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Abstract. This work shows numerical results for a turbulent impinging jet against a flat plane covered with a layer of 
porous material considering the thermal non-equilibrium, using two macroscopic equations of energy: One for the 
fluid and another for the solid without considering the local thermal equilibrium, in turbulent regime by using 
numerical simulations. Macroscopic time-averaged equations for mass and momentum are obtained based on a 
concept called double decomposition, which considers spatial deviations and temporal fluctuations of flow properties. 
Turbulence is handled with a macroscopic k–e model, which uses the same set of equations for both the fluid layer and 
the porous matrix. The numerical technique employed is the control volume method in conjunction with a boundary-
fitted coordinate system. One unique computational grid is used to compute the entire heterogeneous medium. The 
SIMPLE algorithm is applied to relax the system of algebraic equations. The effect of porus layer thickness in the 
energy model on the local distribution of Nusselt number and in Integral wall heat flux was analyzed. Results indicates  
that for thinner porous layer a substantially diferent Nusselt number is calculated and the integral heat flux for two 
models of energy is diferent for all range of properties tested, also a presence of a porous layer is beneficial for 

95.0=φ , 10=fs /kk  and 5.0/ <Hh , since in this conditions the ratio  ww qqφ  is greater than 1.  
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1. INTRODUCTION  

 
Turbulent impinging jets are commonly used in industrial applications with the objective of obtaining effective 

heating, cooling or drying processes. The main advantage of using impinging jets is the possibility to obtain highly 
localized mass and heat transfer rates due to thin boundary layer, hydrodynamics and thermal  

One knows that by increasing the contact area between the coolant and the surface, larger amounts of heat can be 
extracted subjected to the same temperature difference. For example, such heat-sink devices are commonly used in the 
microcomputer industry to enhance the extraction of heat from ever-smaller microprocessors. Accordingly, porous 
metal foams conveniently installed over hot surfaces can enhance heating/cooling process due to their high volumetric 
surface area (interfacial area per unit volume). 

The objective of the present contribution is to extend the investigation of Fischer and de Lemos (2008) which made 
use on One-Energy equation model (1EEM) also referred to as the Local Thermal Equilibrium model (LTE), to a heat 
transfer analysis applying now a Two-Energy Equation model (2EEM), also referred to as Local Thermal Non-
Equilibrium model- (LTNE). Both sets of results are compared in order to access the performance of each model and to 
evaluate under which circumstances the addition of a porous layer made of thermal conducting material can enhance the 
overall heat transferred from a flat surface under an impinging jet. 
 
2. PROBLEM DESCRIPTION 

 
The geometries and nomenclature of the problem are presented in detailed form in Figure 1. A turbulent jet with 

uniform velocity ov  and constant temperature oT  enters through a gap into a channel with height H  and length L2 . 
Fluid impinges normally against the bottom plate yielding a two-dimensional confined impinging jet configuration. The 
width of the inlet nozzle is B  and the bottom plate temperature, 1T , is maintained constant and 38.5K above the 
temperature of the incoming jet, oT . In a different configuration, the bottom surface is covered with a porous layer of 
height h  (Figure 1b). In both cases, the flow is assumed to be two-dimensional, turbulent, incompressible and steady. 
Also, the porous medium is taken to be homogeneous, rigid and inert. Fluid properties are constant and gravity effects 
are neglected. 

The boundary conditions for the problem are: a) constant velocity and temperature profiles of the entering jet, b) no 
slip condition on the walls, c) symmetry condition in 0=x , d) fully developed flow at channel exit ( Lx = ). At the 
bottom plate ( Hy = ), constant temperature condition is assumed whereas along the upper wall, for LxB ≤<2/ , null 
heat flux condition prevails. 
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(a)                                                                                      (b) 

                                          Figure 1– Cases Investigated (a) Clean Medium (b) Porous Medium 
 
3. MATHEMATICAL MODELING 

 
The most of theoretical development is readily available in the open literature, the governing equations will be just 

presented and details about their derivations can be obtained in the mentioned papers. Essentially, local instantaneous 
equations are volume-averaged using appropriate mathematical tools. Accordingly for turbulent flow, the equations 
read: 

  
Macroscopic continuity equation 
The macroscopic equation of continuity for an incompressible fluid flowing through a porous medium is given by: 
 

0=⋅∇ Du          (1) 
 
where, i

D 〉〈= uu φ  and i〉〈u  identifies the intrinsic (liquid) average of the time-averaged velocity vector u  
 
Macroscopic momentum equation: 
The macroscopic momentum equation (Navier-Stokes) for an incompressible fluid with constant properties ( ρ  and 

µ  constants) flowing through a porous medium, can be written as: 
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where the last two terms in equation (2) represent the Darcy and the Forchheimer terms, respectively. The symbol K 
is the porous medium permeability, cF = 0.55 is the form drag coefficient (Forchheimer coefficient), ip〉〈  is the 
intrinsic average pressure of the fluid and φ  is the porosity of the porous medium. 

