
Proceedings of ENCIT 2010
Copyright c© 2010 by ABCM

13th Brazilian Congress of Thermal Sciences and Engineering
December 05-10, 2010, Uberlândia, MG, Brazil

COMPARISONS BETWEEN GITT AND FVM SOLUTIONS FOR
THERMALLY DEVELOPING FLOW IN A RECTANGULAR DUCT

D.J.N.M. Chalhub, dchalhub@gmail.com
L.A. Sphaier, lasphaier@mec.uff.br
Laboratório de Mecânica Teórica e Aplicada, Programa de Pós-Graduação em Engenharia Mecânica, Departamento de Engenharia
Mecânica, Universidade Federal Fluminense, Rua Passo da Pátria 156, bloco E, sala 216, Niterói, RJ, 24210-240, Brazil

Abstract. Both traditional discretization-based numerical methods and alternative hybrid analytical-numerical tech-
niques have been successfully applied for solving convective heat transfer problems. Despite the number of studies
dedicated to separately solving a given problem by one methodology or the other, there are very few studies dedicated to
comparing the computational solution performance of these approaches. In this context, this paper presents a comparison
of Finite Volumes Method (FVM) and Generalized Integral Transform Technique (GITT) solutions for a three dimensional
steady-state convective heat transfer problem. The selected problem is that of thermally developing laminar flow within
a rectangular cross-section duct. The flow is considered kinetically developed and a constant wall temperature condition
is employed. Both solutions are computationally implemented using the Mathematica system and, in order to guarantee
a fair comparison, both implementations employ the same numerical ordinary differential equation (ODE) integrator to
handle the solution in the flow direction. The comparisons are made by observing the convergence behavior of the Nus-
selt number for different positions along the flow direction. The convergence of the velocity profile at different positions
as well as the average velocity is also examined. The results provide an indication of cases and regions in which one
methodology can give better results than the other.
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1. NOMENCLATURE

x, y, z Coordinates Greek Symbols
a, b Cross-section dimensions θm Dimensionless mean stream temperature
u∗ Dimensionless velocity θ Transformed dimensionless temperature
u Average velocity ξ, η, ϕ Dimensionless coordinates
Dh Hydraulic diameter µ, λ, γ Eigenvalues
K0, K1, K2 Aspect ratios Ψ, X, Y Eigenfunctions
H Dimensionless pressure Subscripts
T Temperature n, i, j, r, s, l, p GITT indexes
A, B, F, G, Q, W Coefficients i, j FVM indexes
N Norm of eigenfunctions imax, imax Grid divisions for FVM
Nu Nusselt number kmax Total number of FVM cells

lmax Truncation order for GITT

2. INTRODUCTION

For a long time, analytical techniques were the only available solution methods for diffusion and convection-diffusion
problems, those of which could only be applied to a narrow class of mostly linear problems. Discrete methods also
originated a long time ago and hybrid schemes, such as the Integral Transform approaches, are more recent methods that
have been successfully applied to convection-diffusion problems.

The Generalized Integral Transform Technique (GITT) (Cotta, 1993) deals with expansions of the sought solution in
terms of bases of infinite orthogonal eigenfunctions, maintaining the solution process always within a continuum domain.
Unlike Classic Integral Transform (Mikhailov and Özişik, 1984), the transformation of the original problem results in
a coupled system, making the method applicable to a virtually infinite numbers of problems. The resulting system is
generally composed by a group of differential equations, that can be easily solved by well established numerical routines
that allow precision control. Nevertheless, as the infinite series must be truncated so that any application can be made, a
truncation error is introduced.

The Finite Volume Method (FVM) (Maliska, 1995) appears as widely used option to a variety of convection-diffusion
problems, due to its conservative nature and ease of application. However, as any discrete method, approximations of
integrals and derivatives in terms of nodal points on a computational domain are necessary, resulting in a solution error
that decays with grid refinement.

