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Abstract. This numerical study is related to the determination of aerodynamic loads of a circular cylinder in close 
proximity to a flat surface which travels at a uniform speed; the surface speed is the same as the velocity of the 
oncoming freestream. The main practical motivation comes from the automotive industry where a moving ground 
simulation is essential. A numerical model of a moving ground is represented by distributing source panels. For the 
moving conditions of each panel, the new coordinates of each panel are given at each time, and the one cycle of motion 
is produced by a number of steps of instantaneous ground configuration. The distance between the body and the 
moving ground, i.e., the gap-ratio ( dh ) varies from 0.05dh =  to 0.60dh =  and the Reynolds number is fixed as 
higher value of 100,000. The numerical results from a two-dimensional circular cylinder in moving ground are 
compared with experimental results available in the literature and show that the drag coefficient decreases as the body 
comes close to the ground; besides that, when the gap ratio is too low there is a tendency of cessation of the vortex 
shedding by the separation points of the circular cylinder. 
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1. INTRODUCTION  
 

The phenomenon of vortex shedding from a bluff body has been the object of numerous experimental and numerical 
studies due to the fundamental mechanisms that this flow exhibits and its numerous industrial applications. Only to 
quote an example, the alternate shedding of vortices in the near wake leads to large fluctuating pressure forces in a 
direction transverse to the flow and may cause structural vibrations, acoustic noise or resonance. 

When a bluff body moves in close proximity to the ground, the ground will have an influence on the flow close to 
the body. When the fluid on the body separates and a large wake region develops, the separated flow also changes due 
to the ground effect. A typical example is the flow around a motor car; in this case the road is the ground. The 
calculation of such flows is very complex because of the large separated regions and the additional ground effect. 

The relative motion between body and ground is usually neglected in experimental investigations; Roshko et al. 
(1975), Bearman and Zdravkovich (1978), Angrilli et al. (1982), and Price et al. (2002) studied the fundamental effects 
of the ratio of the gap between the cylinder and the ground, i.e., the gap ratio defined by dh  (d is the cylinder 
diameter), but all of them did not consider the relative motion between the body and the ground. Roshko et al. (1975) 
studied the time-averaged drag and lift coefficients, DC  and LC , for a circular cylinder placed near a fixed wall 

at 4102.0×=Re and showed that the DC  decreased and LC  increased as the cylinder came close to the wall. 

Zdravkovich (1985) observed, in his force measurements performed at 54 103.0104.8 ×<<× Re , that the rapid 
decrease in drag occurred as the gap was reduced to less than the thickness of the boundary layer developed from the 
ground, δ , and concluded that the variation of DC  was dominated by δh  rather than by the conventional gap ratio 

dh . 
Zdravkovich (2003) reported the drag behavior for a cylinder placed near a moving ground running at the same 

speed as the freestream. The Reynolds number was kept high ( 5102.5×=Re ) and in the circumstances described 
above, there was practically no boundary layer on the ground. In contrast to the results obtained by Roshko et al. 
(1975), the decrease in drag due to the decrease in dh  did not occur in his measurements. It was not clear, however, 
whether this was attributed to the non-existence of the wall boundary layer or the higher Reynolds number, or any other 
influencing factors. 

Nishino (2007) studied the aerodynamic behavior of a circular cylinder placed near a moving belt in a wind tunnel. 
The moving belt velocity was the same as the oncoming flow and he turned back that there was practically no boundary 
layer developed on the ground. In his study the vortex shedding from a circular cylinder was investigated by visualizing 
air flows around it at Reynolds numbers of 54 101.0104.0 ×−× . The three dimensional effects was taking into account 
by the use of end plates on the cylinder edges; for the cylinder with end-plates, on which the oil flow patterns were 
observed to be essentially two-dimensional, Nishino (2007) classified the flow into three regimes: large-gap 
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( 0.5>dh ), intermediate-gap ( 0.50.35 << dh ), and small-gap ( 0.35<dh ) regimes. In the large-gap regime, large-
scale, kármán-type vortices were generated just behind the cylinder, resulting in higher values of DC  around 1.3. In 
contrast, in the small-gap regime, the large-scale vortex shedding totally ceased and instead a dead-fluid zone was 
created, bounded by two nearly parallel shear layers each producing only small-scale vortices in the near wake region. 
No substantial effect of dh  was observed in this regime: DC  was almost constant at a lower value of about 0.95. In 
the intermediate-gap regime, the kármán-type vortex shedding was found to be intermittent, i.e., typical instantaneous 
wake patterns of both the large and small-gap regimes were intermittently observed, and DC  rapidly decreased as dh  
decreased from 0.5 to 0.35. 

