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Abstract. The main objective of the present research work consists of studying flux schemes to solve shock wave dis-
continuities. Several schemes are considered, mostly based on Godunov-type methods which use approximate solutions
of a local Riemman problem. Flux-vector splitting and centered schemes are also used. A 1-D shock tube problem is
considered as the testbed for this study. Results from Roe, HLLC, centered, van Leer, and AUSM schemes are compared
to theoretical Riemman problem solutions, such as Sod’s shock-tube problem. These schemes are implemented in a 1-D
finite volume framework. Time integration is performed with an explicit, 4th-order Runge-Kutta scheme. High-order
spatial discretization is achieved with a 5-point-stencil MUSCL interpolation scheme. Limiter functions are incorporated
to obtain non-oscillatory resolution of discontinuities and steep gradients, without smearing. The quality of the results
are evaluated based on the presence, or absence, of oscillatory solutions, shock wave smearing, and acoustic and entropy
wave speeds.
Keywords: Riemann Problem, Flux Limiters, Godunov-type Methods, MUSCL, Shock Wave.

1. INTRODUCTION

Discontinuities, such as shock waves, lead to computational difficulties and the intent of this work is to evaluate the ac-
curacy of methods that approximate such solutions. Classical discretization methods can be expected to break down near
discontinuities. The work concentrates primarily on high resolution finite volume methods that have gained recognition
for being very effective for computing discontinuous solutions. The goal, for these methods, is to capture discontinuities
in the solutions automatically, without explicitly tracking them. Discontinuities are, then, spread over one or more grid
cells. Sucess requires that the methods implicitly incorporate the correct jump conditions, reduce smearing to a minimum,
and do not introduce non-physical oscillations near the discontinuities. The methods evaluated in the present work are:
central differencing, van Leer flux splitting, advection upstream splitting, Roe flux differencing splitting and Harten-Lax-
van Leer contact discontinuity difference splitting schemes.
The Riemann problem test cases represent a shock tube experiment under three different initial conditions. A shock
tube is just a metal tube in which the gas at low pressure and the gas at high pressure are separated using a diaphragm.
This diaphragm suddenly bursts open under predetermined conditions to produce a shock wave that travels down the low
pressure section of the tube. Simultaneously, a rarefaction wave, often referred to as an expansion fan, travels back into
the driver gas. The section that represents the interface separating the driven and driver gases is called the contact sur-
face. The contact surface moves rapidly along the tube behind the shock front. The first two test cases are Sod problems
[Sod, 1978]. Test case 1 is a shock-tube with moderate initial pressure ratio while test case 2 has higher initial pressure
ratio. The last test case is a severe compression shock tube, characterized by a membrane bursting causing two identical
gases to move towards each other at Mach 25 [Batten, 1997]. All three test cases have exact solutions.

2. FINITE VOLUME METHOD

The theoretical background upon which the numerical code is based is discussed herein. The Euler equations, which
describe the fluid motion under the hypothesis of continuum, are briefly discussed herein. The equations are derived from
the physical balance of fluxes in a given fluid cell, considering the conservation of mass and energy, and Newton’s 2nd
law, within the control volume and restricted to 1D flows. For detailed discussion and derivation refer to [Leveque, 2002].
The Euler equations governing the flow of a compressible gas in 1D comprise
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where ρ is the density, t is the time, x is the position, ui is the fluid velocity, p is the pressure and E is the total energy per
unit mass of fluid. The equations first term is the transient term and the second terms are the flux term derivative.

E =
p

γ − 1
+

1

2
ρ|u|2 (2)

where γ is the ratio of specific heats. The above equations are closed by taking an equation of state, the simplest being
the ideal gas

p = ρRT, (3)

where R is the gas constant and T is the absolute temperature.