Interesting applications of the GITT include a variety of convection-diffusion problems. For heat transfer in internal
forced convection different investigations were carried out employing the GITT. Among the recent advancements for these
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type of problems, one should mention (Macêdo, Maneschy et al., 2000; Nacimento, Quaresma et al., 2002, 2006), which
deals with non-Newtonian flows in circular shaped ducts, (Maia, Aparecido et al., 2006), which presents a solution for
non-Newtonian flows in elliptical cross-section ducts, and Lima, Quaresma et al. (2007), which investigates the MHD
flow and heat transfer within parallel-plates channels. For flow in ducts of arbitrary geometry, some particular solutions
have been developed by Aparecido and Cotta (1990); Ding and Manglik (1996); Barbuto and Cotta (1997); Guerrero,
Quaresma et al. (2000); nonetheless, a general methodology was described in (Sphaier and Cotta, 2000, 2002), being
potentially promising for these types of geometries.

Both discrete and spectral approaches have been demonstrated to be effective methodologies to solve convective-
diffusion problems, but there is lack of studies comparing them. Some previous investigations (Chalhub, Dias et al., 2008;
Chalhub and Sphaier, 2009; de Queiroz, Nogueira et al., 2009; Nogueira and Sphaier, 2009) already compared the GITT
with the FVM showing cases in which each methodology could be more adequately employed. In spite of the relevance
of these studies, the analyzed problems presented dependence on only two spatial variables. This work is focused on
comparing the computational performance of the FVM and the GITT for a three-dimensional problem.

3. PROBLEM FORMULATION

The studied problem is that of heat transfer in steady incompressible laminar flow within a rectangular duct. The flow
is considered kinetically (or hydrodynamically) developed, but thermally developing.

The problem for the velocity field is given by the following dimensionless equation

∂2u∗

∂ξ2
+K2

0

∂2u∗

∂η2
= H, in 0 ≤ η ≤ 1, 0 ≤ ξ ≤ 1 (1)

and the the following boundary conditions:

u∗(1, η) = 0,

(
∂u∗

∂ξ

)
ξ=0

= 0, in 0 ≤ η ≤ 1, (2)

u∗(ξ, 1) = 0,

(
∂u∗

∂η

)
η=0

= 0 in 0 ≤ ξ ≤ 1, (3)

where the value of H is calculated to ensure that u∗ is normalized with the cross-section average velocity, which can be
obtained by the following relation:

u =

∫ 1

0

∫ 1

0

u(ξ, η) dξ dη = 1 (4)

The dimensionless energy equation, neglecting the effects of heating due to viscous dissipation, assuming constant
properties and high Peclet numbers, along with the associated boundary conditions are shown bellow:

u∗
∂θ

∂ϕ
= K2

1

∂2θ

∂ξ2
+ K2

2

∂2θ

∂η2
in 0 ≤ η ≤ 1, 0 ≤ ξ ≤ 1, ϕ ≥ 0 (5)

θ(1, η, ϕ) = 0,

(
∂θ

∂ξ

)
ξ=0

= 0, in 0 ≤ η ≤ 1, ϕ ≥ 0 (6)(
∂θ

∂η

)
η=0

= 0 θ(ξ, 1, ϕ) = 0, in 0 ≤ ξ ≤ 1, ϕ ≥ 0 (7)

θ(ξ, η, 0) = 1, in 0 ≤ η ≤ 1, 0 ≤ ξ ≤ 1 (8)

The dimensionless variables and parameters for this problem are defined by:

ξ =
x

a
, η =

y

b
, ϕ =

α z

D2
h u

, θ =
T − Twall

Tin − Twall
(9)

K0 =
a

b
, K1 =

Dh

a
, K2 =

Dh

b
, (10)

where a and b are the dimensions of the duct walls in the x and y directions, respectively, andDh is the hydraulic diameter.
With the adopted dimensionless variables, the Nusselt number based on the hydraulic diameter is given by:

Nu(ϕ) =
hDh

k
=

(
−K1K2

K1 + K2

) K−10

∫ 1

0

(
∂θ
∂ξ

)
ξ=1

dη + K0

∫ 1

0

(
∂θ
∂η

)
η=1

dξ

θm
(11)
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where the value of h is averaged over the perimeter of the cross section such that h = h(ϕ).
The dimensionless mean stream temperature, necessary for calculating the Nusselt number, is obtained from:

