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Abstract. Understanding vortex induced vibrations is of great importance in the design of a variety of offshore 
engineering structures, nuclear plant components and cylindrical elements in tube-bank heat exchangers, for example. 
If a body is placed in a flow, it experiences alternating lift and drag forces caused by the asymmetric formation of 
vortices, which can cause a structure to vibrate. One of the most interesting features of this flow is the phenomenon of 
lock-in which is observed when the vortex shedding frequency is close to the body oscillation frequency. This paper 
presents the results of numerical experiments on vortex shedding from a circular cylinder vibrating in-line or 
transversely with an incident uniform flow at Reynolds number of 1.0×105. The frequencies of the lift and drag 
coefficients are compared with the body motion frequency when the frequency ratio is about unity. 
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1. INTRODUCTION 
 

The flow around circular cylinder includes a variety of fluid dynamics phenomena, such as separation from a body 
surface, vortex shedding and the formation of a large wake. Results reported in the literature showed that vortex 
shedding could be dramatically changed when a cylinder is oscillating in a fluid stream (Williamson and Roshko, 1988). 
One of the most interesting features of this flow is the phenomenon of synchronization, in which the frequency of 
vortex shedding, f, coincides with that of the cylinder oscillation, fb; this is also known as “lock-in”. 

Previous works have reported that the lock-in features and vortex shedding patterns in the flow around an in-line 
oscillating cylinder differ significantly with those in flows around a stationary cylinder or a cylinder oscillating 
transversely. For instance, vortex shedding frequency f had been found to lock-in to the forcing frequency fby when fby 
is close to the free vortex shedding frequency fso in the transverse oscillating case. But, the in-line vibration lock-in 
takes place at a number of multiple ratios of fbx/fso, especially, at fbx/fso=2.0, where the lift and drag forces increase 
greatly. Comprehensive reviews can be found in Koopman (1967), Sarpkaya (1979), Bearman (1984), Blevins (1990), 
Griffin and Hall (1991), Williamson and Govardhan (2004) and Hirata et al. (2008). 

Koopman (1967) investigated the lock-in region in terms of the oscillation amplitude Ax and the frequency of a 
circular cylinder fbx. He showed that the Kármán vortex is more likely to lock-in when fbx is closer to the vortex 
shedding frequency from the fixed cylinder, fs0, i.e. the threshold amplitude is lower when fbx/fs0 is closer to unity. He 
also reported that there exists a definite value of oscillation amplitude below which the lock-in does not occurs even 
when fbx/fs0=1.0. 

The experimental work of Williamson and Roshko (1988) deals with the synchronization regions and identifies 
many modes and vortex wake patterns with detailed explanations and descriptions; due to the difficulties in the 
experimental visualizations the Reynolds number were kept below 600. 

Ongoren and Rockwell (1988) carried out extensive experiments from an in-line oscillating circular cylinder at low 
Reynolds number Re=855. Two basic vortex shedding patterns were observed for the forced oscillation for Ax/d=0.13 
(d is the diameter cylinder): one with symmetrical mode and the other with four antisymmetrical modes. According 
their experiments, in general, the cylinder oscillations are predominantly in the symmetrical mode, while the 
antisymmetrical modes are induced by the naturally occurring large-scale vortex formation. 

The numerical work of Hirata et al. (2008) simulated the flow around a heaving circular cylinder by using vortex 
method. Their results showed that there are three characteristic bands for the body oscillating frequency. Band I, for 
which fb → 0, the body oscillation has little influence and the vortex shedding frequency is almost independent of the 
body oscillating frequency. Band II represents a transition band in which the lock-in is partial and one can identify 
simulation periods in which lock-in is observed followed by simulation periods where this does not occurs. Finally in 
the uppermost Band III the inertial components dominate the lock-in is always observed, as will be reported latter in 
Fig. 2. The numerical findings show that the lock-in frequency depends on the amplitude of the body oscillation; in fact 
it decreases linearly with it in accordance of the low Reynolds number findings of Williamson and Roshko (1988). 