3. FLUX SCHEMES

Flux calculation algorithms are supposed to accurately evaluate the flux quantities at the left and right cell face bound-
aries. A flux calculation algorithm must be of such a form that it calculates the flux at given cell boundary based on cell
values only to the upstream side of the boundary for supersonic flow, and from both sides of the boundary for subsonic
flows. This procedure is further complicated by the fact that a schock wave will create a situation where supersonic flow
is present on one side of the shock and subsonic flow on the other side. Several early flux discretizations schemes were
shown to poorly handle discontinuities, such as shock waves. Nowadays, there are a large number of techniques available
which perform this task. For the purposes here, five of the schemes were selected to be tested. These five schemes were
selected simply because of their popularity, their recognizability by most users, and their body of testing and documenta-
tion.
The Euler equations are a system of homogeneous conservation laws,

qt + F (q)x = 0, (4)

where F (q)x is the flux-function and q is the properties vector.

3.1 CENTRAL DIFFERENCING SCHEME

One of the methods to compute the numerical flux is the Central Differencing Scheme (CDS), which calculates the
cell-face value as an average between the adjacent cells. This scheme is 2nd-order accurate and requires the explicit
addition of artificial dissipation terms in order to control nonlinear instabilities that will arise in the flow simulation. In
the present formulation, the Mavripilis scalar switched model is used to compute the dissipation. The centered spatial dis-
cretization of the convective fluxes in this scheme is as presented in Jameson, Turkish and Schmid [Jameson et al., 1981].
The convective operator is the sum of the inviscid fluxes on the i-th volume faces and the artificial dissipation operator is
built by a blend of undivided Laplacian and bi-harmonic operators. In regions of high property gradients, the bi-harmonic
operator is turned off in order to avoid oscillations. In smooth regions, the undivided Laplacian operator is turned off in
order to mantain 2nd order accuracy. A numerical pressure sensor is responsible for this switching between the operators.
In the multistage Runge-Kutta time integration the artificial dissipation operator is calculated on all stages. The expres-
sions for the flux, convection and dissipation operators are given by

Fi = Ci −Di,

Ci =

2∑
k=1

P (qk)Sk, qk =
1

2
(qi + qm), P (q) =

 ρu
ρu2 + p
(e+ p)u


Di =

2∑
k=1

{
1

2
(Ai +Am)[ε2(Qm −Qi)− ε4(∇2qm −∇2qi)]

}
,

, (5)

where Fi, Ci andDi are respectively flux, convection and dissipation operators in cell i. m represents the adjacent cells. P
is the production operator, S is the face area, qk, qi and qm are respectively the properties in the cell and adjacent cells. Ai

and Am are matrix coefficients; ρ, u, p and e stand for density, speed, pressure and energy. A numerical pressure sensor,
νi, is responsible for the switching between the operators. In this work, K2 and K4 are constants assumed equal 1/4 and
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3/256, respectively [Bigarella, 2007].

ε2 = K2max(νi, νm), ε4 = max(0,K4 − ε2), νi =

2∑
m=1

‖pm − pi‖

2∑
m=1

‖pm + pi‖
(6)

3.2 FLUX VECTOR SPLITTING UPWIND SCHEMES

3.2.1 VAN LEER FLUX SPLITTING

The van Leer flux vector splitting scheme [van Leer, 1982] is analyzed to determine its eigenvalues, which are the
wave speeds of the equation set for the Euler equations. For the quasi 1-D equation set, there are three speeds: [u+a, u, and
u-a]. The flux is split into the respective contributions from each wave speed, with a "positive" or "left" flux component
coming from the positve wave speeds and a "negative" or "right" flux component coming from the negative wave speeds.
If the flow is supersonic, only the flux component from the upstream direction is non-zero. For subsonic flow, both the
left and right flux components are non-zero. The van Leer flux components are defined as given in eqn. (7), which results
from the Mach number splitting. Van Leer put these components in terms of Mach number, M, to make the analysis more
consistent.

F± =



[±1

4
ρa(M ± 1)2]

[±1

4
ρa(M ± 1)2][(γ − 1)Ma± 2a]

1

γ

[±1

4
ρa(M ± 1)2][(γ − 1)Ma± 2a]

1

2(γ2 − 1)


(7)

where ± represents right and left adjacent cells properties, respectively. a is sound speed and γ denotes the ratio of spe-
cific heat capacity of the gas. The van Leer method is sometimes criticized for being "too dissipative," and it was even
recommended by van Leer himself only for use in the Euler equations. As pointed out by van Leer [van Leer, 1982],
the van Leer flux splitting scheme fails to recognize the contact discontinuity, leading to excessive numerical diffusion.
Hence significant error appears in the viscous region which can not be simply cured by reducing size and using higher-
order differencing [Liou et al., 1993].