θm(ϕ) =

∫ 1

0

∫ 1

0

u∗θ dξ dη (12)

4. INTEGRAL TRANSFORM SOLUTION

Since the velocity profile is fully-developed, a fully analytical solution using expansions of the velocity solution in
terms of a basis of infinite orthogonal eigenfunctions can be employed, resulting in the following profile:

u∗ =
Hξ2

2
− H

2
+

∞∑
n=1

AnΨn(ξ) cosh

(
µnη

K0

)
(13)

where the eigenfunctions (Ψn) and eigenvalues (µn) are given by:

Ψn(ξ) = cos(µnξ) (14)
µn = π (n− 1/2) where n = 1, 2, 3, ... (15)

and the constants An and the norms Nn are given by:

An = −

∫ 1

0

(
Hξ2

2 − H
2

)
cos(µnξ) dξ

Nn cosh
(
µn

K0

) ; Nn =

∫ 1

0

Ψ2
n dξ =

1

2
(16)

The integral transform solution of the thermal problem is accomplished by employing the Generalized Integral Trans-
form Technique (Cotta, 1993). The solution process begins with the definition of the transformation pair:

Transform ⇒ θir(ϕ) =

∫ 1

0

∫ 1

0

θ(ξ, η, ϕ)Xr(ξ)Yi(η) dξ dη (17)

Inversion ⇒ θ(ξ, η, ϕ) =

∞∑
i=1

∞∑
r=1

θir(ϕ)Xr(ξ)Yi(η)

NrNi
(18)

where Xr’s and Yi’s are the orthogonal solutions of Sturm-Liouville eigenvalue problems that, for this problem, are
selected to be:

X ′′r (ξ) + γ2r Xr(ξ) = 0, in 0 ≤ ξ ≤ 1, (19)
X ′r(0) = 0, Xr(1) = 0, (20)

and

Y ′′i (η) + λ2i Yi(η) = 0, in 0 ≤ η ≤ 1, (21)
Y ′i (0) = 0, Yi(1) = 0, (22)

These eigenvalue problems lead to infinite nontrivial solutions as shown bellow:

Xr(ξ) = cos(γr ξ), γr = π (r − 1/2) , for r = 1, 2, 3, ... (23)
Yi(η) = cos(λi η), λi = π (i− 1/2) , for i = 1, 2, 3, ... (24)

The norms of the eigenfunctions Xr(ξ) and Yi(η) are given by:

Nr =

∫ 1

0

X2
r (ξ) dξ =

1

2
; Ni =

∫ 1

0

Y 2
i (η) dη =

1

2
(25)

The problem is transformed using the transformation operator defined in eq. (17). Almost all the terms of the equation
can be directly transformed and for the non-transformable terms the inversion formula (18) is applied.

∞∑
i=1

∞∑
r=1

(
Bjsir θ

′
ir(ϕ)

)
− Fjs θjs(ϕ) = 0 (26)
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The transformed equation consists of a system of coupled first order ordinary differential equations and a set of bound-
ary conditions specified only at the channel entrance (ϕ = 0), which are obtained by the transformation of equation (8).

θir(0) =

∫ 1

0

∫ 1

0

Xr Yi dξ dη (27)

The coefficients in the transformed system are given by:

Bjsir =

∫ 1

0

∫ 1

0

u∗ YiXr Yj Xs

NrNi
dξ dη; Fjs = −K2

1 γ
2
s − K2

2 λ
2
j (28)

Once system (26)-(28) is solved, the dimensionless temperature θ(ξ, η, ϕ) can be readily calculated from the inversion
formula (18). The solution of this coupled ODE system can be easily accomplished computationally; however, it is nec-
essary that the infinite summation representation be truncated to a finite order. Since a double summation representation
is present, the truncation of the infinite representation must be preceded by a reordering scheme in order to ensure an
efficient convergence behavior. The reordering scheme consists on mapping combinations of i and r pairs into a single
index, l, and similarly to j and s, as described below:

l ←→ (i, r) and p ←→ (j, s) (29)

where the reordering associations are chosen so that the larger terms (in magnitude) are summed first.
With the reordering procedure, the transformed problem becomes:

