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Abstract. The present paper shows simulations of free fall particle in a fluid. These problems, that involve solid-liquid 

two phase flows are studied for interest of chemical, pharmaceutical and food industries as well as geophysical 

environments. The fluid structure interaction (FSI) problems is a challenge for researchers of Computational Fluids 

Dynamics (CFD) and a method very used to solve it is the Immersed Boundary Method (IBM). IBM models the 

boundary conditions through a force field imposed at Navier-Stokes equations. Such a methodology does not requires 

any procedure of remeshing the computational grid, therefore, a FSI simulation can be carried out most efficiently. 

Nevertheless it presents, low accuracy and low convergence order. Aiming to solve this restriction, a new methodology 

is proposed in the present work, which uses the Pseudo-Spectral Fourier Method. This method provides an excellent 
numerical accuracy with the development of the Fast Fourier Transform algorithm (FFT). It shows lower 

computational cost than others high-order methods. Furthermore another important issue, is the projection method of 

the pressure term. Which in the Fourier space, does not require a Poisson solver, that is usually the most onerous part 

of the classical computational methodologies. For validate the new methodology, it was proposed simulate two 

problems. The first one is the flow around a circular cylinder, that is a classical problem of CFD and drag and lift 

coefficients are avalable. The second problem is free fall particle in a fluid , which were compared the results with 

different authors showing good agreement and the potenciality of new method. 
 

Keywords: Computational Fluids Dynamic, Fluid Structure Interaction, Free Fall Particle, Fourier Pseudo-Spectral 

Method, Immersed Boundary Method.  

 

1. INTRODUCTION  

 

The present paper shows the potential of the method called IMERSPEC proposed by Mariano (2007) and Mariano et 
al. (2010a). This method works with two methodologies, Immersed Boundary and Fourier Pseudo-Spectral, in order to 

obtain the best qualities of them. 

There are two advantages of working with the Fourier pseudo-spectral methodology (Canuto et al., 2006). One of 

them is the high order numerical accuracy obtained in the solution of partial differential equations. The other is when 

working specifically with incompressible Navier-Stokes equations (Canuto et al., 2007), because when these equations 

are transformed to spectral space the pressure-velocity coupling, which is usually solved by the linear system (Poisson 

equation), is replaced by a matrix-vector product. Thus it is eliminated the solver of linear system and it is results in a 

low computational cost. 

On the other hand, the disadvantage of this approach is using the Discrete Fourier Transform (DFT - Briggs e 

Henson, 1995) which requires periodic boundary conditions. By aiming to solve this problem Mariano et al. (2010a) 

proposed extend the calculus domain and impose the boundary conditions, using the IBM (Peskin, 2002), as can be seen 
in Fig. 1. And Fourier pseudo-spectral method can be used. Furthermore facilitates to study the flow over move and 

complex geometries. 

In Mariano et al. (2010b) show two characteristics of method, one is the high order convergence rates (fourth order), 

and the other is the facility of to work with flow over complex geometries. 
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This work shows other step of methodology validation, and free fall particles are simulated. It is a problem of great 

industrial interest and a challenge for researchers in CFD, because it is a problem of Fluid Structure Interaction (FSI), 

i.e., the particle (complex geometry) moves in the fluid flow. 

The present paper is organized as follows; first, it presents the mathematical modeling and numerical approach of 

the proposed method. Next the results are analyzed and compared with other authors and, finally, the conclusions are 

presented. 

 

2. MATHEMATICAL MODELING 

 

In this session will be presented the mathematical model of immersed boundary method, based in Multi-Direct 
Forcing proposed by Wang et al. (2008) and the coupling fluid-structure interaction. After that, the equations which 

govern the problem will be transformed for the Fourier spectral space, due to use the properties of discrete Fourier 

transformed and, finally the methodology proposed by this paper, which will be presented connecting the two 

methodologies. 

 

2.1. Mathematic model for the fluid 

 

The flow is governed by conservation momentum equation (Eq. 1) and the continuity equation (Eq. 2). The 

information of the fluid/solid interface (domain Γ) is passed to the eulerian domain (Ω) for addition of the term source 

to Navier-Stokes equations. The aims of this term are represent the boundary conditions of the immersed geometry as a 

body force (Goldstein et al. 1993). The equations that govern the problem are presented in theirs tensorial form: 
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  is the density;   is the cinematic viscosity in [m2/s]; 
l

x  is the spatial component (x,y) in [m] 

and t is the time in [s]. The initial condition is any velocity field that satisfies the continuity equation.  

