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Abstract. Thermal dispersion in porous media is an import phenomenon in combustion and in steam injection systems for Enhanced 
Oil Recovery methods, among several others engineering applications. In this work, thermal dispersion tensors were calculated 
within an infinite porous medium formed by a spatially periodic array of longitudinally-displaced elliptic rods. Two different 
thermal conductivity ratios between the solid and fluid phases were used for analyzing their effect on the thermal dispersion tensor, 
following a systematic analysis of several porous media modeled by different unit-cell geometry. As such and for the sake of 
simplicity, just one unit-cell, together with periodic boundary conditions for mass and momentum equations, and Neumann and 
Dirichlet conditions for the energy equation, was used to represent such medium. The numerical methodology herein employed is 
based on the control-volume approach. Turbulence is assumed to exist within the fluid phase and a low Reynolds k-ε closure is used 
to model it. The flow equations at the pore-scale were numerically solved using the SIMPLE method on a non-orthogonal boundary-
fitted coordinate system. The integrated results were compared to the existing data presented in the literature. 
 
Keywords: porous media, thermal dispersion, periodic boundary conditions, low Reynolds k-ε model, macroscopic energy equation. 

1. Introduction 

 A systematic analysis on thermal dispersion in porous media has been carry out by Pedras et al. (2003b), Pedras et 
al. (2003c), Pedras et al. (2003d) and Pedras and de Lemos (2004) in order to contribute for the developing of a 
macroscopic transport equations based on the double-decomposition concept. (Pedras and de Lemos, 2001a; de Lemos 
and Pedras, 2001; Rocamora and de Lemos, 2000; Pedras and de Lemos, 2001b; Pedras and de Lemos, 2001c; Pedras 
and de Lemos, 2003a). This systematic development has numerically investigated the thermal dispersion in beds 
modeled as arrays of cylindrical rods (Pedras et al., 2003b), longitudinally-displaced (Pedras et al., 2003c; Pedras et al., 
2003d) and transversally-displaced (Pedras and de Lemos, 2004) elliptic rods. In all of these investigations the thermal 
conductivity ratios between the solid and fluid phases were the same and their results were compared with several 
different geometries. The long term objective of such research effort is to investigate the effect of the thermal 
conductivity ratio between the solid and fluid phases on dispersive transport in highly permeable media. 
 The investigations of thermal dispersion in porous media traditionally make use of the notion of Representative 
Elementary Volume, represented by Fig. 1, over which the transport equations are integrated (Hsu and Cheng, 1990; 
Kaviany, 1995; Ochoa-Tapia and Whitaker, 1997; Moyne, 1997; Quintard et al., 1997; Kuwahara and Nakayama, 1998; 
Nakayama and Kuwahara, 1999). These models, based on the macroscopic point of view, lose details on the flow 
pattern inside the REV and, together with ad-hoc information, provide global flow properties such as average velocities 
and temperatures. 
 On the other hand, flow in porous media can also be analyzed by modeling the topology of the medium and 
resolving the flow equations at the pore-scale. This treatment reveals the flow structure at the pore-level an was used by 
Quintard et al. (1997), Kuwahara and Nakayama (1998), Nakayama and Kuwahara (1999) and Rocamora and de Lemos 
(2002) to determine the thermal dispersion tensors with periodic boundary conditions for mass, momentum and energy 
equations. 
 The aim of the present contribution is to present thermal dispersion coefficients obtained in a medium modeled as 
an infinity array of longitudinally-displaced elliptic rods with two different thermal conductivity ratios between the 
solid and fluid phases, 2=fs kk  and 10=fs kk . Where the results for 2=fs kk  were already presented by Pedras et 

al. (2003c) whereas the results for 10=fs kk  and the comparison between them will be presented in this work. 
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Figure 1. Representative elementary volume (REV). 