The present paper utilizes the vortex method code developed by Hirata et al. (2008) to simulate numerically the 
vortex shedding from an in-line or transversal oscillating circular cylinder in a uniform flow at high Reynolds number 
of 1.0×105. In this study, the frequencies of the lift and drag coefficients are compared with the body motion frequency 
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when the frequency ratio is about unity. The transition behavior from non lock-in to lock-in is investigated by using two 
reference frames; the body fixed frame oscillates with respect to the inertial frame of reference. A cloud of free vortices 
is used in order to simulate the vorticity, which is generated on the body surface and develops into the boundary layer 
and the viscous wake. Each individual free vortex of the cloud is followed during the numerical simulation in a typical 
Lagrangian scheme. Important features of the vortex method (Chorin, 1973; Leonard, 1980; Sarpkaya, 1989; Lewis, 
1999; Alcântara Pereira et al., 2004; Stock, 2007; Kamemoto, 2009) are: (i) it is a numerical technique suitable for the 
solution of convection/diffusion type equations like the Navier-Stokes ones; (ii) it is a suitable technique for direct 
simulation and large-eddy simulation; (iii) it is a mesh free technique; the vorticity field is represented by a cloud of 
discrete free vortices that move with the fluid velocity. 

Vortex cloud simulation offers a number of advantages over the more traditional Eulerian schemes for the analysis 
of the external flow that develops in a large domain; the main reasons are: (i) as a fully mesh-less scheme, no grid is 
necessary; (ii) the computational efforts are directed only to the regions with non-zero vorticity and not to all the 
domain points as is done in the Eulerian formulations; (iii) the far away downstream boundary condition is taken care 
automatically which is relevant for the simulation of the flow around a bluff body (or an oscillating body) that has a 
wide viscous wake and (iv) moving or deforming boundary problems are easily dealt with. 

The two-dimensional aerodynamic characteristics are investigated at a higher Reynolds number; due to this fact, 
even with such a high Reynolds number value, no attempt for turbulence modeling were made once these aspects have a 
strong three-dimensional component; see Alcântara Pereira et al. (2002). 
 
2. FORMULATION OF THE PROBLEM 
 
2.1. Definitions 
 

Figure 1 shows the in-line and transversal motions of a point P located at the circular cylinder surface and viewed 
from the (x, o, y), which is defined as the inertial frame of reference. A second frame of reference (ξ, o, η) is defined as 
the coordinate system fixed to the cylinder and, therefore, free to oscillates in a harmonic motion. 

 
 

 
 

Figure 1 – Sketch of in-line and transversal oscillating cylinder. 
 
The position and velocity of the local moving coordinate at the center of the circular cylinder are defined, 

respectively, as 
 

1/fbx 

1/fby 

• P 
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( ) tλsin Aξ xxx =  and ( ) tλcos Aη yyy = ,                                                                                                     (1) 
 

( ) tλcos λ Auξ xxxoscxx ==&  and ( ) tλsin λ Avη yyyoscyy −==& .                                                         (2) 
 

where Ax and AY are the body oscillation amplitudes, λx=2πfbx and λy=2πfby are the angular velocities, fbx and fby are the 
body oscillation frequencies and t is the time in the physical domain. 

The boundary S of the fluid domain can be defined as ∞∪= SSS b ; being Sb the circular cylinder surface (which 

contains the P point) and ∞S  the far away boundary (which can be viewed as ∞→+= 22 yxr ). 
 