3.2.2 ADVECTION UPSTREAM SPLITTING SCHEME

According to [Liou et al., 1993], the Advection Upstream Splitting Scheme (AUSM) is a tentative approach to com-
bine the efficiency of flux-vector splitting (FVS) and the accuracy of flux-difference splitting (FDS) methods. This scheme
has the intent of being simple and accurate, yielding vanishing numerical diffusivity at the stagnation points. In a variety
of Euler calculations performed, the accuracy of the present scheme is shown to be rivaling that of Roe’s splitting. Since
the scheme has no matrix operation is much simpler to construct, and thus, more efficient. Furthermore, unlike Roe’s
scheme [Roe, 1981], this method does not involve differentiation of fluxes, hence it is smoother. This is desirable for the
general equation of state where a stiff variation of thermodynamic states may occur in certain transitional states. The flux
at any cell boundary is defined by eqn. (8).

F = (M+
L +M−

R )

 ρa
ρua
ρah0


(LorR)

+


0

P+
L + P−

R

0

 (8)

where M± and P± are defined in eqn. (6) and (7) and ρ is density, a is sound speed and h is enthalpy. L and R stand for
left and right.

M± =


±1

4
(M ± 1)2 if |M | ≤ 1

1

2
(M ± |M |) if |M | > 1

(9)
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P

2
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M

if |M | > 1

(10)

where M is Mach number and P is pressure. Meanwhile, AUSM flux vector splitting method has many similarities with
van Leer method. However, in AUSM, the pressure term of the flux is split apart from the convective part of the flux. The
convective part of the flux is calculated using either a left or right biased stencil depending on the sign of an averaged,
convective Mach number. The pressure component of the flux is split similarly to the Van Leer concept into a left running
and a right running pressure flux.

3.3 FLUX DIFFERENCE SPLITTING SCHEMES

3.3.1 ROE FLUX DIFFERENCE SPLITTING WITH ENTROPY CORRECTION

In Roe scheme [Roe, 1981], the flux calculation is treated as a series of 1-D Riemann problems. For each eigen-
value/wave speed, a Riemann problem is solved. For the Euler equations, this Riemann problem is non-linear, and the
effort to solve is large. Although the early solution to this non-linear series of problems was a significant step forward
for the CFD community, Roe proposed to solve an "approximate" linear version of the Riemann problem. This resulted
in much faster execution and very little accuracy is sacrificed in the process. In addition, the Roe scheme automatically
admits shocks as a possible solution without any extra effort.

F =
1

2
(A(q)[qR − qL])− 1

2

3∑
k=1

(eRL,i ∗ φ(λi) ∗∆wi) (11)

where A(q), eRL, ∆wi and φ(λ(i) are defined by eqn (9), (10), (11) and (12). F is the flux.

A(q) =



0 1 0
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 1
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1
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 1
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 , (13)

∆w1 = ∆ρ− ∆P

a2RL

,

∆w2 = ∆u+
∆P

ρaRL
,

∆w3 = ∆u− ∆P

ρaRL
,

(14)

Roe scheme is still one of the most used methods in solving convective equation sets. One major issue with the tra-
ditional Roe scheme is that it admits expansion shocks as well as compression shocks. In reality, an expansion shock
is not a valid solution of the Euler equations, so the Roe scheme is often supplemented with an "entropy" correction
which filters out the possibility of expansion shocks by modifying the eigenvectors that cause the phenomenon. Harten
was an early advocate of the entropy correction, and the present work has a basic version of his correction method.
[Harten, Lax and van Leer, 1983]

φ(λi) =


λ2i + δ2

2δ
for |λi| < δ

‖λi| for |λi| ≥ δ
(15)
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This equation defines the eigenvalues term in the flux calculation. This correction has the effect of smoothing out expan-
sion shocks, which occur near sonic points because one of the eigenvalues goes to zero at these points. In eqn. (15), δ is
a small positive number. As discussed by [Laney, 1998], the choosing of this parameter is somewhat arbitrary and for the
present work it is just the velocity jump from right to left.