The source term is defined in all domain Ω, but has different values from zeros only in the points which coincide 

with the immersed geometry, it enable that the eulerian field perceives the presence of solid interface (Enriquez-

Remigio and Silveira Neto, 2007). 
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where x


 is the position of the particle in the fluid and  k
x


 is the position of a point in solid interface (Fig. 1). 

The boundary conditions are periodic in all directions in eulerian domain, ΩB, as showed in Fig. 1, it is necessary 

due to Fourier pseudo-spectral method properties. The boundary condition in the problem simulated is imposed by 

direct forcing methodology in ΓBC, and also the boundary conditions of bodies immersed in flow, represented by Γi in 

Fig. 1. 

 

 
 

Figure 1. Schematically representation of eulerian and lagrangian domain. 



Proceedings of ENCIT 2010                                                                         13
th
 Brazilian Congress of Thermal Sciences and Engineering 

Copyright © 2010 by ABCM December 05-10, 2010, Uberlandia, MG, Brazil 

 

 

Using Eq. (3) can be concluded that the field  ,
l

f x t


 is discontinuous, which can be numerically solved only when 

there are coincidence between the points that compose the interface domain with the compose the fluid domain. In cases 

there is no coincidence between these points, very frequently in the complex geometries, it is necessary to distribute the 

function  ,
l

f x t


 on its neighborhoods. Just by calculating the lagrangian force field  ,
l k

F x t


, it can be distributed and 

thus, transmitted the information geometry presence for eulerian domain, these functions can be found in Griffith and 
Peskin, (2005). 

 

2.2. Mathematic model for the immersed interface 

 

The lagrangian force field is calculated by direct forcing methodology, which was proposed by Uhlmann (2005). 

One of the characteristics of this model is that is not necessary using ad-hoc constants and allows the modeling non-slip 

condition on immersed interface. The lagrangian force  ,
l k

F x t


 is available by momentum conservation equation over 

a fluid particle that is joined in the fluid-solid interface: 
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The values of  ,
l k

u x t


 and  ,
k

p x t


 are done by interpolation of velocities and pressure, respectively, of eulerian 

points near the immersed interface. For lagrangian point xk at the immersed boundary, we have: 
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where u* is a temporary parameter (Wang, et al. 2008), Δt is the time step and 
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. The Eq. (5) is solved by Eqs. (6) and (7) at same time step: 
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where  ,
k

U
FI

u x t t  


 is the immersed boundary velocity. 

Eq. (6) is solved at eulerian domain at Fourier spectral space, i.e. the solution of Eq. (1) with fl=0.  
*

,
l

u x t


 is 

interpolated for lagrangian domain, became  
*

,
l k

u x t


 and it is computed on Eq. (7). Then  ,
l k

F x t


is smeared for 

eulerian mesh. Finally, the velocity is update by Eq. (8): 
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2.3. Fluid-Structure Interaction (FSI) 

 

The considered forces that acting on the particle drop (Wan and Turek, 2007) are the buoant (E), hydrodynamic (Ff) 

and particle weight (P), we can to see schematically in Figure 2. By comparing this figure with the Figure 1, we observe 

the eulerian domain (fluid - Ω) and the lagrangian domain (points that represent immersed particle - Γ). The particle 

moving is given by Newton-Euler equations: 
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where M is the particle mass, I is the inertia momentum, 
p

 and 
f

 are particle and fluid density, respectively, gl is the 

gravity force, Ul is the translational velocity, 
l

 is the rotational velocity, 
l

f
F  and Tl are hydrodynamic sum of forces 

and the torque, respectively, that act in the center of particle mass. 

 

 
 

Figure 2. Forces acting over the free fall particle immersed into the fluid. 