2.2. Governing Equations 
 
For an incompressible fluid flow the continuity is written as 
 

0=⋅∇ u                                                                                                                                                                                          (3) 
 

where u ≡ (u, v) is the velocity vector. 
If, in addition, the fluid is Newtonian with constant properties the momentum equation is represented by the 

Navier-Stokes equation as 
 

uuuu 2
Re
1p

t
∇+−∇=∇⋅+

∂
∂

.                                                                                                                                                  (4) 

 

Here, p is the pressure field and Re stands for the Reynolds number defined as
υ

d U
Re = , where υ the kinematic 

viscosity of fluid and d is the diameter cylinder; the dimensionless time is d/U. 
On the cylinder surface the adherence condition has to be satisfied. This condition is better specified in terms of the 

normal and tangential components as 
 

)()( nvnu ⋅=⋅  on bS , the impenetrability condition                       (5) 
 

)()( τvτu ⋅=⋅  on bS , the no-slip condition          (6) 
 

where n and τ are unit normal and tangential vectors and v is the body surface velocity vector. 
Far from the body (for r→∞, in Fig. 1) one assumes that the perturbation due to the body motion fades away, that is 
 

 1→u .                                                                                                                                                                                          (7) 
 

3. THE VORTEX METHOD 
 

3.1. Viscous Splitting Algorithm (Chorin, 1973) 
 
Taking the curl of the Navier-Stokes equation and with some algebraic manipulations one gets the vorticity 

equation which presents no pressure term. In two-dimensions this equation reads 
 

ω∇=ω∇⋅+
∂
ω∂ 2

Re
1

t
u                                                                                                                                                                (8) 

 
where ω(x, t) = ∇×u(x, t) represents the only non-zero component of the vorticity field (observe that the pressure is 
absent from the formulation). 

The left hand side of the above equation carries all the information needed for the convection of vorticity while the 
right hand side governs the diffusion. Following Chorin (1973) we use the viscous splitting algorithm, which, for the 
same time step of the numerical simulation, says that 

 
Convection of vorticity is governed by 
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0
t

=ω∇⋅+
∂
ω∂ u                                                                                                                                                                             (9) 

 
Diffusion of vorticity is governed by   
 

ω∇=
∂
ω∂ 2

Re
1

t
.                                                                                                                                                                          (10) 

 
3.2. Convection and diffusion of vorticity 

 
The vortex method proceeds by discretizing spatially the vorticity field using a cloud of elemental vortices, which 

are characterized by a distribution of vorticity, 
iσ

ς (commonly called the cutoff function), the circulation strength iΓ  
and the core size iσ . Thus, the discretized vorticity is expressed by 

 

( ) ( ) ( ) ( )( )∑
=

−=≈
Z

1i
iσi

h tςtΓt,ωt,ω
i

xxxx .                                                                                                                    (11) 

 
where Z is the number of point vortices of the cloud used to simulate the vorticity field. 

In this paper, as the diffusion effects are simulated using the random displacement method (Lewis, 1999), we 
assume that the core sizes are uniform ( σσi = ), and use the Gaussian distribution as the cut-off function; this choice of 
the cut-off function leads to the Lamb Vortices (Leonard, 1980); thus 

 

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= 2

2

2σ σ
exp

πσ
1ς

x
x .                                                                                                                                              (12) 

 
The numerical analysis is conducted over a series of small discrete time steps Δt for each of which a discrete vortex 

element Γ(i) is shed from each impeller surface element. The intensity Γ(i) of these newly generated vortices is 
determined using the no-slip condition, see Eq. (6). 

For the convection of the discrete vortices of the cloud, Eq. (9) is written in its Lagrangian form as 
 

t)y,(x,u
dt

dx (i)
(i)

=                                                                                                                                                                    (13) 

 

t)y,(x,v
dt

dy (i)
(i)

=                                                                                                                                                                    (14) 

 
being (i) = 1, Z. 