3.3.2 HARTEN-LAX-VAN LEER CONTACT DISCONTINUITY DIFFERENCE SPLITTING

The Harten-Lax-van Leer contact discontinuity difference splitting scheme (HLLC) is an improved two-state version
of the original single-state HLL Riemann solver by Harten, Lax and van Leer [Toro, 1999]. The original HLL numerical
flux automatically satisfies entropy inequality [Davis, 1988], resolves isolated shocks [Harten, Lax and van Leer, 1983]
and preserves positivity . Batten et al. have shown that the HLLC flux not only preserves the advantageous features of
the HLL flux, but also resolves isolated contact discontinuities exactly [Batten, 1997]. The implementation of the HLLC
Riemann solver is relatively simple and the computational cost is lower compared with many other available Riemann
solvers [Aliabadia, 2005].

FHLLC =


Fl if SL > 0
F (U∗

l ) if SL ≤ 0 < SM

F (U∗
r ) if SM ≤ 0 < SR

Fr if SR < 0

, (16)

where

F (U∗
L) =

 ρ∗l SM

(ρlu)∗SM + p∗

(e∗l + p∗)SM ,

 , F (U∗
R) =

 ρ∗rSM

(ρru)∗SM + p∗

(e∗r + p∗)SM

,

 , (17)

P ∗ = ρl(ql − SL)(qL − SM ) + pL = ρr(qr − SR)(qL − SM ) + pR, (18)

and the signal velocities: SM , SL and SR are taken as:

SM =
ρrqr(SR − qr)− ρlql(SL − ql) + pl − pr

ρr(SR − qr)− ρl(SL − ql)
,

SL = min[λ1(Ul), λ1(URoe],

SR = max[λm(URoe), λm(Ur)].

(19)

with λ1(URoe) and λm(URoe) being the smallest and largest eigenvalues of the Roe matrix [Roe, 1981].

4. HIGH ORDER RECONSTRUCTION

4.1 GENERAL COMMENTS

High-resolution schemes are used in the numerical solution of partial differential equations where high accuracy is
required in the presence of shocks or discontinuities. They have the following properties:

• Second or higher order spatial accuracy is obtained in smooth parts of the solution.

• Solutions are free from spurious oscillations or wiggles.

• High accuracy is obtained around shocks and discontinuities.

• The number of mesh points containing the wave is small compared with a first-order scheme with similar accuracy.

High-resolution schemes often use flux limiters to limit the gradient around shocks or discontinuities. A particularly
successful high-resolution scheme is the MUSCL scheme which uses state extrapolation and limiters for better accuracy.
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4.2 MUSCL INTERPOLATION

The flux vector splitting and flux difference schemes require that the solution is known at the cell faces in order to
evaluate the flux. However, in a finite volume context, properties are only known in the cell centroid. Therefore, proper-
ties in the cell face must be somehow computed from the cell centroid and other additional information. It is possible to
calculate the flux at the cell centroid and extrapolate it to the boundary, but limited research has indicated that this method
is less desirable than calculating the flux at the interface boundaries by extrapolating the solution variables to the same
cell faces. So, with this need in mind, the solution available at the cell centres must make use of some kind of geometric
extrapolation to estimate the solution at the interface boundaries [MacLean 2008].
For the present work, one established choice has been selected that is known as Monotone Upwind Schemes for Con-
servation Laws (MUSCL). MUSCL interpolation is actually a brand name for a complete set of reconstruction-evolution
methods originally pioneered by Van Leer [van Leer, 1982]. Van Leer constructed the first total variation diminishing
(TVD) scheme. It is a finite volume method that provides high accuracy numerical solutions to partial differential equa-
tions which can involve solutions that exhibit shocks, discontinuities or large gradients.
The piecewise constant approximation of Godunov’s scheme [Godunov, 1959] is replaced by reconstructed states, derived
from cell-averaged states obtained from the previous time-step. For each cell, slope limited, reconstructed left and right
states are obtained and used to calculate fluxes at the cell boundaries. These fluxes can, in turn, be used as input to a
Riemann solver, following which the solutions are averaged and used to advance the solution in time. The reconstruction-
evolution technique as programmed is given here:


qLEFT
j+1/2 = qj +

φ

4
∗ [(1− k) ∗ (qj − qj−1) + (1 + k) ∗ (qj+1 − qj);

qRIGHT
j−1/2 = qj −

φ

4
∗ [(1 + k) ∗ (qj − qj−1) + (1− k) ∗ (qj+1 − qj);