 
In these point it is important highlight that hydrodynamic forces and torque are calculate by sum of forces of the 

immersed boundary, given by Eq. 7: 

 
*

,
FI l

f l f

NL NL

U U
F F V

t



   


 

 
 

  (11) 

 

,
f f l

NL

M r V F 
    (12) 

 

 
l

FI

l l l l
U U XC X    .  (13) 

 

where Ul and 
l

  are given by Eqs. 15 and 16, respectively, XCl is the particle center position and Xl are the positions of 

lagrangian points that define the particle. 

 

2.4. Fourier Pseudo-Spectral Method 

 

By defining the equations that govern the flow through IBM, the next step is transforming them to the Fourier 

spectral space. It applies the Fourier transform in the continuity equation, Eq. (2), we obtain: 

 

ˆ 0.
j j

ik u   (14) 

 

According to analytic geometry the scalar product between two vectors is null, if both are just orthogonal. 

Therefore, from Eq. (14), the wave number vector kj is orthogonal to transformed velocity ˆ
j

u . The plane of 

divergent free (plane π) is defining, perpendicular to wave number vector k


 and thus, transformed velocity vector 

 ,u k t
  belongs to plane . 

Now applying the Fourier transform in the momentum equation Eq. (2), we obtain: 
 


*

* * *2
,

ˆ
ˆ ˆ

l

l j lj l

u
ik u u ik p k u

t



   


 (15) 

 

where k2 is the square norm of wave number vector, i.e. k2=kjkj. and 𝑖 =  −1 
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In agreement of plane π definition, each one of the terms of Eq. (10) assumes a position related to it: the 

transient term 

*
ˆ

l
u

t




 and the viscous term 

*2
ˆ

l
k u  belong to the plane π. The gradient pressure term is perpendicular 

to plane π, and non-linear, 
* *

l jj
ik u u , a priori, it is not known in which position it can be found in relation to plane 

π. By joining the terms of Eq. (15) and observing the definition of plane π, we have found that: 
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To close Eq. (16) is needed that the non-linear and the force field terms are over plane π. For that, it is utilized 

projection tensor definition (Canuto et al., 2007), which projects any vector over it. Therefore, applying this 

definition on the right hand side of the sum done in Eq. (16): 
 

 * * * *
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The parcel of the gradient pressure field is orthogonal to plane π, then, it is zero after to be projected, 

disentailing from calculates of Navier-Stokes equations in the spectral space. The pressure field can be recovered 

at the pos-processing manipulating Eq. (17) (Mariano, 2007). 

Other important point is non-linear term, in which appears the product of transformed functions, in agreement with 

Fourier transformed properties, this operation is a convolution product and its solution is given by convolution integral, 
this is solved by pseudo-spectral Fourier method (Canuto et al., 2007). Therefore the momentum equation in the Fourier 

space, using the method of the projection, assumes the following form: 
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Non-linear term can be handed by different forms: advective, divergent, skew-symmetric, or rotational (Canuto et 

al., 2006), in spite of being the same mathematically, they present different properties when discretized. The skew-

symmetric form is more stable and present best results, but is twice more onerous that the rotational form. However this 

inconvenience can be solved using the alternate skew-symmetric form, it is consisting in alternate between the 

advective and divergent forms in each time step (Souza, 2005), it is proceeding adopted for this paper. 

For all types of handing the non-linear term is necessary solve the convolution integral, but its numerical solution is 

computational expensive, then the pseudo-spectral method is used, i.e. calculates the velocity product in the physical 

space and transforms this product for the spectral space. 

When solved numerically the Navier-Stokes equations with the Fourier spectral method using the Discrete Fourier 
Transform (DFT), which is define by Briggs and Henson (1995): 
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when k is wave number, N is number of meshes points, n get the position xn of collocation points (xn=nΔx). 
The DFT restriction is periodic boundary conditions, by limiting the use of Fourier spectral transformed for CFD 

problems. The advantage is low computational cost gives by Fast Fourier Transform (FFT) (Cooley and Tukey, 1965), 

which solves the DFT (Eq. 19) of a way very efficiently, order O(Nlog2N). For systems with many collocation points, 

e.g. three-dimensional problems, the spectral method is very cheap when compared with another conventional high 

order methodology. Two examples of use this method are simulations of periodic temporal jets and turbulence isotropic. 

