum absorption rates (rPML=9/10) proves to be more efficient to absorb incident waves, 
reducing significantly wave reflections at the border.  

On the other hand, for larger PML layers (nPML=75, 100, 150), a conjugated use of maximum absorption rates 
(rPML=9/10) and higher order polynomials (k=5, 7) improve the effectiveness of the absorbing layer. In fact, figure 7 
illustrates that the proposed optimized PML models are more effective than the original’s Cerjan and PML methods.  

As explained in section 2.2, further investigations reveal that better absorption rates can be found for certain values 
of cPML and functions ( )[ ]ixf . Figure 8 shows that a quadratic function for the attenuation function ( )[ ]ixf  with 
cPML=3,55 x 10-8 gives the minimum reflection for nPML=20, which represents less than 0,5% of the total incident wave 
energy. Other functions were also tested which proved to be more efficient absorbers when compared to the original 
PML method. 
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Figure 6. Time sum of squared energy difference between “infinite” and nonreflecting boundary methods for 

varying absorbing layers. 
 

 
 

Figure 7. Energy absorption ratio between infinite and nonreflecting boundary methods for varying absorbing layers. 
 

  
    (a)            (b) 

Figure 8. Optimized PML: total reflected energy for different attenuation functions ( )[ ]ixf . 
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6.2. DZ 
 

Figure 9 shows the amount of energy reflection and the number of boundary points. It shows a comparison between 
the original Cerjan’s method and its optimization by varying the coefficient factors. It can be seen that the original 
Cerjan’s curve is constant after 25 grid points at the boundary layer, while in the optimized one, the error decreases with 
the number of grid points at the boundary layer. The main goal is to develop a method that minimize the error and do 
not increase the computational effort. The use of a velocity reducer also proves to be very efficient with a reduction of 
the wave energy reflection in almost 60% compared to the standard Cerjan method, for boundary layers until 50 points, 
which is shown in figure 10. 
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Figure 9. Comparison between Cerjan’s conventional and optimized methods. 
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Figure 10. Energy reflection using the velocity reduction factor. 
 

6.3. ABC and hybrid techniques 
 
These techniques have their results compared. In the first example (see figure 11), a source with 5,64 Hz was used 

and the techniques of ABC, ABC + Liu, Cerjan Optimized with 20 layer points, and the combination ABC+Liu+Cerjan 
were applied. Notice that Cerjan had a worse performance compared to other techniques, which practically reduced to 
zero emission energy. The absorber ABC and ABC + Liu worked better than the combination with the Cerjan absorber. 
Table 1 shows the absorbing rates for various methods. 
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Figure 11. Energy of the various absorbing methods with a source of 5Hz and a detail.  
 
 

Table 1. Absorbing tax for a source of 5Hz. 
 

Case 5Hz Final Energy Absorbing Rate 
Without Absorber 219458 0% 

ABC 618 99,72% 
ABC+Liu 601 99,73% 

Standard Cerjan 54434 75,2% 
Cerjan Optimized 28529 87,00% 

ABC+Cerjan 28544 87,00% 
ABC+Liu+Cerjan 7538 96,56% 

 
 

In a second example, the frequency was increased to 30Hz and results are shown in figure 12. Note that the 
optimized Cerjan improved considerably, but the absorption of ABC+Liu was better. Table 2 shows that the efficiency 
of the absorbers depends on the frequency of the source. Finally figure 13 shows the computed CPU time for each 
method. 

 

 
(a) (b) 
 

Figure 12. Energy of the various absorbing methods with a source of 30Hz and a detail.  
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Table 2. Absorbing tax for a source of 30Hz. 
 

Case 30Hz Final Energy Absorbing Tax 
Without Absorber 7752 0% 

ABC 60,61 99,21% 
ABC+Liu 11,96 99,84% 

Standard Cerjan 40,81 99,47% 
Cerjan Optimized 32,59 99,57% 

ABC+Cerjan 35,06 99,54% 
ABC+Liu+Cerjan 156,39 97,98% 

PML 33,84 99,56% 
 
 

 
 

Figure 13. CPU time for various methods. 
 

7. CONCLUSIONS 
 

Some classical nonreflecting boundary methods – PML, DZ and ABC – were optimized aiming to reduce wave 
reflections at the borders of the FDTD 2D computational domain. It has been found that optimizations increase the 
effectiveness of the absorbing layer, with better absorption efficiencies for the optimized Cerjan and PML methods. 
Results also show that side effects are very sensitive to the number of grid points used in the absorbing layer, with 
better results found for larger discretization points. Hybrid alternatives are also tested. The corresponding absorbing 
factors are optimized again and results are presented in terms of the number of boundary layer points, CPU time and the 
total energy of the system. 
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