Bimbato et al. (2009) used the conclusions reported by Zdravkovich (2003) and Nishino (2007), i.e., that there was 
practically no boundary layer on the ground when the moving ground runs at the same speed as the freestream, and used 
the Vortex Method to simulate numerically the motion of a plane surface by the suppression of its boundary layer. In 
that situation, the ground remained rest and its motion was represented only by the boundary layer suppression. The 
aerodynamic loads obtained numerically were compared with the experimental results gained by Nishino (2007) for the 
large and intermediate-gap regimes. 

The present work deals with the Vortex Method with a turbulence modeling to study the two-dimensional, 
incompressible unsteady flow of a Newtonian fluid with constant properties around a circular cylinder placed near a 
moving ground; in contrast of Bimbato et al. (2009), in this paper the plane surface have a motion (physically) with the 
same speed as the oncoming flow. In this more realistic configuration in which the plane surface moves like a moving 
belt of a wind tunnel, the aerodynamic loads are investigated to gap-ratios that cover the three flow regimes identified 
by Nishino (2007). Besides that, it is shown the mechanisms of vortex structures detachment from the separation points 
of the body. 

The Vortex Method using Large Eddy Simulation (Alcântara Pereira et al., 2002) is chosen because it offers a 
number of advantages over the traditional Eulerian schemes for the analysis of the external flow that develops in a large 
domain; the main reasons are [Leonard (1980), Sarpkaya (1989), Lewis (1999), Kamemoto (2004), and Stock (2007)]: 
(i) the absence of a mesh avoids stability problems of explicit schemes and mesh refinement problems; (ii) the 
lagrangian description eliminates the need to explicitly treat convective derivatives; (iii) all the calculation is restricted 
to the rotational flow regions and no explicit choice of the outer boundaries is needed a priori; (iv) no boundary 
condition is required at the downstream end of the fluid domain. 
 
2. MATHEMATICAL FORMULATION 

 
Figure 1 presents schematically the two-dimensional unsteady and incompressible flow of a Newtonian fluid with 

constant properties which drain around a circular cylinder placed near a plane surface, or ground. The ground has the 
same speed as the oncoming flow. One can define: the incident flow (U ); the semi-infinity fluid domain 
( 321 SSSΩ ∪∪= ), where 1S  is the body surface, 2S  is the plane surface and 3S  is the surface defined far from the 
body. 

 

 
 

Figure 1. Definition of the fluid region 
 

The problem is governed by the continuity and the Navier-Stokes equations, which can be written in the form: 
 

0=
∂
∂

i

i

x
u

,               (1) 

 
where u  is the velocity field filtered or the macro-scale field (Smagorinsky, 1963), 
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where p  is the pressure field filtered, ρ  is the density, ν  is the molecular viscosity coefficient, tν  is the eddy 
viscosity coefficient, and the deformation tensor of the filtered field is defined as: 
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When using lagrangian vortex method, the model proposed by Smagorinsky (1963) is inconvenient by the use of 

deformation rate (derivatives). 
As an alternative, Métais and Lesieur (1992) considered that the small scales may not be too far from isotropic and 

proposed to use the local kinetic-energy spectrum ( )cKE  at the cut-off wave number ( cK ) to define the eddy viscosity, 

tν . 
Using a relation given by Batchelor (1953), Lesieur and Métais (1996) proposed to calculate the local spectrum at 

cK  with a second-order velocity structure function 2F  of the filtered field: 
 

( ) ( ) ( )
2
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=

+−=
r

rxxx .            (4) 

 
From the Kolmogorov spectrum the eddy viscosity can be written as a function of 2F : 
 

( ) ( )t∆,,F∆C0.105∆x,ν 2
2
3

Kt x
−

= ,            (5) 
 
where 1.4=kC  is the Kolmogorov constant. 