 

2.5. Proposed Methodology: IMERSPEC 

 

The algorithm of IMERSPEC method purposed is: 
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1) Solve the Eq. (18) in Fourier spectral space and obtain the temporal parameter  *
ˆ ,u k t


, using the low dispersion and 

low storage Runge-Kutta method proposed by Berland et al., (2006) is used; 

2) Use the Inverse Fast Fourier Transformer in  *
ˆ ,u k t


 and obtain  
*

,u x t


 at physic space in the domain Ω; 

3) Interpolate  
*

,u x t


 for the lagrangian domain by cubic function proposed by Griffith and Peskin et al. 2005, and 

obtain  
*

,
k

u x t


; 

4) Calculate the lagrangian force,  ,
l k

F x t


, by Eq. (7); 

5) We calculate the sum Eqs. (12), (13) and (14). 

6) Update particles velocity and position; 

7) Distribute the  ,
l k

F x t


 by cubic function proposed by Griffith and Peskin 2005, and obtain  ,
k

f x t


 in eulerian 

domain; 

8) Update the eulerian velocity,  ,u x t


 by Eq. (8) and transformed it using FFT for spectral space,  *
ˆ ,u k t


, returned 

by step 1.  

 

3. RESULTS 

 

To validate the proposed methodology and developed code, two classical problems used in CFD were chosen. The 

first one is the flow over a cylinder, which is a benchmark of CFD. This case allowed shows the solution of 

incompressible two-dimensional Navier-Stokes equations using Fourier pseudo-spectral method with non-periodic 

boundary conditions imposed by immersed boundary. The second one, is the free fall particle, for to validate and to 

show the capability of the method for fluid-structure problems. 

 

3.1. Flow over a cylinder 

 

It is generate an inlet profile flow with velocity U∞ in [m/s], the flow cross the section of a circular cylinder (Fig. 3) 

and verify the drag (Cd) (Eq. 20) and lift (Cl) (Eq. 21) coefficients, these variables determine the forces that act on 

bodies immersed in flow, the drag coefficient determines the resistance force of the fluid on the immersed body, while 

the lift coefficient determines the force that there is in perpendicular direction to incoming flow, a interesting problem 

in aeronautical engineering is the optimization of airfoils, that consist in maximize the lift and minimized the drag of the 

airfoil profiles. Other parameter analyzed is the Strouhal number (St) (Eq. 22) which determines the non-dimensional 

vortex shedding, it is important to solve problems of fluid-structure, for example, pillars of bridges or aircraft wings, 

submitted to a flow, if the frequency of vortex shedding is close to the natural frequency is extremely damaging to this 

structures. 
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where: Fx and Fy are the forces estimated at each lagrangian point with Eq. (7) in [N]; Ax and Ay are projected frontal 

area in direction x and y, respectively . In bidimensional case these areas are given in [m2] considered the perpendicular 

dimension of surface equal a unity, D is the characteristic diameter and freq is the vortex shedding frequency 
downstream of cylinder. The domain of all cases have been simulated is 6π x 2π [m2] and has been discretized with 384 

x 128 collocation points. The cylinder has a diameter of D=0,785 [m], with 64 lagrangian collocation points. The 

cylinder position in domain is shown in Fig. 3. 

At the top and bottom boundary conditions are periodicity. The inflow condition is a uniform profile of velocity 

(U∞=1,0 m/s). Other important parameter is the Reynolds number, that is Re=100, with the Reynolds number is possible 

to determine the viscosity of the fluid: 

Re

U D



             (23) 
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Figure 3. Calculus domain – circular cylinder. 

 

It also imposed a buffer zone: 

  

( )
ll

ZA Q Q t             (24) 

 

where Q is the problem solution, that is, u and v, Qt is the target solution, i.e. the solution is required in the final buffer 

zone, in this case, the target solution is an uniform profile U∞, and Φ is a parameter of stretching vortex, and it is 

calculated by Eq. (25): 
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where α=3.0 and β=1.0 (Uzun, 2003), xza and xf are the beginning and the ending of buffer zone, respectively, xη is the 

generic position. 

The force zone or porous medium is a range of thickness 2D, where is imposed the inflow profile by direct forcing, 

in order to aligned the streamlines. The Fig. 4 shows vorticity isocontours (-1,0<w<1,0) at time t*=250. 