∞∑
l=1

θ
′
lBlp − θp Fp = 0; θl(0) = Gl(ξ, η) (30)

where:

Gl(ξ, η) =

∫ 1

0

∫ 1

0

Xr(ξ)Yi(η) dη dξ (31)

Alternatively, the reordered system can be written in matrix form:

B θ
′ − F θ = 0; θ(0) = G (32)

where B represents the B matrix, G represents the G constant matrix and F represents the diagonal matrix containing
the vector Fp, in other words:

Flp = Fp δlp (33)

Using the definition of inverse matrix we arrive at a simplified explicit equation, as shown bellow.

θ
′

= B−1 F θ (34)

This system is then numerically solved using the Mathematica routine NDSolve and the temperature is calculated
using the inversion formula (18).

Finally, the Nusselt number is computed from the expression:

Nu(ϕ) =
−1

θm

(
K1K2

K1 + K2

) (
K−10

∞∑
i=1

∞∑
r=1

θir(ϕ)Qir + K0

∞∑
i=1

∞∑
r=1

θir(ϕ)Wir

)
(35)

Qir = X ′r(1)

∫ 1

0

Yi dη; Wir = Y ′(1)

∫ 1

0

Xr dξ (36)

Using the same reordering technique explained previously, the Nusselt expression can be simplified to include a single
summation, resulting in:

Nu(ϕ) =
−1

θm

(
K1K2

K1 + K2

) (
K−10

∞∑
l=1

θl(ϕ)Ql + K0

∞∑
l=1

θl(ϕ)Wl

)
(37)
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5. FINITE VOLUMES METHOD

The solution by the FVM is accomplished by integrating the equation within a finite volume of height ∆η = 1/jmax
and length ∆ξ = 1/imax and employing second-order approximations for the integrations and derivations, which leads to
the following discretized system using standard FVM notations for momentum and energy equations respectively:

u∗E − 2u∗P + u∗W
∆ξ2

+ K2
0

u∗N − 2u∗P + u∗S
∆η2

= H (38)

u∗P
∂θP
∂ϕ

= K2
1

θE − 2 θP + θW
∆ξ2

+ K2
2

θN − 2 θP + θS
∆η2

(39)

This equation is valid for internal volumes. For peripheral volumes, the application of the boundary conditions lead
to:

• For 1 < i < imax and j = 1:

u∗E − 2u∗P + u∗W
∆ξ2

+ K2
0

u∗N − u∗P
∆η2

= H (40)

u∗P
∂θP
∂ϕ

= K2
1

θE − 2 θP + θW
∆ξ2

+ K2
2

θN − θP
∆η2

(41)

• For 1 < i < imax and j = jmax:

u∗E − 2u∗P + u∗W
∆ξ2

+ K2
0

− 3u∗P + u∗S
∆η2

= H (42)

u∗P
∂θP
∂ϕ

= K2
1

θE − 2 θP + θW
∆ξ2

+ K2
2

− 3 θP + θS
∆η2

(43)

• For i = 1 and 1 < j < jmax:

u∗E − u∗P
∆ξ2

+ K2
0

u∗N − 2u∗P + u∗S
∆η2

= H (44)

u∗P
∂θP
∂ϕ

= K2
1

θE − θP
∆ξ2

+ K2
2

θN − 2 θP + θS
∆η2

(45)

• For i = imax and 1 < j < jmax:

3u∗P + u∗W
∆ξ2

+ K2
0

u∗N − 2u∗P + u∗S
∆η2

= H (46)

u∗P
∂θP
∂ϕ

= K2
1

− 3 θP + θW
∆ξ2

+ K2
2

θN − 2 θP + θS
∆η2

(47)

• For i = 1 and j = 1:

u∗E − u∗P
∆ξ2

+ K2
0

u∗N − u∗P
∆η2

= H (48)

u∗P
∂θP
∂ϕ

= K2
1

θE − θP
∆ξ2

+ K2
2

θN − θP
∆η2

(49)

