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Abstract. Direct Numerical Simulation (DNS) of incompressible flonentinds a high computational cost. The formula-
tion adopted frequently requires the numerical solutioR@itson equations. Normally, this solution is the mostisitee
subroutine in the numerical code. Aiming the optimizatiéthe solution of the Poisson equation, this paper deals with
multigrid methods and parallelization. With this motiwvatiin mind, and knowing that in theory, multigrid methodsveol
linear systems in computational time proportional to thaetfisional grid, two parallel geometric multigrid methods,
Correction Scheme (CS) and Full Approximation Scheme (FAS3olving 2D Poisson equation were implemented and
a performance analysis was conducted. The speedup rebtdisied indicate that, for coarse meshes, the values are
significantly lower due to overhead. When the number of umkroincreases the speedup improves for both methods.
Keywords: Poisson equation, geometric multigrid, parallel algorigh

1. INTRODUCTION

Inrecentyears, significant advances in Numerical Analyai® been achieved, in order to optimize the time necessary
to obtain solutions of fluid dynamic problems. These advaicea be motivated, for example, by using Direct Numerical
Simulation (DNS) of incompressible flows. Moreover, depgagan the formulation adopted, the numerical solution of a
Poisson equation is necessary. This solution is the masisite subroutine since it depends on solving a linear isyste
Aiming the optimization of the solution of elliptic partidifferential equations (PDE), a multigrid method can beduse

Historically, according to Wesseling (1992), multigrid thhed was first developed by Fedorenko in the 1960’s. Moti-
vated by Fedorenko (1964), Brandt (1977) developed midtgethods and studied the convergence rate, grid coagsenin
and local Fourier Analysis for linear and non-linear proide Through Brandt’s contribution, the multigrid method be
came widely used by the scientific community to solve prolslémfluid dynamics. Hirsch (1988) and Tannehill et al.
(1997) claim that the multigrid method is considered onéefrnost efficient method proposed recently.

According to Van der Velde (1994), the benefits of using nguilti methods are justified because it combines iterative
solvers in meshes with different number of discretizatiomts. Furthermore, the works of Hirsch (1988) and Ferziger
and Peric (1999) show that there is an independence betiveemiber of iterations to achieve convergence in the finest
mesh and the number of mesh points. Pavlov et al. (2001) ars$éNleg (1984) multigrid methods solve an elliptic
problem discretized with N points using N operations. Stif#901) presents advantages of the algebraic multigrid for
unstructured meshes. Wesseling (2001) recommends thef gsemetric multigrid for structured meshes. The present
work aims to investigate geometric multigrid methods. Itevemplemented two parallel geometric multigrid methods,
Correction Scheme (CS) and Full Approximation Scheme (F&8)yolving 2D Poisson equation and a performance
analysis was conducted.

The paper is structured as follows: section 2 presents aigésn of the multigrid methods adopted in this work -
CS and FAS - and their parallelization. In addition, thisteecdescribes the numerical approximations used. Section
3 presents a performance analysis of the implemented m&tHeéidally, the main conclusions, acknowledgments and
references are described in sections 4, 5 and 6 respectively

2. FORMULATION AND NUMERICAL METHODS

The mathematical equation adopted in the present work iBdigson equation:
v 0%

4z 1
o T o )
wherev represents the solution ands the source term.

For the methods under consideration, a V-cycle composeousfufniform Cartesian grid meshes was used. Figure 1
represents this multigrid structure, where S represestiehative/smoother method, R is the restriction openagiod P

is the prolongation operation. The finest grid is represthyeh and the coarsest one By:.
2.1 Correction Scheme

The idea of the CS method is associated with the estimatitimeaérror generated in the finer mesh as a way to obtain
the solution of the linear system. This estimation is ol&dihy transmitting the residual of a finer mesh to a coarser one
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Figure 1. V-cycle - multigrid scheme

The adopted method is illustrated in Fig. 2.
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Figure 2. V-cycle - Correction Scheme

The CS multigrid method works as follow (Van der Velde, 1994)
1. Starting at the finest grid, two iterations of a Jacobi udkaxed method with relaxation factor 0.9 is applied;
2. With the approximation of the residualdy ) can be achieved as:

dn = s, — V. (2

3. Ifthe residual is smaller than a prefixed tolerance, therithm is ended. Otherwise, the residdglis transmitted
to a coarse grid2h) through an operation called restriction. This operatidtiustrated in Fig. 3.
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Figure 3. Full Weight - restriction operation

This specific operation is called Full Weight (FW). The onlgreent to be transmitted, represented by a square, is
defined as a source term in the coarse 1€2&) and it takes information of all neighbors using a specificghei
for each one as shown in Fig. 3. The initial guesgay level is taken zero.

dh = Sop (FW) (3)

The procedures 1 - 3 are applied until it reaches the coagsielstAt this level, 100 iterations are applied using a
Successive Over Relaxation method (SOR) with relaxatiotofal. 1.

4. The return to a more refined mesh is done by an operaticgdgatblongation using bilinear interpolation and then
correcting the solution.