 

 
 

Figure 4. Isocontours of vorticity (-1,0<w<1,0) at Re=100 in t*=250. - negative vortice; -- positive vorticity. 

  
Table 1. Comparison of drag coefficient and Strouhal number. 

 

 

Lima e Silva et 

al.(2003) 

Lai and Peskin 

(2000) 

Xu and Wang 

(2005) 

Le et al. 

 (2007) 

Present 

work 
Re Cd Cl St Cd Cl St Cd Cl St Cd Cl St Cd Cl St 

100 1,39 0,20 0,160 1,44 0,33 0,165 1,42 0,34 0,171 1,39 0,34 0,160 1,45 0,35 0,175 

150 1,37 0,25 0,175 1,47 0,58 0,184       1,37 0,49 0,200 

200       1,42 0,66 0,202 1,38 0,68 0,192 1,27 0,47 0,213 

300 1,22 0,27 0,190          1,08 0,39 0,221 

 

Fig. 6 show the vorticity field for different time steps. 
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Figure 6. Temporal evolution of vorticity field at Re=100. - negative vortice; -- positive vorticity. 

 

The first time at Fig. (6), in the beginning of simulation, arise two recirculation bubbles, in t*=50 there is a 

formation of instability, and in the sequence appears the vortex shedding, t*=64,0 and t*=89,0. Tab. 1, shows the 

comparison of Cd, Cl and St for different Reynolds numbers and among different authors. 

 

3.2. Free fall particles  

 

The simulations performed in this section have objective to validate the modeling of fluid-structure interaction, as 

well as to show the potentiality of IBM. The problem consist in analyze the free fall of a solid and indeformable 

particle, that to Begin at rest, into fluid attain a terminal velocity, that is expressed in function of Reynolds number:  

 

   
2 2
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p p
D U t V t




   (26) 

 

The calculus domain and the fluid and particle properties are show at Fig. 9 and are exactly to works of the Wan and 

Turek (2007), Ulhmann (2005) and Wang et al. (2008), where Dp is the particle diameter. 

 

                                                                         
 

Figure 8. Calculus Domain of free fall particles simulations. 
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All the simulations of this section use the forth order low-dispersion and low-diffusion Runge-Kutta purposed by 

Berland et al. (2006) and a criterion CFL=0.25. For temporal evolution of particle we use the second order Adams-

Bashfort method. The Fig. 9 shows the free fall particle in different times. 

 

 
 

Figure 9. Temporal evolution of vorticity field of free fall particle with ν=0.01 and ρp =1.25. 

 

In Fig. 9 is possible to see that in fall begins there is formation of two symmetric recirculation bubbles. They grow 

up until to become unstable and formed the vortex shedding. In Tab. 2 is done a comparison of terminal Reynolds 

among different authors. There is a good agreement among the results, by showing the capability of method. 

 
Table 2. Comparison of terminal Reynolds number of different simulations. 

 

 ν=0,1 ν=0,1 ν=0,01 ν=0,01 

Authors ρp=1,25 ρp =1,50 ρp =1,25 ρp =1,50 

Wan e Turek (2007) 17,15 32,76 270,77 465,52 

Wang et al. (2007) 17,307   503,38 

Ulhmann (2005)    495,00 

Present work 17,73 33,62 293,96 527,51 

 

4. CONCLUSIONS 

 

The motivations of this paper are improved the pseudo-spectral methodology, that is high order method and low 

computational cost, but restrained to periodic boundary conditions. Looking forward this aim a fusion of immersed 

boundary and the classic Fourier pseudo-spectral method was made.  

The Fourier pseudo-spectral method allows solves the incompressible Navier-Stokes equations with the high order 

accuracy. In case where the equations to be solved are periodic the methodology accuracy order is high. Other great 

vantage is the computational cost when compared another high order methods, because the pressure disentail and the 

use FFT algorithm. 
In the simulations of flowing over a circular cylinder and free fall particle it is possible to observe the drag and lift 

coefficients, Sthrouhal number and terminal Reynolds numbers are similar to another authors, and the vortex shedding 

are reasonable. The disadvantages are the requirement of using the buffer zone and the accuracy of methodology 

Fourier pseudo-spectral is penalized, but the computational cost is still low. 
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