The macroscopic Reynolds stress, i〉′′〈− uuρφ , appearing in Eq. (2) is given as, 
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is the macroscopic deformation tensor, 2iik 〉′⋅′〈=〉〈 uu  is the intrinsic turbulent kinetic energy, and 
φ

µt , is the 

turbulent viscosity, which is modeled in Pedras and de Lemos (2001) similarly to the case of clear flow, in the form, 
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The intrinsic turbulent kinetic energy per unit mass and its dissipation rate are governed by the following equations, 
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where, kσ =1, εσ =1.3, 1c =1.44, 2c =1.92, µc =0.09 and kc =0.28 are non-dimensional constants defined in 
Launder and Spalding (1974). 

  
Two Energy Equation Model 
 
 The One Energy Equation model is usually valid when the temperature difference between the solid and fluid 

phase is relatively small. In this case, the condition of Local Thermal Equilibrium (LTE) is applied. When the LTE is 
far from reality, the one energy equation model needs to be replaced with the two energy equation model, which treats 
the solid and the fluid phase on separate, via their own macroscopic energy equations Saito and de Lemos (2005). Those 
equations read: 
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where the expansion, 
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has been used in light of the double decomposition concept given by Pedras and de Lemos (2001). For the solid 

phase, one has, 
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where i

sT 〉〈  and i
fT 〉〈  denote the intrinsic average temperature of solid and fluid phases, respectively, fk  and sk  

are the fluid and solid thermal conductivities, respectively. iA  is the interfacial area within the REV and in  is the 
normal unit vector at the fluid-solid interface, pointing from the fluid towards the solid phase. 

 
Interfacial Heat Transfer 
In Eq. (8) and Eq.(10) the heat transferred between the two phases can be modeled by means of a film coefficient ih  

such that,  
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where  VAa ii ∇= /  is the interfacial area per unit volume. In porous media, the high values of ia  make them 
attractive for transferring thermal energy via conduction through the solid followed by convection to a fluid stream. 

A numerical correlation for the interfacial convective heat transfer coefficient was proposed by Saito and de Lemos, 
for turbulent flow as: 
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Using the model shown in Eq. (11) above for the interfacial heat transfer ih , and Eq.(12), the energy equations (8) 
and (10) can be rewritten as: 
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where, feff ,K  and seff ,K are the effective conductivity tensor for fluid and solid, respectively, given by: 

dispffeff k KIK += ][, φ  (15) 

IK ])1[(, sseff kφ−=  (16) 
and I  is the unit tensor. 
 
Non-dimensional parameters: 
 
The local Nusselt number for the one-energy equation model as used by Fischer and de Lemos (2010) : 
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In Eq. 17 it is assumed the local thermal equilibrium assumption, i.e., i
f

i
s

i TTT ==  is also presented below for 

comparison between two closures here used. The longitudinal Nusselt number for two-energy equation model are 
calculated for both the fluid and solid phases and are defined as Alazami and Vafai (2000) 

 
Fluid phase Nusselt number: 
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Solid phase Nusselt number: 
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4. NUMERICAL METHOD 
 

Equations (1), (2), (13) and (14) subject to interface and boundary conditions were discretized in a two-dimensional 
control volume involving both clear and porous mediums. The equations discretization uses a system of generalized 
coordinates. The finite volumes method was used in the discretization and the SIMPLE algorithm (Patankar 1980) was 
used to the treatment of pressure-velocity coupling.   

