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Abstract. Direct Numerical Simulation (DNS) of incompressible flows demands a high computational cost. The formula-
tion adopted frequently requires the numerical solution ofPoisson equations. Normally, this solution is the most intensive
subroutine in the numerical code. Aiming the optimization of the solution of the Poisson equation, this paper deals with
multigrid methods and parallelization. With this motivation in mind, and knowing that in theory, multigrid methods solve
linear systems in computational time proportional to the dimensional grid, two parallel geometric multigrid methods,
Correction Scheme (CS) and Full Approximation Scheme (FAS)for solving 2D Poisson equation were implemented and
a performance analysis was conducted. The speedup results obtained indicate that, for coarse meshes, the values are
significantly lower due to overhead. When the number of unknowns increases the speedup improves for both methods.
Keywords: Poisson equation, geometric multigrid, parallel algorithms.

1. INTRODUCTION

In recent years, significant advances in Numerical Analysishave been achieved, in order to optimize the time necessary
to obtain solutions of fluid dynamic problems. These advances can be motivated, for example, by using Direct Numerical
Simulation (DNS) of incompressible flows. Moreover, depending on the formulation adopted, the numerical solution of a
Poisson equation is necessary. This solution is the most intensive subroutine since it depends on solving a linear system.
Aiming the optimization of the solution of elliptic partialdifferential equations (PDE), a multigrid method can be used.

Historically, according to Wesseling (1992), multigrid method was first developed by Fedorenko in the 1960’s. Moti-
vated by Fedorenko (1964), Brandt (1977) developed multigrid methods and studied the convergence rate, grid coarsening
and local Fourier Analysis for linear and non-linear problems. Through Brandt’s contribution, the multigrid method be-
came widely used by the scientific community to solve problems in fluid dynamics. Hirsch (1988) and Tannehill et al.
(1997) claim that the multigrid method is considered one of the most efficient method proposed recently.

According to Van der Velde (1994), the benefits of using multigrid methods are justified because it combines iterative
solvers in meshes with different number of discretization points. Furthermore, the works of Hirsch (1988) and Ferziger
and Peric (1999) show that there is an independence between the number of iterations to achieve convergence in the finest
mesh and the number of mesh points. Pavlov et al. (2001) and Wesseling (1984) multigrid methods solve an elliptic
problem discretized with N points using N operations. Stüben (2001) presents advantages of the algebraic multigrid for
unstructured meshes. Wesseling (2001) recommends the use of geometric multigrid for structured meshes. The present
work aims to investigate geometric multigrid methods. It were implemented two parallel geometric multigrid methods,
Correction Scheme (CS) and Full Approximation Scheme (FAS)for solving 2D Poisson equation and a performance
analysis was conducted.

The paper is structured as follows: section 2 presents a description of the multigrid methods adopted in this work -
CS and FAS - and their parallelization. In addition, this section describes the numerical approximations used. Section
3 presents a performance analysis of the implemented methods. Finally, the main conclusions, acknowledgments and
references are described in sections 4, 5 and 6 respectively.

2. FORMULATION AND NUMERICAL METHODS

The mathematical equation adopted in the present work is thePoisson equation:

∂2v

∂x2
+

∂2v

∂y2
= s, (1)

wherev represents the solution ands is the source term.
For the methods under consideration, a V-cycle composed of four uniform Cartesian grid meshes was used. Figure 1

represents this multigrid structure, where S represents the iterative/smoother method, R is the restriction operation and P
is the prolongation operation. The finest grid is represented byh and the coarsest one by8h.

2.1 Correction Scheme

The idea of the CS method is associated with the estimation ofthe error generated in the finer mesh as a way to obtain
the solution of the linear system. This estimation is obtained by transmitting the residual of a finer mesh to a coarser one.
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Figure 1. V-cycle - multigrid scheme

The adopted method is illustrated in Fig. 2.

Figure 2. V-cycle - Correction Scheme

The CS multigrid method works as follow (Van der Velde, 1994):

1. Starting at the finest grid, two iterations of a Jacobi under-relaxed method with relaxation factor 0.9 is applied;

2. With the approximation ofv the residual(dh) can be achieved as:

dh = sh −∇2vh. (2)

3. If the residual is smaller than a prefixed tolerance, the algorithm is ended. Otherwise, the residualdh is transmitted
to a coarse grid(2h) through an operation called restriction. This operation isillustrated in Fig. 3.

Figure 3. Full Weight - restriction operation

This specific operation is called Full Weight (FW). The only element to be transmitted, represented by a square, is
defined as a source term in the coarse level(2h) and it takes information of all neighbors using a specific weight
for each one as shown in Fig. 3. The initial guess at(2h) level is taken zero.

dh ⇒ s2h (FW ) (3)

The procedures 1 - 3 are applied until it reaches the coarsestgrid. At this level, 100 iterations are applied using a
Successive Over Relaxation method (SOR) with relaxation factor 1.1.