The convective motion of each vortex generated on the body surface is determined by integration of each vortex 
path equation, which can be written, using a first order Euler scheme, as 

 

Δt(t)(i)u(t)xΔt)(tx (i)(i)
⎥⎦
⎤

⎢⎣
⎡+=+                                                                                                                                       (15)  

 

Δt(t)(i)v(t)yΔt)(ty (i)(i)
⎥⎦
⎤

⎢⎣
⎡+=+ .                         (16) 

 
The diffusion of vorticity is taken care of using the random walk method (Lewis, 1999).  The random displacement 

Zd ≡ (xd, yd), with a zero mean and a (2Δt/Re) variance, for vortex (i) is defined as 
 

[ ] ⎟
⎠
⎞

⎜
⎝
⎛Δ

=
P
1ln

Re
t4Q)cos(2x (i)

d π                                                                                                                                                 (17) 

 

[ ] ⎟
⎠
⎞

⎜
⎝
⎛Δ

=
P
1ln

Re
t4Q)sin(2y(i)

d π                                                                                                                                                  (18) 
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where P and Q are random numbers in the range 0.0 to 1.0. Therefore the final displacement is written as 
 

(i)
d

(i)(i) xΔt(t)(i)u(t)xΔt)(tx +⎥⎦
⎤

⎢⎣
⎡+=+                                                                                                                                 (19)  

 
(i)
d

(i)(i) yΔt(t)(i)v(t)yΔt)(ty +⎥⎦
⎤

⎢⎣
⎡+=+ .                     (20) 

 
3.3. Numerical Implementation 

 
The u (i) and v (i) components of the velocity induced at the location of the vortex (i) can be written as 
 

(i)(i)(i) uvub1u ++=                                                                                                                                                                (21) 
 

(i)(i)(i) vvvb0v ++=                                                                                                                                               (22) 
 

where,  ui (i) ≡ [1, 0] is the velocity vector of uniform flow, 
 

      ub (i) ≡ [ub (i), vb (i)] is the velocity vector induced by the cylinder at the location of vortex (i), 
 

      uv (i) ≡ [uv (i), vv (i)] is the velocity vector induced at the vortex (i) due to the vortex cloud. 
 
The ui (i) calculations present no problems. The body contributes with ub(x, t), which can be obtained, for example, 

using the Boundary Element Method (Katz and Plotkin, 1991). The two components can be written as 
 

∑
=

=
NP

1k

(i)
kk

(i) ucψub                                                                                                                                                    (23) 

 

∑
=

=
NP

1k

(i)
kk

(i) vcψvb                                                                                                                                                    (24) 

 
where NP is the total number of flat source panels representing cylinder surface. It is assumed that the source strength 
per length is constant such that kψ = const and (i)

kuc  and (i)
kvc  are the components of the velocity induced at vortex (i) 

by a unit strength flat source panel located at k. 
As the body surface is simulated by NP straight line panels (Panels Method) it is convenient to calculate the body 

induced velocity in the moving coordinate system. For that one has to observe the following 
- The fluid velocity on the body surface is written as 
 

[ ] [ ]ji u    t)(λsin  λ A-  t)(λ cos λ At)η;, (ξ
yyyxxx

+= .                                                                                                   (25) 

 
- The velocity induced by the body, according to the Panels Method calculations, is indicated by [ub(ξ,η), vb(ξ,η)]; 

this is the velocity induced at the vortex (i), located at the point [ξ(t), η(t)]; thus 
 

( ) tλcos λ At)η;, ub(ξt)y;(x,(i)ub
xxx

+=                                                                                                                      (26) 

 

( ) tλsin λ A-t)η;, vb(ξt)y;(x,(i)vb
yyy

= .                                                                                                                       (27) 

 
The velocity uv is obtained from the vorticity field by means of the Biot-Savart law 

  

( ) ( )( ) ( ) ( ) ( ) ( )( )tdtdtt ,ω','ω','ω, xKxxx'xKxxx'xGxuv ∗=−=−×∇= ∫∫                                                                     (28) 

  
where K = ∇×G is the Biot-Savart kernel, G is the Green’s function for the Poisson equation, and ∗ represents the 
convolution operation. 
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Once, with the vorticity field the pressure calculation starts with the Bernoulli function, defined by Uhlman (1992) 
as 

u=+= u  ,
2

upY
2

.                                                                                                                                                                  (29) 

 
Kamemoto (1993) used the same function and starting from the Navier-Stokes equations was able to write a 