In Eq. (4) is important to note that the “average operator” is applied in the velocities ( )t,rxu +  calculated under the 
surface of a sphere with center in x  and radius r . 

The great advantage of the formulation presented above is the use of the concept of velocity fluctuation (differences) 
to be combined with Lagrangian Vortex Method. 

Therefore, the strategy is to study the vorticity dynamic using the continuity equation, Eq. (1), and the Navier-
Stokes equations, Eq. (2), to simulate the phenomena that occur in the macro-scales with the lagrangian Vortex Method. 
The phenomena that occur in the micro-scales should be take into account through the eddy viscosity coefficient, Eq. 
(5); this coefficient ( tν ) is modeled with the second-order velocity structure function 2F  of the filtered field; see Eq. 
(4). 

It is necessary to impose the boundary conditions. The impenetrability condition demands that the normal velocity 
component of the fluid particle ( nu ) should be equal to the normal velocities components of the surfaces 1S  and 2S  
( nv ): 

 
0vu nn =− , on 1S  and 2S ,             (6) 

 
The no-slip condition demands that the tangential velocity component of the fluid particle ( τu ) should be equal to 

the tangential velocity component of the surfaces 1S  and 2S  ( τv ): 
 

0vu ττ =− , on 1S  and 2S .             (7) 
 
The last boundary condition to be imposed is that, far away, the perturbation caused by the solid boundaries fades 

as: 
 

U→u , on 3S .              (8) 
 
3. SOLUTION METHOD: THE VORTEX METHOD 
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The dynamics of the lift motion is studied by taking the curl of the Eq. (2), obtaining the new 2-D vorticity equation 
(Alcântara Pereira et al., 2002): 

 

( ) ω
Re

ω
t
ω 2

c
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∂ 1u ,             (9) 

 
where the bars that identified the filtered field were omitted and the modified Reynolds number is defined in Eq. (13). 

Chorin (1973) proposed the “Viscous Splitting Algorithm” to simplify the numerical implementation of the Vortex 
Method; with this algorithm, in the same time increment, the convective effects are solved independently of the viscous 
diffusion effects. In this way, the convective equation takes the Lagrangian form: 

 

0=
Dt
Dω              (10) 

 
On the other hand, the diffusive equation is given by: 
 

ω
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ω 2
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It is obvious from the equation above that the viscosity effects are taking into account in the diffusive process. 
Alcântara Pereira et al. (2002) make two adaptations necessary to implement the second-order velocity structure 

function to the 2-D Lagrangian Vortex Method; see Eq. (4): (i) the points where the velocities must be calculated are 
placed inside a circular crown defined by 0i σr 0.1=  and 0e σr 2.0= , where ir  and er  are the internal and external 
radius of the circular crown, respectively, and 0σ  is the Lamb vortex core of the vortex under analysis (see Eq. (14)); 
(ii) to compute the second-order velocity structure function, the points where the velocities are calculated are the same 
as the positions of the vortices which are near the vortex under analysis and finally: 
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where tu  is the total velocity in the point, NV  indicates the number of vortices inside the circular crown and ir  is the 
distance between the vortex under analysis and the vortices inside the circular crown. 

In the sequence, the eddy viscosity coefficient is calculated making 0σ∆ =  in Eq. (5). After this, the modified 
Reynolds number can be defined as: 

 

t
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where d  is the cylinder diameter and the dimensionless time is Ud . The Lamb vortex core is calculated as (Alcântara 
Pereira et al., 2002): 
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where ∆t  is the time increment of the numerical simulation. 

To solve the convective problem is necessary to determine the velocity field which is composed by three 
contributions: the contribution due to the incident flow, ( )t,xui , solid boundaries, ( )t,xub , and the vortex-vortex 
interaction, ( )t,xuv . Thus: 

 
( ) ( ) ( ) ( )t,t,t,t, xiuvxiubxuixiu ++= , Z,i 1=         (15) 

 
where Z is the total number of Lamb discrete vortices in the wake. 