The Fig. 2 present a typical control volume together with the generalized coordinates system, ξη − . The general 
and discretized form of the two-dimensional conservation equation of a generic propertyϕ , in permanent regime, is 
given by: 
 

ϕSIIII snwe =+++  (20) 
 

where eI , wI , nI  and sI  represent, respectively, the fluxes of ϕ  in the faces east, west, north and south of the control 
volume and  ϕS   its term source.  
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 Every time the source term is dependent of iϕ , it will be linearized in the following form: 
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 The source terms in the momentum equations to x  direction are given by: 
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where, xS*  is the diffusive part treated in explicit form. The term xS **  in the equation for the porous medium is 
composed by the term of Darcy coefficient in the x  direction. 
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Figure 2 – Control volume and notation 
5. RESULTS AND DISCUSSION 

 
Low Reynolds ε−k  model was used. To ensure the modeling of the flow properties within the laminar sublayer 

the value of +y  was kept less than or equal to 1, )1( ≤+y . The profile of turbulent kinetic energy )(k  at the entrance of 
the jet was calculated according to the equation: 

2
0 ).(

2
3

iTvk =            (24) 

where 0v  is the profile of inlet velocity in the channel and iT  is the turbulent intensity. The profile of turbulent 
kinetic energy dissipation )(ε  is obtained by the equation: 

l
kc

2
3

4
3

µε =             (25) 

Where µc  is the constant of turbulence model described in the mathematical model, k  is the kinetic energy of 
turbulence and l  is the turbulence scale. 

The fluid properties and the geometric dimensions (figure 1) used for all cases solved in turbulent flow presented 
are shown in the table below, the diameter used is BD =  

 
                                           Table 1 - Parameters used in turbulent flow 
 

Fluid 
Especific 

Mass ( ρ ) Viscosity ( µ ) B  L  0T  1T  Turbulence 
Scale 

Turbulent 
Intensity 

Air 1,225 kg/m3 1,789x10-5 

N.s/m2 
14.23 
mm 

500 
mm 309.1 K 347.6 K 0.07B 2% 

 
The results are compared with numerical results and experimental data, in the numerical results of Wang and 

Mujundar in Figure 3a and Figure 3b was used a two low Reynolds ε−k  models: One developed by Change, Hsieh 
and Chen, thereafter referred to as CHC as described in Chang et all (1995) and in Hsieh and Chang (1996) and the 
developed by Launder and Sharma thereafter referred to as LS as described in Launder and Sharma (1974). In all 
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numerical simulations were used an 80 x 216 (17280 nodes) grid, refined next to the walls. The grid and computational 
code validation for clean medium are made comparing the obtained results with literature data for two different 
configurations.  

Figure 3a shows the distribution of the local Nusselt number close to the incidence inferior plate and it is compared 
with experimental data of Van Heiningen (1982) and numerical results of Wang and Mujumdar (2004) and Fischer and 
de Lemos (2010). The Reynolds number is 5200Re = , the inlet velocity profile is fully developed for a flow between 
parallel plates Fox (1998), the temperature profile is uniform and the ratio between the nozzle-to-plate spacing and 
nozzle width is 6=H/B . 

Figure 3b shows the comparison of local Nusselt number close to inferior plate with the experimental data of Van 
Heiningen (1982) and numerical results of Wang and Mujumdar calculated with two different models of turbulence and 
numerical results of Fischer and de Lemos (2010). The Reynolds number is 10400Re = , the inlet velocity and 
temperature profiles are uniforms and the ratio between the nozzle-to-plate spacing and nozzle width is 6.2=H/B . 

 
                                               (a)                                                                                        (b) 
Figure 3 – Distribution of Nusselt number throughout the inferior wall for a clean medium. (a) 6=H/B  (b) 

6.2=H/B  
All the following results have been simulated with the following geometric configurations and boundary conditions: 

uniform velocity and temperature profile; inlet jet temperature KT 1.3091 = ; the inferior plate temperature is 
maintained constant and equal to KTo 6.347= ; the ratio between the nozzle-to-plate spacing and nozzle width is 
maintained constant and equal to 6.2=H/B ; the nozzle width is mB 03101 −×= .  

Figures 4a,b and 5a,b, shows the flow behavior fields: 4(a) streamlines, 4(b) kinetic turbulent energy and thermal 
behavior fields: 5(a) fluid temperature and 5(b) solid temperature field for various porous thickness layer of porous bed. 