Poisson equation for the pressure. This equation was solved using a finite difference scheme. Here the same Poisson 
equation was derived and its solution was obtained through the following integral formulation (Shintani and Akamatsu, 
1994) 
 

( ) ( )∫∫ ∫∫ ⋅×Ξ∇−Ω×⋅Ξ∇=⋅Ξ∇−Η
Ω S niS inii dS

Re
1ddSYY eωωue                                                                               (30) 

 
where 1Η =  in the fluid domain, 0.5Η =  on the boundaries, Ξ  is a fundamental solution of the Laplace equation and 

ne  is the unit vector normal to the solid surfaces. 
The drag and lift coefficients are expressed by (Ricci, 2002) 

 

( ) ∑∑
==

∞ −=−−=
NP

1k
kkP

NP

1k
kkkD sinβΔSCsinβΔSpp2C                                                                                                          (31) 

 

( ) ∑∑
==

∞ −=−−=
NP

1k
kkP

NP

1k
kkkL cosβΔSCcosβΔSpp2C                                                                                              (32) 

 

where kΔS  is the length and kβ  is the angle and both of the kth-panel. 

 
4. RESULTS AND DISCUSSION 
 

The flow around a stationary circular cylinder in a uniform flow at Reynolds number of 1.0×105 is investigated to 
analyze the consistence of the vortex code and to define some numerical parameters; as for example the number of 
panels used to define the cylinder surface. Based on the numerical results, the cylinder surface was represented by 
NP=100 flat source panels with constant density. The simulation was performed up to 800 time steps with magnitude 
Δt=0.05. During each time step the new vortex elements are shedding into the cloud through a displacement 
ε=σ0=0.0032d normal to the straight-line elements (panels); see Ricci (2002). 

Drag and lift coefficients are investigated to compute the vortex shedding frequency and to define the harmonic 
motion of the cylinder. Table 1 shows that the numerical results agree very well with the experimental ones obtained by 
Blevins (1984), which have an uncertainty of about 10%. The present drag coefficient shows a higher value as 
compared to the experimental result. One should observe that the three-dimensional effects are non-negligible for the 
Reynolds number used in the present simulation. Therefore one can expect that a two-dimensional computation of such 
a flow must produce higher values for the drag coefficient. On the other hand, the Strouhal number is insensitive to 
these three-dimensional effects. The mean numerical lift coefficient, although very small, is not zero which is due to 
numerical approximations. The aerodynamic forces computations were evaluated between t=20 and t=40. 

 
Table 1. Mean drag and lift coefficients and Strouhal number for stationary circular cylinder 

 
5101.0Re ×=  DC  LC  St =fs0 

Blevins (1984) 1.20 - 0.19 
Present Simulation 1.22 0.07 0.20 

 
The Strouhal number is defined as 

 

U
d fSt =                                                                                                                                                                      (33) 
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where f is the detachment frequency of vortices of the lift coefficient. According results, when vortices are shed into the 
wake of a stationary circular cylinder, they cause a periodic lift force on the body at a frequency of shedding, 1.0fs0, and 
a drag force having twice that frequency, 2.0fs0.  More details of this preliminary study are discussed in Hirata et al. 
(2008). 

In this paper, the body Strouhal number is defined as 
 

U

df
St b

c = .                                                                                                                                                               (34) 

 
Figure 2 shows typical results of the flow around a heaving cylinder at Reynolds number of 1.0×105 with small and 

large amplitudes, in which the abscissa is the body Strouhal number Stc and the ordinate is the Strouhal number for 
stationary cylinder, see Eq. (33). The numerical simulations show that the flow is influenced mainly by the body 
oscillation amplitude Ay and the body motion frequency fby.  

 
 

 
 

Figure 2 – Oscillation of cylinder transverse to the flow: Synchronization at Band III of the vortex shedding frequency 
(St) with the body motion frequency (Stc) for oscillation amplitudes Ay/d=0.15 and Ay/d=0.50. 