4. The return to a more refined mesh is done by an operation called prolongation using bilinear interpolation and then
correcting the solution.

v8h ⇒ corr4h, (4)

v4h ⇐ v4h + corr4h. (5)
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The bilinear interpolation is illustrated by Fig. 4. Each colored square represents a mesh point that exists only in
the next refined grid. Moreover, the circles represent points existing in both levels. For blue and red squares, the
information comes from the two inner circles and for the central green one, all four circles are used. The respective
weights of the interpolation are shown above each arrow. This prolongation operation must be applied until the
finest level. At this point, the cycle starts again.

Figure 4. Bilinear interpolation - prolongation operation

2.2 Full Approximation Scheme

In the present case the V-cycle structure can be illustratedby Fig. 5. The FAS multigrid method, described in Souza
(2003), works as follow:

Figure 5. V-cycle - Full Approximation Scheme

1. Starting at the finest grid, two iterations of SOR method with relaxation factor 1.1 are applied.

2. With this approximation ofv, the residual(dh) is computed as:

dh = sh −∇2vh. (6)

3. If the residual is smaller than a tolerance, the algorithmis ended. Otherwise, the residualdh is transmitted to a
coarse grid(2h) through FW operation. Moreover, the approximate solutionvh is transmitted directly, without any
kind of weighting, using Straight Injection operation (SI).

dh ⇒ s2h (FW ) (7)

vh ⇒ v2h (SI) (8)

The SI operation is illustrated in Fig. 6. Note that no information of the neighborhood is taken into account.

The procedures 1 - 3 are applied until it reaches the coarsestgrid. At this level, 100 iterations of the SOR method
with relaxation factor 1.1 are applied

4. The correction is calculated by:

corr8h = vn
8h − v

′

8h, (9)

wherev
′

8h represents the solution generated by the restriction operation andvn
8h is the newest solution.
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Figure 6. Straight Injection - restriction operation

5. To return to a more refined level, first it is adopted the sameprolongation operation used in the CS scheme and then
the solution is corrected.

corr8h ⇒ corr4h, (10)

v4h ⇐ v4h + corr4h. (11)

6. Finally, one iteration of SOR method with factor 1.0 is applied. The V-cycle is finished after the iteration of SOR
method at the finest grid.

2.3 Numerical approximations

The second-order derivatives in the Poisson equation were discretized using the following approximations (Lele, 1992;
Souza, 2003). Thei index means the grid position in thex direction, which ranges from1 to imax. In the same sense,j

means the grid position in they direction and ranges from1 to jmax.
In thex direction:

• for 2 < i < imax − 1:

∂2f

∂x2
|i,j =

−fi−2,j + 16fi−1,j − 30fi,j + 16fi+1,j − fi+2,j

12∆x2
+ O(∆x4). (12)

• for i = 2 :

∂2f

∂x2
|2,j =

10f1,j − 15f2,j − 4f3,j + 14f4,j − 6f5,j + f6,j

12∆x2
+ O(∆x4). (13)

• for i = imax − 1: a similar approximation ofi = 2 was adopted.

In they direction:

• for 2 < j < jmax − 1:

2

15

∂2f

∂y2
|i,j−1+

11

15

∂2f

∂y2
|i,j +

2

15

∂2f

∂y2
|i,j+1 =

3fi,j−2 + 48fi,j−1 − 102fi,j + 48fi,j+1 + 3fi,j+2

60∆y2
+O(∆y6). (14)

• for j = 2:

4

5

∂2f

∂y2
|i,2 +

1

5

∂2f

∂x2
|i,3 =

254fi,1 − 432fi,2 + 162fi,3 + 16fi,4

180∆y2
+ O(∆y5). (15)

• for j = jmax − 1: a similar approximation ofj = 2 was adopted.

In they direction, in problems with Neumann boundary conditions:

• for j = jmax − 1 :

∂2f

∂2y
=

fi,jmax−2 − 2fi,jmax−1 + fi,jmax

∆y2
+ O(∆y2). (16)
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• for j = jmax :

∂2f

∂2y
= −

fi,jmax−2 + 8fi,jmax−1 − 7fi,jmax

2∆y2
+ 3

∂f

∂y
+ O(∆y2). (17)

There is no need to adopt higher-order approximations near to j = jmax, since the higher gradients are concentrated
in the neighborhood ofj = 1 in the fluid flow simulations that we focus in.

2.4 Parallelization of multigrid methods

The multigrid algorithms have been parallelized with Message Passing Interface (MPI) using a domain decomposition
technique in thex direction. This choice is justified since the number of points in this direction is bigger than the number
of points in they direction, in the problems under consideration.

In this sense, considering a sequential rectangular mesh domain withimax×jmax points. Each process is responsible
for Nx points in thex direction andjmax points in they direction. The value ofNx can be calculated by:

Nx =
imax + (inter + 1)(p − 1)

p
, (18)

inter = 2(n−1)(m − 1), (19)

wherep represents the number of processes,inter is the superposition between adjacent subdomains,m is the length of
the computational molecule adopted in thex direction andn is the number of a V-cycle’s levels.