The contribution of the incident flow is given by: 
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1=1ui  and 0=2ui .            (16) 
 
The contribution of the solid boundaries is given by the source Panel’s Method (Katz and Plotkin, 1991), so: 
 

( ) ( )[ ]∑
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where NP  is the number of flat panels that represents the solid boundaries, constσ k =  is the density of sources per 

unit length and ( )( )kj
i
jk xtxc −  is the i  component of the velocity induced at discrete vortex j  by k  panel. 

Finally, the contribution of the vortex cloud is given by: 
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where kΓ  is the intensity of the k  vortex and ( )( )kj

i
jk xtxc −  is the i  component of the induced velocity in a discrete 

vortex j  by a k  discrete vortex. 
With the velocity field, the convection is calculated by a first order Euler scheme: 
 

( ) ( ) ( )( )∆tt,tt∆tt ixiuixix +=+ , Z,i 1= .         (19) 
 
The diffusion equation, Eq. (11), is solved by the random walk scheme (Lewis, 1999), which consists in add a 

random displacement to Eq. (19): 
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where P  and Q  are random numbers with 10 << P  and 10 << Q . 

Once, with the vorticity field the pressure calculation starts with the Bernoulli function, defined by Uhlman (1992) 
as: 

 

2

2upY += , u=u .            (21) 

 
Kamemoto (1993) used the same function and starting from the Navier-Stokes equations was able to write a Poisson 

equation for the pressure. This equation was solved using a finite difference scheme. Here the same Poisson equation 
was derived and its solution was obtained through the following integral formulation (Shintani and Akamatsu, 1994): 

 

( ) ( )∫∫∫∫ ⋅×∇−×⋅∇=⋅∇−
S

i
Ω

i
S

ii dSΞ
Re
1dΩΞdSΞYYH nn eωωue ,       (22) 

 
where 1.0=H  in the fluid domain, 0.5=H  on the boundaries, Ξ  is a fundamental solution of the Laplace equation 
and ne  is the unit vector normal to the solid surfaces. 

The drag and lift coefficients are expressed by: 
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where k∆S  is the length and kβ  is the angle and both of the k  panel. 
 
4. RESULTS AND DISCUSSION 
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4.1. Flow around an isolated circular cylinder 

The analysis of the aerodynamic behavior of an isolated circular cylinder was made in order to obtain the parameters 
that influence the numerical method and the turbulence modeling; the isolated circular cylinder is a classical problem in 
fluid mechanics so it is a great starting point to validate the code. To obtain the result shown is Tab. 1 the surface of 
circular cylinder was represented by 300=mb  sources flat panels with constant distribution in order to ensure the 
impenetrability condition (Eq. (6)); the no slip condition (Eq. (7)) was ensured by the generation of discrete Lamb 
vortices with core 0.001=0σ , which are positioned in a perpendicular distant 0.001=eps  normal from the control 

point of each panel. The Reynolds number studied was 5101.0× . 
 

Table 1. Mean values of drag and lift coefficients and Strouhal number for an isolated circular cylinder 
 

5101.0×=Re  DC  LC  St  
Blevins (1984) 1.20 - 0.19 

Present Simulation 1.30 0.02 0.21 
 
Table 1 show that the drag coefficient is inside the uncertainty band of 10% specified by Blevins (1984). The lift 

coefficient is not zero due to numerical errors inherent of any numerical method. The Strouhal number is defined as: 
 

U
df

St = ,             (25) 

 
where f  is the frequency of detachment of the vortex structures from the separation points of the circular cylinder. In 
the next item the mechanism of these structures formation will be discussed. 

With the results gained by the numerical code in the simulation of the flow around an isolated circular cylinder one 
can consider the code able to simulate the ground effect phenomenon. In the simulations made in order to study the 
ground effect the numerical parameters used in the isolated circular cylinder case were maintained and the moving 
ground surface was represented by 200=mg  sources flat panels. More details about the flow around an isolated 
circular cylinder in order to validate de numerical code can be seen in Bimbato (2008). 