2. Microscopic Equations 

 The thermal dispersion modeling and the macroscopic and microscopic equations herein utilized can be found in 
Pedras et al. (2003b; 2003c and 2003d), however for the sake of comprehensiveness some of those equations will be 
presented once more. 
 The following microscopic transport equations describe the flow field and the heat transfer process within a porous 
medium, where barred quantities represent time-averaged components and primes indicate turbulent fluctuations: 
 
Fluid Phase (incompressible fluid): 
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Solid Phase: 
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where u  is the microscopic velocity, fρ  and sρ  the fluid and solid densities, p  the thermodynamic pressure, µ  and 

tµ  the dynamic and turbulent viscosities, fT  and sT  the fluid and solid temperatures, pfc  and psc  the fluid and solid 

specific heat at constant pressure, fk  and sk  the fluid and solid thermal conductivities, k  the turbulent kinetic energy 

and ε  the dissipation of k . In the equations kσ , εσ  and tσ  are effective Prandtl numbers, 1C , 2C  and µC  are 

dimensionless constants and 2f  and µf  damping functions. 

 To account for turbulence the low Reynolds k-ε closure was applied, utilizing the damping functions and model 
constants of Abe et al., (1992). 
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 For the unit-cell represented in Fig. (2) and with the assumption of macroscopic fully developed uni-dimensional 
flow, the boundary conditions are given as follow: 

at the walls, 0=u ; sf TT = ; )()( sssfff TkTk ∇⋅−=∇⋅ nn ; 0=k  and 2
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on 0=x  and Hx =  periodic boundaries (momentum equation), 
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where fn  and sn  are the coordinates normal to the interface (Fig. 1) and u  and v  the components of u . 
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Figure 2. Unit-cell: a) elliptically generated grid ( 35=ba ), b) and c) Neumann boundary conditions for the 
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 The temperature boundary conditions will be presented in the next section. 

3. Thermal Dispersion Modeling 

 The thermal dispersion modeling utilized in this work follow the same procedure of Pedras et al. (2003b; 2003c and 
2003d). The macroscopic energy equation obtained by the volume averaging of the microscopic energy equations, Eqs. 
(3) and (9), over the REV, assuming local thermal equilibrium (i.e. 〉〈=〉〈=〉〈 TTT s

s
f

f ), was: 
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where 〉〈T  is the volume average of the time averaged temperature, β
β 〉〈T  the intrinsic average of the time averaged 

temperature in the β  phase, fφ  the volume fraction of fluid and sφ fφ−= 1  the volume fraction of solid. The effective 

conductivity, effK , the tortuosity tensor, torK , and the dispersion tensor, disK , are defined as: 
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where ϕi  is the space deviation of ϕ . 
 If the gradient of the average temperature is in the same direction of the macroscopic flow or transverse to it, only 
diagonal components of disK  remain non-zero components. In these conditions, Eq. (16) renders, respectively, for the 
diagonal components of disK , 
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 In Eqs. (17) and (18) the gradients xT 〉〈∆  and yT 〉〈∆  can be calculated in two ways. The first one is using the 

Neumann boundary conditions sketched, respectively, in Figs. (2b and 2c). In this case xT 〉〈∆  and yT 〉〈∆  are given as, 
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 The second way is using Dirichlet boundary conditions (Kuwahara and Nakayama, 1998 and Rocamora and de 
Lemos, 2002) for the energy equation, 

 xHxx TTT 〉〈∆−= ==0  and Hyy TT == =0  (20) 

for the xxdisK )(  calculation, and, 

 Hxx TT == =0  and yHyy TTT 〉〈∆−= ==0  (21) 

for the yydisK )(  calculation. In this case xT 〉〈∆  and yT 〉〈∆  are constants. 