Vsh = COTT4p, (4)

Vap, &= Vap + corray,. (5)
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The bilinear interpolation is illustrated by Fig. 4. EacHared square represents a mesh point that exists only in
the next refined grid. Moreover, the circles represent gagmisting in both levels. For blue and red squares, the
information comes from the two inner circles and for the cargreen one, all four circles are used. The respective
weights of the interpolation are shown above each arrows Pphdlongation operation must be applied until the
finest level. At this point, the cycle starts again.
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Figure 4. Bilinear interpolation - prolongation operation

2.2 Full Approximation Scheme

In the present case the V-cycle structure can be illustriaydeig. 5. The FAS multigrid method, described in Souza
(2003), works as follow:

Figure 5. V-cycle - Full Approximation Scheme

1. Starting at the finest grid, two iterations of SOR methotthwelaxation factor 1.1 are applied.

2. With this approximation of, the residualdy,) is computed as:
dh = Sp — VQUh. (6)

3. If the residual is smaller than a tolerance, the algorithnded. Otherwise, the residus)/ is transmitted to a
coarse grid2h) through FW operation. Moreover, the approximate solutiprs transmitted directly, without any
kind of weighting, using Straight Injection operation (SI)

dh =  Sop (FW) (7)
Vn = VUap (SI) (8)

The Sl operation is illustrated in Fig. 6. Note that no infation of the neighborhood is taken into account.

The procedures 1 - 3 are applied until it reaches the coagsestAt this level, 100 iterations of the SOR method
with relaxation factor 1.1 are applied

4. The correction is calculated by:
corrgy, = Vg, — véh, )

whereug,, represents the solution generated by the restriction Giparandv?, is the newest solution.
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Figure 6. Straight Injection - restriction operation

5. To return to a more refined level, first it is adopted the sprokngation operation used in the CS scheme and then
the solution is corrected.

corrgy, = COTT4p, (10)
Vi, = Uap + COTTap. (11)

6. Finally, one iteration of SOR method with factor 1.0 is lggh The V-cycle is finished after the iteration of SOR
method at the finest grid.

2.3 Numerical approximations

The second-order derivatives in the Poisson equation wetestized using the following approximations (Lele, 1992
Souza, 2003). Theindex means the grid position in thedirection, which ranges fromto imaz. In the same sensg,
means the grid position in thedirection and ranges fromto jmax.

In the z direction:

e for2 < i < imax — 1:

82f fz +16f1 30fz,+16f1 7fz .7

Szl = 2 LI HM; g = JH25 4 O(Az?). (12)
o fori=2:

*f 10f1,; — 15fa; —4f3 5+ 14f1 5 —6f5; + fo,;

D22 l2; = LJ 2J 13?jAm2 4. 8. 6. 4 O(A:z:4). (13)

e fori = imax — 1: a similar approximation of = 2 was adopted.
In they direction:
e for2 < j < jmaz — 1:

2 02f 1102f 2 92f
158y2|” 1t 15 0y 2'” 158y2|”+1
3fz,]72 + 48]01.,]71 102f1,j + 48fz,]+1 + 3f1,j+2

Ay®). 14
60Ay2 +0(Ay”) (14)
e forj=2:
40%f 10%f 254f; 1 —432f; o+ 162f; 3+ 16 f; 4
——=|; ——=|; - . - S O(AYR). 15
58y2|2 59 8 = 18042 (Ay") (15)
e for j = jmax — 1: a similar approximation of = 2 was adopted.
In they direction, in problems with Neumann boundary conditions:
e forj = jmax —1:
2
i,jmar—2 2 1, jmaxr— 1,Jmazx
OF _ figmaz—2 = 2figmaz—1 & figmaz ;) 5,2y (16)

aQy AyQ
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e forj = jmax :

82f f’L jmaxr—2 + 8f1 jmax—1 — 7fz jmax af 2
-4 __J = : —= Ay?). 17
7, A 35, + 0(Ay°) (17)

There is no need to adopt higher-order approximations weast jmazx, since the higher gradients are concentrated
in the neighborhood of = 1 in the fluid flow simulations that we focus in.

2.4 Parallélization of multigrid methods

The multigrid algorithms have been parallelized with MggsRassing Interface (MPI) using a domain decomposition
technique in the: direction. This choice is justified since the number of p®intthis direction is bigger than the number
of points in they direction, in the problems under consideration.

In this sense, considering a sequential rectangular meshidavithimax x jmax points. Each process is responsible
for Na points in thex direction andjmax points in they direction. The value ofVa can be calculated by:

imax + (inter +1)(p — 1)

Nz = , (18)
p

inter = 20V (m —1), (19)

wherep represents the number of processesger is the superposition between adjacent subdomainis, the length of
the computational molecule adopted in thdirection andn is the number of a V-cycle’s levels.

For example, if a multigrid method using a V-cycle composgd tevels takes the following second-order approxi-
mation

Pf o firry —2fig+ fimiy

o] _ Jit1, i, 1—1, O(A 2 20

8.(62 AI‘Q + ( €L )a ( )
thenm = 3 andn = 4, which impliesinter = 8 cells.