 
4.2. Circular cylinder in ground effect 

 
In the present study the authors impose a motion on the plane surface with the same velocity of the oncoming flow 

( 1==Umov ). The purpose is to study the influence of the distance between the body and the ground on the 
aerodynamic behavior of a circular cylinder and compare the numerical results with the experimental ones obtained by 
Nishino (2007). 

In his experimental study, Nishino (2007) shows the influence of the tip effect on the aerodynamic behavior of the 
body. In order to study the approximately two dimensional flow, Nishino (2007) fixed end-plates on the cylinder 
extremities; this configuration is referred as 0.0=dy  and 0.4=dy  on Tab. 2, where the greater value of the 
relation dy  represents the configuration in which the flow is closer to a 2-D configuration. So, the comparison 
between the numerical results of the present work with the experimental ones obtained by Nishino (2007) with the ratio 

0.4=dy  is a great opportunity to show the Vortex Method competence to reproduce experimental work features. The 
comparison for the drag coefficient is given in Tab. 2. 

It can be notice that for the configuration closer to a two dimensional flow studied by Nishino (2007), 0.4=dy , 
the numerical results are in good agreement with the experimental ones, showing a difference of approximately 8%, 
which is acceptable for numerical simulations. 

 
Table 2. Comparison between the numerical results obtained with the Vortex Method with LES scheme with the ones 

obtained by Nishino (2007) for the drag coefficient 
 

dh  Nishino (2007) - 0.0=dy  Nishino (2007) - 0.4=dy  Present Simulation 
0.05 0.941 - 1.263 
0.15 0.957 - 1.188 
0.40 1.145 - 1.370 
0.45 1.242 1.311 1.418 
0.50 1.282 1.323 1.405 
0.60 1.302 1.373 1.435 
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It can be seen that even for the case of 0.0=dy  the Vortex Method with a Large Eddy Simulation is able to 
anticipate the drag drop as the body come close to the ground. Figure 2 shows the evolution of the aerodynamic loads 
for some gap-ratios, dh , which are inside of the three gap regimes identified by Nishino (2007): (i) large gap-ratios 
( 0.5>dh ) – Fig. 2a; (ii) intermediate gap-ratios ( 0.500.35 << dh ) – Fig. 2b; (iii) small gap-ratios ( 0.35<dh ) – 
Fig. 2c and Fig. 2d. 

 

  
(a) 0.60=dh  (b) 0.45=dh  

  

  
(c) 0.15=dh  (d) 0.05=dh  

 
Figure 2 – Evolution of the aerodynamic loads for a circular cylinder in ground effect 

 
According to Tab.2 the configuration closer to a two dimensional flow ( 0.4=dy ) has 0.45=dh  as the smaller 

gap-ratio. So this gap-ratio will be used to explain the mechanism of vortex formation from the circular cylinder in 
ground effect with numerical simulations using the Vortex Method. 

To explain this mechanism considers Fig. 2b, which has some points (A, B, C, D and E) that represent important 
moments where interesting flow features happen. Figure 3 presents the pressure distribution on these important 
moments. 

At the instant represented by point A it can be seen that there is a low pressure distribution in the upper surface of 
the cylinder. However, at the instant represented by point C there is a low pressure distribution in the lower surface of 
the cylinder (see Fig. 3). These instants correspond to the birth of a clockwise vortex structure on the upper surface of 
the cylinder (point A) and a counter clockwise vortex structure on the lower surface of the circular cylinder (point C) as 
can be seen in Fig. 4a and Fig. 4c. 

The lower pressure distributions described above are the responsible for the maximum lift coefficient at points A 
and E and for the minimum lift coefficients at point C; see Fig. 2b. 
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Figure 3. Instantaneous pressure distribution around the circular cylinder in ground effect ( 0.45=dh ) 
 
Simultaneously the drag coefficient at the instant represent by point EA ≡  are increasing due to the growth of the 

counter clockwise structure birthed at an instant represented by point C which is getting energy attracting the opposite 
shear structure and reaches a critical level of energy (maximum drag coefficient) and starts to be incorporated by the 
viscous wake (see Fig. 4a), which causes a decrease on the drag coefficient. 