4. Numerical Model 

 The transport equations at the pore-scale were numerically solved using the SIMPLE method on a non-orthogonal 
boundary-fitted coordinate system. The equations were discretized using the finite volume procedure of Patankar 
(1980). The solving process starts with the solution of the two momentum equations and the velocity fields is adjusted 
in order to satisfy the continuity principle. This adjustment is attained by solving the pressure correction equation. After 
that, the turbulence model and the energy equations are relaxed to update the the k, ε and temperature fields. Details on 
the numerical discretization can be found in Pedras and de Lemos (2001b). 
 As in the former works (Pedras et al., 2003b; 2003c; 2003d and Pedras and de Lemos, 2004), just one unit-cell, 
together with periodic boundary conditions for mass and momentum equations, and Neumann and Dirichlet conditions 
for the energy equation, was used to represent the porous medium. For a fixed flow and the Neumann temperature 
conditions (Fig. 2b, c) the thermal dispersion tensors were calculated after a sequence of converged loops on the same 
run. This sequence of loops is necessary for the temperature field development, whereas for the velocity field this is not 
necessary because of the periodic boundary conditions used. The temperature development was carried out using the 
outlet temperature of a loop as the inlet temperature for the next loop. This procedure is repeated until we have no 
change in the temperature deviation field. 
 In the low Re model, the node adjacent to the wall requires that 1/ ≤ντ nu . To accomplish this requirement, the 
grid needs points close to the wall leading to computational meshes of 5440×  nodes. A highly non-uniform grid 
arrangement was employed with concentration of nodes close to the wall. Values for xxdisK )(  and yydisK )(  were 

obtained varying the HPe fH α/|| 〉〈= u  from 010  to 310.4  and the fφ 21 Habπ−= , from 0.60 to 0.90. 
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5. Results and Discussion 

 As in the work of Pedras et al. (2003c) a total of twenty seven runs were carried out being twenty three for laminar 
flow and four for turbulent flow with the low Re model theory. In all runs it was used for the fluid phase a Prandtl 
number of 0.72 and a thermal conductivity ratio between the solid and fluid phase of 10=fs kk . 
 The temperature fields calculated with the temperature boundary conditions sketched in Fig. (2b) are presented in 
the Fig. (3), while the temperature fields calculated with the same flow rate but using the temperature boundary 
conditions Eq. (20) are presented in Fig. (4). In both figures, the gradients of the average temperature are in the same 
direction of the macroscopic flow. As will be shown further, in spite of the differences in the temperature fields 
obtained principally in the solid phase, the values of the longitudinal component of disK  were very similar. This 
behavior can be explained with the own definition of the disK  (Eq. 16), i.e., the determination of disK  is driven by the 
deviation fields of velocity and temperature within the fluid phase and looking closely in the fluid phase the temperature 
fields, for the same flow rate, resemble fairly each other. 
 

T
9.38E-01
8.75E-01
8.13E-01
7.50E-01
6.88E-01
6.25E-01
5.63E-01
5.00E-01
4.38E-01
3.75E-01
3.13E-01
2.50E-01
1.88E-01
1.25E-01
6.25E-02

        

T
9.90E-01
6.36E-01
4.08E-01
2.62E-01
1.68E-01
1.08E-01
6.93E-02
4.45E-02
2.86E-02
1.83E-02
1.18E-02
7.56E-03
4.85E-03
3.12E-03
2.00E-03

 
Figure 3. Temperature fields calculated with the temperature boundary conditions sketched in Fig. (2b) and 

fφ 60.0= : a) HPe 10= , and b) HPe 3104 ×= . 
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Figure 4. Temperature fields calculated with the temperature boundary conditions, Eq. (20), and fφ 60.0= : a) 

HPe 10= ; and b) HPe 3104 ×= . 
 
 The temperature fields calculated with the boundary conditions sketched in Fig. (2c) and with Eq. (21) are 
presented, respectively, in the Figs. (5) and (6), in which the gradients of the average temperature are in the transverse 
direction to the macroscopic flow. For the same flow rate the temperature fields resemble fairly each other in the whole 
field and, consequently (as discussed before), the transverse component of disK  were very similar in both boundary 
conditions. Furthermore, Figs. (5b) and (6b) show the same behavior of Figs. (3b) and (4b), i.e., as the flow rate 
increases the fluid temperature becomes more uniform due to the mixing produced in the flow. 
 

b) a) 

b) a) 
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Figure 5. Temperature fields calculated with the temperature boundary conditions sketched in Fig. (2c) and 

fφ 60.0= : a) HPe 10= , and b) HPe 3104 ×= . 
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Figure 6. Temperature fields calculated with the temperature boundary conditions, Eq. (21), and fφ 60.0= : a) 

HPe 10= , and b) HPe 3104 ×= . 
 