• For i = imax and j = 1:

− 3u∗P + u∗W
∆ξ2

+ K2
0

u∗N − u∗P
∆η2

= H (50)

u∗P
∂θP
∂ϕ

= K2
1

− 3 θP + θW
∆ξ2

+ K2
2

θN − θP
∆η2

(51)

• For i = 1 and j = jmax:

u∗E − u∗P
∆ξ2

+ K2
0

− 3u∗P + u∗S
∆η2

= H (52)

u∗P
∂θP
∂ϕ

= K2
1

θE − θP
∆ξ2

+ K2
2

− 3 θP + θS
∆η2

(53)
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• For i = imax and j = jmax:

− 3u∗P + u∗W
∆ξ2

+ K2
0

− 3u∗P + u∗S
∆η2

= H (54)

u∗P
∂θP
∂ϕ

= K2
1

− 3 θP + θW
∆ξ2

+ K2
2

− 3 θP + θS
∆η2

(55)

The boundary condition for energy equation in ϕ direction is given by:

θP (0) = 0 (56)

This initial value system of ordinary differential equations was also solved numerically by NDSolve routine from
Mathematica software. The Nusselt number is obtained from equation (37) computing the derivative and integral numer-
ically.

6. RESULTS AND DISCUSSION

After presenting the solution of the problem using the considered two different analyzed methodologies, computational
implementations were developed, and numerical results are now presented for comparisons. The mesh used to solve the
energy equation by the FVM is the same used to solve the momentum equation and, for a fair comparison, the number
of terms used in the GITT to solve the velocity profile is the same as used for the temperature profile. Table 1 presents
the velocity convergence for particular positions using the GITT. As can be seen, the convergence becomes more difficult
in the areas near the the duct walls and it becomes better for low aspect ratios. Some special cases only need five terms
for obtaining six converged digits. Another interesting aspect to note is that the average velocity presents an excellent
convergence behavior.

Table 1. Velocity convergence for some particular positions for GITT.

lmax ξ = 0; η = 0.99 ξ = 0.99; η = 0.99 ξ = 0.99; η = 0 ξ = 0; η = 0 Uavg

K0 = 1 5 0.0462064 0.00403787 0.0476841 2.09626 1.00002
10 0.0478488 0.00289441 0.0476841 2.09626 1.00000
20 0.0476993 0.00244196 0.0476841 2.09626 1.00000
30 0.0476874 0.00234024 0.0476841 2.09626 1.00000
40 0.0476851 0.00230695 0.0476841 2.09626 1.00000
50 0.0476844 0.00229439 0.0476841 2.09626 1.00000
60 0.0476842 0.00228938 0.0476841 2.09626 1.00000
70 0.0476841 0.00228739 0.0476841 2.09626 1.00000
80 0.0476841 0.00228663 0.0476841 2.09626 1.00000

K0 = 1/2 5 0.0630276 0.00345703 0.040452 1.99180 1.00001
10 0.0638741 0.00289054 0.040452 1.99180 1.00000
20 0.0638053 0.00270850 0.040452 1.99180 1.00000
30 0.0638011 0.00267899 0.040452 1.99180 1.00000
40 0.0638005 0.00267197 0.040452 1.99180 1.00000
50 0.0638004 0.00267004 0.040452 1.99180 1.00000
60 0.0638003 0.00266947 0.040452 1.99180 1.00000
70 0.0638003 0.00266931 0.040452 1.99180 1.00000
80 0.0638003 0.00266926 0.040452 1.99180 1.00000

K0 = 1/4 5 0.102491 0.00424850 0.035325 1.77368 1.00000
10 0.102978 0.00394732 0.035325 1.77368 1.00000
20 0.102947 0.00388253 0.035325 1.77368 1.00000
30 0.102946 0.00387706 0.035325 1.77368 1.00000
40 0.102946 0.00387637 0.035325 1.77368 1.00000
50 0.102946 0.00387627 0.035325 1.77368 1.00000
60 0.102946 0.00387625 0.035325 1.77368 1.00000
70 0.102946 0.00387625 0.035325 1.77368 1.00000
80 0.102946 0.00387625 0.035325 1.77368 1.00000