For example, if a multigrid method using a V-cycle composed of 4 levels takes the following second-order approxi-
mation

∂2f

∂x2
=

fi+1,j − 2fi,j + fi−1,j

∆x2
+ O(∆x2), (20)

thenm = 3 andn = 4, which impliesinter = 8 cells.
With regard to the algorithm’s parallelization, the same sequential multigrid methods were applied at each subdomain.

However, since for elliptic problems there is a high dependence between the variables involved, it was necessary to
introduce communication points between adjacent processes. For the CS method, these points are:

• before applying a restriction operation;

• at each step of the iterative/smoother method;

• before applying the interpolation.

For the FAS method, the communication occurs:

• after applying a restriction operation;

• at each step of the iterative/smoother method;

• before applying the interpolation.

The squares in Fig. 7 represent the communication points forboth methods.

a) b)

Figure 7. Communication points: a) CS scheme; b) FAS scheme.

The algorithm for the parallelization of the CS scheme was found in the literature, but it was not found any description
of parallel FAS algorithm, therefore the proposed parallelalgorithm presents a contribution in this area.
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3. NUMERICAL RESULTS

Tests were carried out with the Poisson equation using two different boundary conditions:

• case 1: Dirichlet condition in all contours.

• case 2: Neumann condition in one boundary and Dirichlet conditions in the others.

The evaluation was done considering 36 different Cartesianmeshes using 1, 2, 4 and 8 processors. The processors
used are Intel Xeon E5345 with 2.33GHz, 16GB RAM and 8 processing core. In order to verify the algorithms it was
done an analysis of execution time and speedup. Speedup can be defined by:

Su =
Ts

Tp

, (21)

whereTs represents the execution time for the algorithm with the lowest number of processes - for this case, a sequential
program - andTp represents the execution time considering the parallel program withp processes. The tolerance adopted
in this work was10−5. This criteria is associated with the absolute maximum residual of each subdomain.

The results obtained for execution time are shown in Fig. 8, where in thex direction, each point corresponds to a mesh
in Tab. 1.

Table 1. Points mesh size - 5 points molecule

N Nx Ny
0 153 33
1 281 33
2 537 33
3 1049 33
4 2073 33
5 4121 33
6 153 65
7 281 65
8 537 65
9 1049 65
10 2073 65
11 4121 65

N Nx Ny
12 153 129
13 281 129
14 537 129
15 1049 129
16 2073 129
17 4121 129
18 153 257
19 281 257
20 537 257
21 1049 257
22 2073 257
23 4121 257

N Nx Ny
24 153 513
25 281 513
26 537 513
27 1049 513
28 2073 513
29 4121 513
30 153 1025
31 281 1025
32 537 1025
33 1049 1025
34 2073 1025
35 4121 1025
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Figure 8. Execution time

Analyzing the execution time, presented in Fig. 8, it is possible to see that when the number of variables increases, the
CS method becomes better than FAS method, for both cases analyzed.

Furthermore, speedup for both cases with CS and FAS methods are shown in Figs. 9 and 10 respectively.
The speedup results obtained indicate that, for coarse meshes, the values are significantly lower due to overhead. In

this sense, for meshes with small number of variables, sequential multigrid methods are better than parallel multigrid
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Figure 9. CS and FAS/PSOR speedup for case 1
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Figure 10. CS and FAS/PSOR speedup for case 2

methods. For example, considering the application of FAS/PSOR method with two processes, illustrated in Fig. 9(b), the
use of sequential methods is better for the meshes 0 to 3 and 6 to 19. When the number of unknowns raises the speedup
improves for both multigrid methods. The growth of speedup has an upper bound which is different for each case.

Considering the CS method, in both cases, the speedup’s growth behavior is similar for all values ofy, considering the
curve formed by fixing the number of points iny direction and ranging the number of points inx direction. This fact also
can be seen in FAS/PSOR method until 257 points iny direction. After that, the speedup rises rapidly with the increase
in the number of points inx direction.

For the first case, when the number of variables is small (for meshes from 0 to 25, for example), the CS method has
a better speedup. While the number of unknowns increases, the speedup of FAS/PSOR method becomes similar to those
of CS method. In addition, for the second case, in spite of being worse for small number of variables as in the first case,
FAS/PSOR method achieves a better speedup than CS method, when the number of unknowns raises.

In general, considering just the first case, CS method showedthe best results. Significant differences are observed for
intermediate meshes. Nevertheless, for the second case, FAS method can be regarded as the best choice for finer meshes,
as in cases 26-29 and 32-35.

4. CONCLUSIONS

Summarizing, for a large number of variables involved, the use of parallelism implies significant gains. For some
cases this increase reaches more than five times over the sequential algorithm.

For the algorithms considered, the type of boundary condition used interferes in finding the best method. For the
Dirichlet problem investigated, in general, CS method shows the best results. In the other hand, the use of a boundary
condition of Neumann’s type implies the use of FAS/PSOR multigrid method for finer meshes.
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