 Figure (7) shows the longitudinal component of the thermal dispersion tensor as a function of the Peclet number 
and different porosities. The results shows good agreement when compared with the data of Kuwahara and Nakayama 
(1998) and Rocamora and de Lemos (2002), for square and cylindrical rods, respectively. As mentioned before, the use 
of different boundary conditions (Fig. 2b and Eq. 20) yields very little differences in the longitudinal component of 

disK . Its overall dependence on the Peclet number was fxxdis kK )( 65.12 Pe1045.3 H
−×= , showing the usual behavior of  

n
HPe~  as expected. 

 The comparison between the longitudinal components calculated with 2=fs kk  (Pedras et al., 2003c, where 

fxxdis kK )(  was 65.12 Pe1052.3 H
−× ) and with 10=fs kk  is shown in Fig (8). The results shown that the longitudinal 

component had little variance for this two conductivity ratios, moreover, Fig (7a) also shows that for different 
morphologies (longitudinal-displaced elliptic, square and cylindrical rods) the variances were also very little. A possible 
explanation for this fact is that in all cases were used a Prandtl number of 0.72 and, then, for a same Peclet number we 
will have a same convected temperature in the direction of the main flow. 

b) a) 

b) a) 
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Figure 7. Longitudinal thermal dispersion: a) fφ 60.0=  and b) overall results. 
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Figure 8. Longitudinal thermal dispersion comparing between 2=fs kk  and 10=fs kk : a) Neumann boundary 
conditions, Fig. (2b), and b) temperature boundary conditions, Eq. (20). 

 
 In the same way, the transverse component of the thermal dispersion is shown in Fig (9). As already mentioned, the 
use of different boundary conditions (Fig. 2c and Eq.21) yields very little differences in the transverse component of 

disK . On the other hand, different morphologies (longitudinal-displaced elliptic, square and cylindrical rods) yield great 
differences in its values (Fig. 9a). The results of Kuwahara and Nakayama (1998), for square rods, were greater than 
that from Rocamora and de Lemos (2002), for cylindrical rods, which were greater than the present results. The overall 
dependence of the transverse component on the Peclet number was fyydis kK )( 94.04 Pe1055.1 H

−×= . 

 The Fig. (10) shows the comparison between the transverse components calculated with 2=fs kk  (Pedras et al., 

2003c, where fyydis kK )(  was 88.04 Pe1029.2 H
−×= ) and with 10=fs kk . The comparison shows that the transverse 

component was more sensible to the variation of the conductivity ratio than the longitudinal component, principally for 
a Peclet number of about 210 . In this range of Peclet number we had a little recirculating zone behind the rods (between 
the two in-line rods in the south and north region of the unit-cell) and for 10=fs kk  the transverse components were 

very little (some times fyydis kK )(  were less than 510− ). On the other hand, for 2=fs kk  this not occur, a possible 

explanation for this occurrence is in the temperature gradients obtained in each case. For 2=fs kk  the temperature 

gradient in the recirculating zones was so greater than that obtained for 10=fs kk  (almost zero as in the Fig. 6a, blue 
and red zones). This almost zero temperature gradient along with the recirculating zone chokes the transverse 

a) b) 

a) b) 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004, Paper CIT04-0546 
 
dispersion, i.e., the central region of the flow, that is not recirculating, works as a developed flow in two parallel plates, 
which, from Eq. (18), has a transverse dispersion equal to zero. 
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Figure 9. Transverse thermal dispersion: a) fφ 60.0=  and b) over all results. 
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Figure 10. Transverse thermal dispersion comparing between 2=fs kk  and 10=fs kk : a) Neumann boundary 
conditions, Fig. (2c), and b) temperature boundary conditions, Eq. (21). 

 

6. Conclusions 

 Results of thermal dispersion components calculated for a periodic porous medium modeled as an infinite array of 
longitudinally-displaced elliptic rods with a thermal conductivity ratio between the solid and fluid phase of 10 were 
presented. For the sake of simplicity, this porous medium was represented by a unit-cell with Neumann and Dirichlet 
boundary conditions for the energy equation and periodic boundary conditions for mass and momentum equations. 
Finally the results were compared with data found in the literature for the same porous medium but with a thermal 
conductivity ratio of 2 and for porous media with different geometries. 
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