Table 2 shows the FVM velocity convergence at the same positions as table 1, where kmax is the total number of cells,
given by imax times jmax. The results show that this technique has the same tendency as GITT in which the convergence
is better far from the physical boundaries, especially from corners.
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Table 2. Velocity convergence for some particular positions for FVM.

kmax ξ = 0; η = 0.99 ξ = 0.99; η = 0.99 ξ = 0.99; η = 0 ξ = 0; η = 0 Uavg

K0 = 1 25 0.0487418 0.00149349 0.0487418 2.22222 1.01220
100 0.0482089 0.00180884 0.0482089 2.12771 1.00158
400 0.0480810 0.00212309 0.0480810 2.10412 1.00047
625 0.0480658 0.00222419 0.0480658 2.10129 1.00018

2500 0.0480455 0.00253815 0.0480455 2.09751 1.00001
10000 0.0476862 0.00226995 0.0476862 2.09657 1.00001

K0 = 1/2 25 0.0643124 0.00166496 0.0405975 2.04704 0.999311
100 0.0645948 0.00205599 0.0406528 2.00264 1.00041
400 0.0646514 0.00244309 0.0406663 1.99373 1.00006
625 0.0646578 0.00256747 0.0406679 1.99287 0.999870

2500 0.0646663 0.00295358 0.0406699 1.99194 0.999990
10000 0.0638025 0.00264893 0.0404521 1.99180 1.00005

K0 = 1/4 25 0.0957254 0.00213787 0.0354688 1.83914 1.00317
100 0.103320 0.00279521 0.0354935 1.78963 1.00122
400 0.105195 0.00342974 0.0355008 1.77755 1.00060
625 0.105400 0.00363276 0.0355017 1.77613 0.999911

2500 0.105669 0.00426221 0.0355027 1.77427 1.00002
10000 0.102943 0.00384313 0.0353250 1.77382 1.00003

Table 3. Local Nusselt number for GITT.

ϕ

lmax 10−3 10−2.5 10−2 10−1.5 10−1 100

K0 = 1/4 20 12.8440 8.30897 5.59702 4.81074 4.57258 4.45182
30 12.7311 8.14621 5.59476 4.80942 4.57267 4.45296
40 12.4780 7.59011 5.56874 4.80099 4.56530 4.25015
50 12.3044 7.58249 5.56731 4.80069 4.56522 4.44703
60 12.2556 7.58118 5.56693 4.80058 4.56518 4.44588
70 11.3671 7.49885 5.55824 4.79751 4.56251 4.44410
80 11.3509 7.49803 5.55804 4.79746 4.56250 4.44337

K0 = 1/2 20 11.9250 7.03468 4.74042 3.73709 3.43697 3.39720
30 11.5315 6.92651 4.73617 3.73561 3.43644 3.39678
40 10.9281 6.70854 4.72650 3.73252 3.43433 3.40553
50 10.3026 6.67719 4.72082 3.73099 3.43332 3.40134
60 10.2317 6.67489 4.72013 3.73082 3.43326 3.39371
70 9.90737 6.66729 4.71708 3.73004 3.43276 3.49277
80 9.88674 6.66585 4.71671 3.72994 3.43272 3.39319

K0 = 1 20 11.3155 6.64788 4.37650 3.28482 2.98606 2.98138
30 10.7680 6.38035 4.36613 3.28141 2.98499 2.98041
40 10.1572 6.30958 4.35946 3.27959 2.98415 2.97887
50 9.68994 6.29783 4.35535 3.27856 2.98366 2.97877
60 9.44564 6.29093 4.35284 3.27793 2.98337 2.96737
70 9.40274 6.28813 4.35208 3.27773 2.98328 2.97811
80 9.35783 6.28482 4.35128 3.27753 2.98319 2.97495

The local and mean Nusselt number based on the hydraulic diameter for the thermal entry region calculated by the
Integral Transform Technique is shown in tables 3 and 4. By observing the data in this table, one can easily notice that
the results have a tendency to converge quicker at positions farther away from the channel entrance. In addition, reducing
the aspect ratio K0 causes the convergence rate to become slightly worse. The same observation can be done about tables
5 and 6, which shows similar Nusselt results at the same positions presented for the Finite Volumes Method. The poor
convergence near the duct entrance can be linked to the high gradients in this region.