 
Hirata et al. (2008) showed that in general the high Reynolds number simulations agree quite well the low 

Reynolds number vortex synchronization regions described by Williamson and Roshko (1988). 
The present numerical results permit concludes that when the oscillating frequency of the cylinder is at or near the 

frequency of vortex shedding from a stationary cylinder, the vortex shedding synchronizes with the cylinder motion. 
Figure 3 illustrates the vortex cloud structure for a transversely oscillating cylinder when occurs the synchronization of 
the vortex shedding frequency (St) with the body motion frequency (Stc) for large amplitude. 

 
  

 
 
 

Figure 3 – Vortex cloud structure for transversely oscillating cylinder (Ay/d=0.50 and fby/f =1.0). 
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Figure 4 shows the variation of the drag and lift coefficients with time for in-line oscillating circular cylinder in the 
uniform flow. Two regimes of vortex shedding are identified.  

First, in the Fig. 4a, case when Ax/d=0.13 and fbx/fcd =1.0 (being fcd the frequency of the drag coefficient), the lift 
curve has the same frequency as the drag coefficient and has a single local peak during a cycle. This mode of vortex 
shedding, defined as mode AI, was observed by Ongoren and Rockwell (1988). The numerical work by Liu and Song 
(2003) presented several types of vortex shedding mode, including mode AI. In their work the Reynolds number was 
Re=855.  

Second, in the Fig. 4b, case when Ax/d=0.50 and fbx/fcd =1.0, the lift coefficient no oscillates and the frequency of 
oscillation of the drag coefficient curve is closer to the vortex shedding frequency from the fixed cylinder. This mode of 
vortex shedding is defined as symmetrical mode S. 
 
 

 
 

(a) Ax/d=0.13 and fbx/fcd =1.0 
 
           

 
 

(b) Ax/d=0.50 and fbx/fcd =1.0 
 

Figure 4. Time history of drag and lift coefficients for in-line oscillating cylinder.  
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For the symmetrical mode, a pair of vortices is shed in phase from both sides of the cylinder during one oscillation 
cycle.  

Figure 5 illustrates the symmetrical mode of vortex formation; see Fig. 4b, where a pair of vortices is shed in phase 
from both sides of the cylinder during one oscillation cycle. The present numerical simulation runs ended with 80,000 
discrete vortices. The final CPU time was about 10h when using a Intel(R) Core(TM)2 Quad CPU, without parallel 
computation.  

Because the distributed vorticity of the mainstream flow has been replaced in the numerical model by a cloud of 
vortex particles, the CPU time for vortex-vortex interaction turns expensive. No attempts to simulate the flow for NP 
greater than 100 were made since the operation count of present algorithm is proportional to the square of Z. 

 

 
 

Figure 5. Symmetrical mode of vortex formation for in-line circular cylinder vibration (Ax/d=0.5 and fbx/fcd =1.0).    
 

Further analyses will be carried out to understand the aerodynamic loads and vortex shedding behavior through 
different oscillating frequencies and amplitudes. 
 
5. CONCLUSIONS 
 

Drag and lift coefficients are computed to describe different flow regimes and their relations to the vortex shedding 
and to the harmonic motions of the circular cylinder. The methodology proposed permits to obtain results that have 
good agreement with the experimental results and it is greatly simplified by the utilization of the vortex method.  

The forced body oscillation motions reveal different regimes of vortex shedding when the forcing frequency is close 
to the free vortex shedding frequency for both in-line and transversal motions of the cylinder in a fluid at rest. The 
vortex formation seems to be a predominant function of the oscillation amplitude and frequency than the Reynolds 
number.  

Even for large Reynolds number, two-dimensional flow assumption is adopted at the present work, which is 
expected to show the main features of the vortex shedding phenomenon and predict this fluid-structure interaction 
problem in a qualitatively sense. Despite the differences presented, the results are promising, that encourages 
performing additional tests in order to explore the phenomena in more details.  

In order to handle fluid flow and heat transfer by vortex method, a new method will be carried out (Recicar et al., 
2008). 
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