With regard to the algorithm’s parallelization, the samgustial multigrid methods were applied at each subdomain.
However, since for elliptic problems there is a high dep&ceebetween the variables involved, it was necessary to
introduce communication points between adjacent prosesse the CS method, these points are:

e before applying a restriction operation;

e at each step of the iterative/smoother method;
e before applying the interpolation.

For the FAS method, the communication occurs:
e after applying a restriction operation;

e at each step of the iterative/smoother method;
e before applying the interpolation.

The squares in Fig. 7 represent the communication pointsdthr methods.

Figure 7. Communication points: a) CS scheme; b) FAS scheme.

The algorithm for the parallelization of the CS scheme wasébin the literature, but it was not found any description
of parallel FAS algorithm, therefore the proposed parallgbrithm presents a contribution in this area.
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3. NUMERICAL RESULTS
Tests were carried out with the Poisson equation using t¥ferdnt boundary conditions:

e case 1: Dirichlet condition in all contours.

e case 2: Neumann condition in one boundary and Dirichlet itimmd in the others.

The evaluation was done considering 36 different Cartesiashes using 1, 2, 4 and 8 processors. The processors
used are Intel Xeon E5345 with 2.33GHz, 16GB RAM and 8 prdngssore. In order to verify the algorithms it was

done an analysis of execution time and speedup. Speeduaafibed by:

T,

Su= ==
U Tp’

(21)

whereT, represents the execution time for the algorithm with thedsimumber of processes - for this case, a sequential
program - and, represents the execution time considering the parallgrara withp processes. The tolerance adopted
in this work was10~°. This criteria is associated with the absolute maximundresiof each subdomain.

The results obtained for execution time are shown in Fig.I&ne in ther direction, each point corresponds to a mesh

in Tab. 1.
Table 1. Points mesh size - 5 points molecule
N Nx | Ny N NX Ny N NX Ny
0 153 | 33 12| 153 | 129 24| 153 | 513
1 281 | 33 13| 281 | 129 25| 281 | 513
2 537 | 33 14 | 537 | 129 26 | 537 | 513
3 | 1049 33 15| 1049 | 129 27 | 1049| 513
4 | 2073| 33 16 | 2073 | 129 28 | 2073| 513
5 | 4121 33 17 | 4121 | 129 29| 4121 513
6 153 | 65 18 | 153 | 257 30| 153 | 1025
7 281 | 65 19| 281 | 257 31| 281 | 1025
8 537 | 65 20| 537 | 257 32| 537 | 1025
9 | 1049 | 65 21| 1049 | 257 33| 1049 | 1025
10 | 2073 | 65 22| 2073 | 257 34 | 2073 | 1025
11| 4121| 65 23| 4121 | 257 35| 4121 | 1025
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Figure 8. Execution time

Analyzing the execution time, presented in Fig. 8, it is jlusgo see that when the number of variables increases, the
CS method becomes better than FAS method, for both casezadal

Furthermore, speedup for both cases with CS and FAS methedfawn in Figs. 9 and 10 respectively.

The speedup results obtained indicate that, for coarseaagesie values are significantly lower due to overhead. In
this sense, for meshes with small number of variables, sg@ghenultigrid methods are better than parallel multigrid
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Figure 9. CS and FAS/PSOR speedup for case 1
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Figure 10. CS and FAS/PSOR speedup for case 2

methods. For example, considering the application of FS8R method with two processes, illustrated in Fig. 9(b), the
use of sequential methods is better for the meshes 0 to 3 and% When the number of unknowns raises the speedup
improves for both multigrid methods. The growth of speedag &n upper bound which is different for each case.

Considering the CS method, in both cases, the speedup’stybaluavior is similar for all values of, considering the
curve formed by fixing the number of pointsgrdirection and ranging the number of pointsdwlirection. This fact also
can be seen in FAS/PSOR method until 257 pointg direction. After that, the speedup rises rapidly with theréase
in the number of points i direction.

For the first case, when the number of variables is small (feshras from 0 to 25, for example), the CS method has
a better speedup. While the number of unknowns increasespiedup of FAS/PSOR method becomes similar to those
of CS method. In addition, for the second case, in spite afdeiorse for small number of variables as in the first case,
FAS/PSOR method achieves a better speedup than CS methex teéhnumber of unknowns raises.

In general, considering just the first case, CS method shéweebest results. Significant differences are observed for
intermediate meshes. Nevertheless, for the second caSanieghod can be regarded as the best choice for finer meshes,
as in cases 26-29 and 32-35.

4. CONCLUSIONS

Summarizing, for a large number of variables involved, tee af parallelism implies significant gains. For some
cases this increase reaches more than five times over thergedalgorithm.

For the algorithms considered, the type of boundary camditised interferes in finding the best method. For the
Dirichlet problem investigated, in general, CS method shtve best results. In the other hand, the use of a boundary
condition of Neumann'’s type implies the use of FAS/PSOR igritt method for finer meshes.
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