Simulations by the GITT using the fully converged velocity profile (with at least 6 digits) were developed to calculate
Nusselt number. This approach resulted in the exact same output presented in tables 3 and 4. This occurs due to the fact
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Table 4. Mean Nusselt number for GITT.

ϕ

lmax 10−3 10−2.5 10−2 10−1.5 10−1 100

K0 = 1/4 20 14.9580 11.6796 8.11173 6.01356 5.08591 4.52762
30 15.2696 11.6359 8.07010 5.99933 5.08119 4.52660
40 17.0124 11.7121 7.98895 5.96563 5.06528 4.61436
50 17.0133 11.6712 7.97470 5.96068 5.06363 4.51848
60 16.9767 11.6521 7.96820 5.95849 5.06289 4.51082
70 17.4065 11.5235 7.91501 5.93858 5.05470 4.51530
80 17.3735 11.5112 7.91083 5.93719 5.05424 4.51519

K0 = 1/2 20 15.0530 10.8215 7.18675 5.05496 4.00961 3.45988
30 15.3172 10.7218 7.14206 5.03904 4.00404 3.45896
40 16.0091 10.6243 7.08004 5.01584 3.99512 3.45604
50 16.1629 10.5221 7.04134 5.00173 3.98989 3.45350
60 16.0879 10.4888 7.02990 4.99789 3.98862 3.45464
70 15.9840 10.4142 7.00266 4.98831 3.98520 3.43678
80 15.9329 10.3955 6.99625 4.98616 3.98448 3.45375

K0 = 1 20 14.4892 10.3164 6.78050 4.64768 3.55811 3.03914
30 15.2421 10.2186 6.70978 4.62129 3.54839 3.03663
40 15.5057 10.1038 6.66376 4.60444 3.54234 3.03520
50 15.5014 10.0155 6.63148 4.59291 3.53828 3.03456
60 15.3802 9.94787 6.60700 4.58436 3.53532 3.03409
70 15.3061 9.91998 6.59719 4.58101 3.53418 3.03380
80 15.2019 9.88181 6.58402 4.57659 3.53271 3.03359

Table 5. Local Nusselt number for FVM.

ϕ

kmax 10−3 10−2.5 10−2 10−1.5 10−1 100

K0 = 1/4 25 10.3925 7.29505 5.56481 4.69828 4.44549 4.35031
100 10.9709 7.58127 5.51930 4.76039 4.52930 4.41402
400 10.6992 7.45385 5.54022 4.78535 4.55180 4.43342
625 10.6822 7.45524 5.54264 4.78842 4.55457 4.43593

2500 10.6853 7.45718 5.54601 4.79256 4.55830 4.43936
10000 10.6847 7.45781 5.54687 4.79360 4.55924 4.44020

K0 = 1/2 25 10.7105 6.94796 4.728 3.6792200 3.38212 3.33964
100 9.96081 6.63006 4.70047 3.71436 3.41684 3.37625
400 9.74144 6.63927 4.70784 3.72470 3.42774 3.38638
625 9.73811 6.63960 4.70886 3.72602 3.42916 3.38835

2500 9.73526 6.64025 4.71028 3.72781 3.43110 3.39157
10000 9.73475 6.64045 4.71064 3.72826 3.43158 3.39209

K0 = 1 25 10.9719 6.50712 4.28184 3.22028 2.90188 2.89361
100 9.24292 6.25534 4.33128 3.26036 2.96023 2.95440
400 9.28795 6.26214 4.34270 3.27218 2.97681 2.97149
625 9.28711 6.26334 4.34417 3.27368 2.97889 2.97363

2500 9.28665 6.26506 4.34618 3.27573 2.98171 2.97653
10000 9.28665 6.26552 4.34669 3.27623 2.98241 2.97725

that the velocity profile converges quickly with only a few terms at almost all points in the physical domain, except at
critical positions, as displayed on table 1.