 

 
 

(a) Point A (b) Point B 
  

  
(c) Point C (d) Point D 

 
Figure 4. Details of the vortex structure detachment from a circular cylinder in ground effect ( 0.45=dh ) 

 
This mechanism is dynamic in a manner that at the instant represented by point C the drag coefficient is increasing 

too, but due to the clockwise structure that birthed at an instant represented by point A, which starts to grow getting 
energy from the opposite shear layer (Fig. 4b); when the clockwise structure reaches a critical level of energy 
(maximum DC ), it starts to be incorporated by the viscous wake (Fig. 4c) and the process repeats all over again, like 
described by Gerrard (1966). 

However there is an interesting feature in Fig. 2b: the drag coefficient curve presents peaks sometimes bigger, 
sometimes smaller. This occurs due to the blockage effect imposed by the moving ground; the vortex structure that was 
born in the upper surface of the body (point A) has total freedom to grow until to be incorporated by the viscous wake 
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(point C), which results in a bigger peak of the drag coefficient at this instant (point C). On the other hand, the growth 
of the structure that was born on the lower surface of the body (point C) is limited by the moving ground when this 
vortex structure is been incorporated by the viscous wake (point EA ≡ ), which causes a smaller peak on the drag 
coefficient at this instants (point AE ≡ ). 

The drag drop verified as the cylinder come close to the ground (see Tab. 2) occurs due to the flow configuration; 
when the moving ground runs at the same speed as the oncoming flow, in a essentially three dimensional flow 
configuration the drag coefficient increases as the cylinder come close to the ground (Nishino, 2007). Thus it can be 
notice that the flow configuration (3D or 2D) is another mechanism that governs the ground effect phenomenon. 
However, the numerical simulations made here are two dimensional in a manner that is impossible to discuss this 
mechanism in this study. 

In order to investigate the smaller gap regime ( 0.35<dh ) (Nishino, 2007), the authors show in Tab.3 the Strouhal 
number for some gap ratios ( dh ). 

 
Table 3. Mean Strouhal number for some gap ratios, dh  

 
dh  St  

0.05 0.07 
0.15 0.14 
0.40 0.20 
0.45 0.20 
0.50 0.20 
0.60 0.20 

 
Nishino (2007) reveals that for 0.35<dh  the formation of bigger vortex structures is ceased. This seems to be true 

when ones analyses Tab. 3 with the aerodynamic loads showed in Fig. 2c and Fig. 2d. Besides that, the wakes in Fig. 5 
show a tendency of an interruption of this structures formation. However the authors advise that is necessary to improve 
the discrete vortex generation process when the body is too close to the ground to confirm this tendency. 

 

  
(a) 0.15=dh  (b) 0.05=dh  

 
Figure 5. Position of the vortices in the wake at the end of the simulation of a circular cylinder in ground effect 

 
The simulations presented in this study have duration of 628h (approximately 27 days) in a Quad Core Intel 

processor. 
 
5. CONCLUSIONS 

 
The ground effect phenomenon is far from being fully understood, in despite of many investigations made by the 

scientific community. The difficulty is due to the many influential factors that govern the phenomenon, such as the 
blockage effect imposed by the moving ground, the wake interference effect, where the viscous wake interacts with the 
boundary layer developed from the ground, the three dimensional effects and the gap-ratio, dh . 

Although the numerical simulations are two dimensional they contributed in order to understand some factors that 
govern the phenomenon, like the blockage effect that changes the drag coefficient curve, causing peaks sometimes 
bigger, sometimes smaller and the gap-ratio which causes the drag drop in 2-D flows. 

Finally, it is important to mention that the simulations used to obtain the numerical results presented in this paper are 
more realistic since they work with moving boundary problems, which changes the ground geometry in each time step; 
however it is important to use algorithms that make the code faster, like a parallel code, to make possible more refined 
simulations to work together with experimental analysis in order to understand better the physics involved on the 
ground effect phenomenon. 
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