(20)

where qj+1/2 and qj−1/2 are properties in the right and left faces, respectively. The limiter parameter, φ, is a flag for
either first order or higher order reconstruction. First order reconstruction can be performed by setting φ = 0. Setting
φ = 1 results in higher order reconstruction, which is a useful feature of this method. The valid range for κ is between
-1 and 1, inclusive. A value of less than one results in an upwind biased scheme, while a value of exactly one results in
a centered scheme. Any value of κ results in a second order reconstruction with the exception of 1/3, which results in a
unique 3rd order accurate reconstruction.

4.3 LIMITERS

Flux limiters are the standard way to avoid non-physical oscillations that would otherwise occur with high order spatial
discretization schemes due to discontinuities such as shocks. Limiters restrict the forward and backward gradient terms
of the MUSCL reconstruction to force the scheme to have the TVD property in a region of strong shocks.
The function φ (ri), defined in eqn. (20), is a limiter function that restricts the slope of the piecewise approximations to
ensure the solution is TVD, thereby avoiding the spurious oscillations that would otherwise occur around discontinuities
or shocks. The accuracy of a TVD discretization degrades to first order at local extrema, but tends to second order over
smooth parts of the domain. r represents the ratio of successive gradients on the solution mesh and is given by

ri =
ui − ui−1

ui+1 − ui
, (21)

where u is the flow speed.
Figure 1 presents the limiters tested in test case 2. The figure is splitted between the limiters results acceptability. The

limiters that achieved acceptable results presents lower φ and thus a stricter slope control.

5. RESULTS AND DISCUSSION

The shock tube problem constitutes a particularly interesting test case, since it has an exact solution for the full system
of one-dimensional Euler equations containing simultaneously a shock wave, a contact discontinuity and an expansion
fan. This particular problem, also called Riemann problem, is altogether of practical and theoretical interest. It can be
realized experimentally by the sudden breakdown of a diaphragm in a long one-dimensional tube separating two initial
gas states at different pressures and densities.

Viscous effects are neglected along the tube walls and a long tube is considered to avoid reflections at the tube ends.
Thus, the results can easily be compared with the exact solution. At the bursting of the diaphragm, at time t = 0, the
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Figure 1. Flux Limiters function φ.

pressure discontinuity propagates to the right in the low-pressure gas and, simultaneously, an expansion fan propagates to
the left in the high-pressure gas. In addition, a contact discontinuity separating the two gas regions propagates to the right
in the tube [Hirsch, 1990].

The proposed schemes are evaluated and compared with the test case exact solutions. Test cases correspond to test data
applied by Sod (1978). The Sod problem is an essentially one-dimensional flow discontinuity problem which provides
a good test for the compressible scheme ability to capture shocks and contact discontinuities, and to produce the correct
density profile in a rarefaction wave. It also tests a scheme ability to correctly satisfy the Rankine-Hugoniot shock jump
conditions.

5.1 TEST CASE 1

Test case 1 corresponds to a Sod problem with initial pressure ratio of 10. The results obtained with the proposed
schemes are compared to the exact solution in Fig. 2. The following initial conditions, in SI units, were considered for a
perfect gas with γ = 1.4, and the results are taken at t = 2.2ms:

pL = 105; rhoL = 1; pR = 104; rhoR = 0.125; uL = uR = 0

The shock pressure ratio is moderate and the density plot is presented in Fig. 2. At t = 2.2 ms, three different
nonlinear waves are present: an expansion fan between x = 2.25 and x = 4.8, a contact discontinuity at x = 7.1, and a
shock at x = 9.0. The two sharp discontinuities are resolved satisfactorily, i.e., negligible smearing and acoustic speed
differences, with the proposed flux vector splitting schemes and the flux difference splitting schemes. However, the central
differencing scheme presented non-physical oscillatory solutions around discontinuities.