 
         (a)                           
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(b)  
      25.0=h/H  

 
50.0=h/H  

 
60.0=h/H  

 
75.0=h/H  

Figure 4 – Flow Behavior maps for various porous thickness layer: (a) Streamlines, (b) Turbulent Kinetic Energy  

(a)     

(b)  
          25.0=h/H  

 
   50.0=h/H  

 
60.0=h/H  

 
              75.0=h/H  

Figure 5 – Thermal Behavior maps for various porous thickness layer: (a) Fluid Temperature, (b) Solid Temperature 
 

 
 
 
Figure 4a shows that porous layer thickness strongly influences the flow behavior, as also confirmed by Graminho 

and de Lemos (2009) and Fischer and de Lemos (2008). The primary vortex diminishes its size.as h/H increases. 
Figure4b shows that when h/H increases the turbulent kinetic energy decreases because the larger the porous layer the 
greater pressure drops in the flow. Figure 5a and Figure 5b shows that the temperature gradient decreases as h/H 
increases, since as much thinner porous bed less space has to come into equilibrium phases. 
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Figure 6 – Comparison of local Nusselt distribution as a function of Energy model for various porous layer thicknesses 
with Re=10400, 6.2=H/B , 10=fs kk , (Permeability) 261031.3 mxK −=  and 9.0=φ  

                                   
Figure 7 - Fluid and solid temperature profiles at  5.2/ =bx  with 10400Re = , 6.2=H/B , 10=fs kk , 

 (Permeability) 261031.3 mxK −=  and 9.0=φ  
 

Figure 6 compares Nusselt number calculated with the local thermal equilibrium model (LTE) Eqn. (17) with those 
obtained with the local thermal non-equilibrium model (LTNE) Eqn.(19). It is observed that for porous layer thickness 
occupying 25% of the channel, a second peak on the local distribution of the Nusselt number is calculated for both 
models. For porous layer thickness occupying 75% of the channel, such peak is smoothed out when applying both 
models. This occur due to the fact that in such situations (low h/H values), temperature gradients are substantially 
different in both phases, as presented in Figure 7, which was plotted for the second peak location, x/b=2.5. Figure 7 
indicates that the greater the porous layer thickness is, more intense is the heat exchange between phases and thus is 
more realistic consideration of Local thermal equilibrium (LTE) hypothesis. 
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Figure 8 - Integral heat flux ratio at the lower wall for various porosities and porous layer thickness 

with 6.2/ =BH , 10400Re = , 261031.3 mxK −=  , 10=fs kk . (a) 5.0=φ , (b) 9.0=φ  

Depending on the thermal model used, there are two possibilities to evaluate the local wall heat flux xwq . One 
can use the hypothesis of Local thermal equilibrium (LTE), or else, individual terms can be in each phase applied in 
order to calculate the integrated heat transferred from the bottom wall, in the latter case, the Local thermal non-
equilibrium (LTNE) is employed.  

Therefore, for one-energy equation model, one has: 
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For two-energy equation model: 
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For the cases where the a porous layer is considered, the wall heat flux is given a superscript φ on the form φ
wq . 

The ratio ww qqφ  can be seen as a measure of the effectiveness of using a porous layer for enhancing or damping the 
amount of heat transferred through the wall. 

Figure 8 shows variations for the integral wall heat flux ratio with h/H for two values of porosityφ . Results 

indicate a substantially different ratio ww qqφ  for the two models, being advantages to use ticker layer when 95.0=φ . 
Figure 8 indicate that a presence of a porous layer has advantages, when: 95.0=φ , 10=fs /kk , 5.0/ <Hh . 
6. CONCLUSIONS 

 
This paper investigated the behavior of an energy model, one and two energy equations model to simulate heat 

transfer in a turbulent impinging jet into a porous bed. Effects of porous layer thickness were investigated. The 
following conclusions were observed: 

The presence of a porous bed on the plate eliminates the second peak in distribution of Local Nusselt number and 
allows for controlling heat transfer from the wall as shown Figure 6. For thinner porous layer the local Nusselt number 
calculated with both models is similar to free flow channel and presented the second peak in distribution, beside is 
observed a difference between models since as much thinner porous bed is less space has to come into equilibrium 
phases and therefore less realistic is the consideration of local thermal equilibrium – LTE as shown in Figure 6 and 
emphasized in Figure 7. 

The ratio ww qqφ is less than 1 for the most of cases tested with Two energy equation model (2EEM) differently 
that calculated with One energy equation model (1EEM) as shown in Figure 8, since in the Two energy equation model 
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the heat flux were calculated with a model that consider an important aspect, the heat exchange between the solid and 
fluid phases or the Local Thermal Non-Equilibrium (LTNE) so the cases that passed this requirements lesser than the 
cases calculated with a simpler model. 

Results indicates that a presence of a porous layer is beneficial for 95.0=φ , 10=fs /kk  and 5.0/ <Hh , since 

in this conditions the ratio  ww qqφ  is greater than 1. 
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