Finally, for validation purposes, table 7 displays a comparison for the Nusselt number calculated in this paper with the
work done by Chandrupatla and Sastri (1977) for square duct case (K0 = 1). As one can observe, that the results are in
perfect accordance with the literature.
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Table 6. Mean Nusselt number for FVM.

ϕ

kmax 10−3 10−2.5 10−2 10−1.5 10−1 100

K0 = 1/4 25 15.0686 10.4644 7.55066 5.79149 4.92546 4.41662
100 15.9606 11.1075 7.77664 5.86941 5.00876 4.48408
400 16.2592 11.0527 7.74751 5.87642 5.02731 4.50357
625 16.1886 11.0323 7.74242 5.87677 5.02943 4.50604
2500 16.0904 11.0018 7.73480 5.87700 5.03219 4.50925

10000 16.0635 10.9935 7.73271 5.87701 5.03287 4.51024
K0 = 1/2 25 14.2808 10.1873 7.01440 4.96364 3.94205 3.40131

100 15.3338 10.1952 6.91885 4.95129 3.96253 3.43639
400 14.9752 10.0613 6.88086 4.94549 3.96816 3.44741
625 14.9204 10.0436 6.87580 4.94470 3.96887 3.44885
2500 14.8437 10.0190 6.86887 4.94361 3.96984 3.45082

10000 14.8238 10.0127 6.86710 4.94332 3.97007 3.45132
K0 = 1 25 13.8929 10.0105 6.59659 4.54151 3.47293 2.95173

100 14.7371 9.70437 6.51203 4.54171 3.50767 3.00983
400 14.3604 9.59124 6.48341 4.54052 3.51730 3.02616
625 14.3124 9.57647 6.47971 4.54036 3.51851 3.02821
2500 14.2463 9.55634 6.47469 4.54013 3.52015 3.03098

10000 14.2295 9.55122 6.47342 4.54007 3.52056 3.03166

Table 7. Comparison of the results in the thermal entry region calculated with the work done by Chandrupatla and Sastri
(1977)†.

ϕ Nu† Nu Nu†m Num
0.1000 2.976 2.983 3.514 3.531
0.0500 3.074 3.077 4.024 4.052
0.0400 3.157 3.158 4.253 4.287
0.0250 3.432 3.431 4.841 4.895
0.0200 3.611 3.608 5.173 5.240
0.0125 4.084 4.080 5.989 6.096
0.0100 4.357 4.350 6.435 6.568
0.0075 4.755 4.745 7.068 7.246
0.0050 5.412 5.397 8.084 8.349

7. CONCLUSIONS

This paper provided a comparison between two solutions strategies for calculating Nusselt number in thermally de-
veloping Newtonian laminar flow within a rectangular duct: the Generalized Integral Transform Technique and Finite
Volumes Method (FVM). In order to perform a fair comparison of the two methodologies, the original partial differential
equation (PDE) formulation was converted to an ordinary differential equation (ODE) system, either through Integral
Transformation (GITT) or spatial discretization (FVM) within the domain cross-section. Both solution strategies were
computationally implemented in the Mathematica platform, and the resulting ODE system, for both approaches, was
solved using the ODE solver NDSolve. Simulation results were then conducted to compare the solution behavior of both
methodologies. The results showed that, in general, for the velocity profile, the FVM requires a very refined mesh to
achieve the same convergence obtained with the integral transformation approach with a relatively small truncation order.
For the Nusselt number, the FVM needs an even more refined mesh and the GITT also requires more terms for obtaining
satisfactory convergence rates. For both methods, the results were worse in regions near the physical boundaries due to
the higher temperature gradients that occur in these regions. As suggestions for future works, one could compare these
techniques for solving problems in other geometries, or even attempt do develop combined solution schemes using both
methodologies, thereby joining the advantages associated with each methodology.
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