5.2 TEST CASE 2

Test case 1 corresponds to a Sod problem with initial pressure ratio of 100. The results obtained with the proposed
schemes are compared to the exact solution in Fig. 3. The following initial conditions, in SI units, were considered for a
perfect gas with γ = 1.4, and the results are taken at t = 2.2ms:

pL = 105; rhoL = 1; pR = 103; rhoR = 0.010; uL = uR = 0

The shock pressure ratio is severe and the density plot is presented in Fig. 3. At t = 2.2 ms, three different nonlinear
waves are present: an expansion fan between x = 4.1 and x = 5.8, a contact discontinuity at x = 6.3, and a shock at
x = 7.0. The methods resolved satisfactorily the expansion fan and the acoustic speed, however presented significant
smearing in the discontinuities. Altogether, the central differencing scheme presented non-physical oscillatory solutions
around discontinuities. Van Albada flux scheme is used in the upwind schemes.
Figure 4 shows the solutions of test case 2, considering various limiters. The flux limiters are evaluated using HLLC
flux scheme. The result with first order reconstruction presents spurious oscillations and smearing throughout the entropy
and acoustic waves. Within the flux limiter solutions, Osher presented greater oscillations near the acoustic wave. The
remaining methods presented smearing in the acoustic wave.
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Figure 2. Shock tube flow with moderate pressure ratio (van Albada limiter).

Figure 3. Shock tube flow with severe pressure ratio. van Albada limiter.

5.3 TEST CASE 3

According to Batten , the estimates of the signal velocities are not critical in situations which involve only weak wave
interaction [Batten, 1997]. However, differences do arise in more demanding situations. A rather severe example would
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Figure 4. Shock tube flow with severe pressure ratio. HLLC flux scheme.

be the following compression shock-tube problem:

rhoL = rhoR = 1; pL = pR = 1/γ; uL = 25; uR = −25

where the left (x = −0.5) and right (x = 0.5) ends of the shock-tube correspond to solid walls. Figure 5 shows results
for this case at t = 0.01, computed using first-order scheme with 400 grid points. The bursting membrane causes two
identical gases to move towards each other at Mach 25, while the inward moving rarefaction waves leave, theoretically,
vacuum conditions near the two ends of the tube.

The Roe’s scheme and Van Leert’s scheme fail in the first few time steps and AUSM scheme gave a misleading solu-
tion. HLLC was able to resolve the severe transients of test case 3, eventhough there may be some questions regarding
the application of the Euler equations to a flow where the continuum assumption no longer applies. Although most appli-
cations of engineering interest are not so severe, vacuum or near-vacuum conditions can often occur in initial transients.
Furthermore, linearised approximate Riemann solvers are known to fail with negative pressures well before the vacuum
state is reached [Batten, 1997].

6. CONCLUDING REMARKS

The main objective of the present research work consists of studying flux schemes to solve shock wave discontinuities.
The flux schemes that are most used to capture shock waves have been tested and compared to analytical solutions. As
expected, the Centred Jameson presented non-physical oscillations and attained convergence with rather low CFL. The
Van Leer scheme presented dissipative behaviour resolving expansion fan. Roe and AUSM scheme resolved test cases 1
and 2 accordingly but were unable to resolve test case 3. HLLC attained good results for all test cases.

Various limiters were tested. All limiter options attained quite similar results preventing non-physical oscillations on
discontinuities. Osher limiter, however, presented perceptible oscillation in the expansion wave. In any case, the need for
limiting nearby discontinuities is clear from the results without a limiter operation.

All methods presented shock wave smearing. The smearing is minimized only through mesh refinement and lower
CFL and thus increasing processing time significantly. Nonetheless, acoustic and entropy wave speeds were well esti-
mated.
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Figure 5. Compression shock tube flow. 1st order.
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