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Abstract. A solution based on the Generalized Integral Transform Technique (GITT) is obtained for fully developed laminar flow of 
Newtonian fluids inside doubly connected ducts. The mathematical formulation is constructed based on the cylindrical coordinates 
system in such a way that the solid surfaces are described in terms of internal and external radii as functions of the angular 
coordinate, thus avoiding discontinuities in the boundary conditions. Three cases of doubly connected ducts are considered, namely, 
confocal elliptical ducts, elliptical ducts with central circular cores and eccentric annular ducts. Numerical results for the velocity 
field and the product of the Fanning friction factor-Reynolds number were produced for different values of the governing 
parameters, according to the specific duct cross-section. The results were confronted with previously reported ones, providing 
critical comparisons while illustrating the employed integral transform approach. 
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1. Introduction 
 

Laminar flow in annular passages is frequently found in a wide range of engineering and industrial applications 
such as in heat exchange devices, oil and gas drilling wells and extrusion processes, to name a few. Shah and London 
(1978) pointed out a number of works that dealt with this type of flow inside various doubly connected ducts. Among 
them, it can be mentioned the confocal elliptical ducts, elliptical ducts with central circular cores and eccentric annular 
ducts, as the most relevant and frequently considered geometric configurations, mainly due their wide use in compact 
heat exchangers. 

The compilation of Shah and London (1978) provided extensive information on fully developed laminar flow of 
Newtonian fluids in ducts with doubly connected cross-sections. A variety of different methods has been employed in 
the literature to obtain solutions for the governing differential equations and associated boundary conditions, most based 
on purely numerical techniques. Among the more analytically oriented contributions, one may cite the pioneering works 
of Piercy et al. (1933), Sastry (1965a, 1965b), Shivakumar (1973) that employed conformal mapping methods, and 
Topakoglu and Arnas (1974), which used an elliptical coordinates system to analyze the flow in confocal elliptical 
ducts. Solutions in closed-form were obtained by these authors for the velocity field and related flow characteristics. 
Shivakumar (1973) also analyzed the flow in elliptical ducts with central circular cores through conformal mapping. 
Attention has also been devoted to the analysis of flow and heat transfer in eccentric annular ducts. A literature review 
brings up some of the earlier studies on such ducts, which are attributed to Piercy et al. (1933), Stevenson (1949), 
Snyder and Goldstein (1965) and Jonsson and Sparrow (1965) that concentrated their analyses in the fluid flow, while 
Cheng and Hwang (1968), Trombetta (1971) and Suzuki et al. (1991) analyzed the heat transfer problem under different 
sets of boundary conditions. More recently, these studies have regained interest in the works of Manglik and Fang 
(1995), Fang et al. (1999), Manglik and Fang (2002) and Escudier et al. (2002) in which the effects of eccentricity and 
duct rotation were investigated for the flow and heat transfer of non-Newtonian fluids. In addition, the recent work by 
Escudier et al. (2002) offers a literature review for flow and heat transfer in eccentric annular ducts involving 
Newtonian and non-Newtonian fluids. 

On the other hand, a hybrid analytical-numerical approach has been advanced for the solution of elliptic diffusion-
type problems defined within irregular domains (Aparecido et al., 1989), and applied to the analysis of fully developed 
laminar flow within ducts of various shapes, such as trapezoidal, triangular, and hexagonal ducts (Aparecido and Cotta, 
1987; Aparecido et al., 1989; Aparecido and Cotta, 1990; Barbuto and Cotta, 1997), by extending the ideas in the well-
established Generalized Integral Transform Technique (GITT), as reviewed by Cotta (1993, 1994). Fully developed 
laminar flow and heat transfer of non-Newtonian fluids inside irregular ducts of different geometric configurations was 
also treated (Chaves et al., 2001a; 2001b; 2004), again through extension of the GITT approach, yielding accurate 
numerical results for quantities of practical interest such as the Fanning friction factor and Nusselt numbers, within a 
wide range of the governing parameters. 
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Following this same line of research, the purpose of the present study is to solve the momentum equations for 
laminar fully developed flow in doubly connected ducts by employing the GITT approach, and to establish reliable 
numerical results for the velocity field and the Fanning friction factor, for different values of the governing parameters 
according to the specific cross-section under consideration. The cylindrical coordinates system is used in the 
mathematical formulation, so that the solid surfaces are described in the form of internal and external radii as functions 
of the angular coordinate. Three cases of doubly connected ducts are considered to illustrate the approach, namely, 
confocal elliptical ducts, elliptical ducts with central circular cores and eccentric annular ducts. The first two cases are 
studied in order to demonstrate the ability of the present approach in handling such irregular domains. Then, the case of 
eccentric annular ducts is more closely analyzed, providing sets of benchmark results which were critically compared 
with those previously reported in the literature. 
 
2. Analysis 
 

One considers fully developed laminar flow in the annular passage of a general doubly connected duct as described 
in Fig. (1). The cylindrical coordinates system is used to map the duct, so that that the solid surfaces are described in 
terms of radii values, as functions of the angular coordinate, thus avoiding discontinuities in the boundary conditions. In 
addition, it is taken into account that the flow is steady-state and incompressible with constant properties. 
Impermeability and no-slip conditions at the duct walls are also considered. Then, the mathematical formulation of this 
problem is given by the momentum conservation equation, in the Z direction, as follows: 
 

2
Z Z

2 2
1 V (R, ) 1 V (R, )R  C
R R R R

∂ ∂ θ ∂ θ⎡ ⎤ + =⎢ ⎥∂ ∂ ∂θ⎣ ⎦
− ,   in    (1) 1 2  R ( ) R R ( );   0 2θ < < θ < θ < π

 
Z 1 Z 2V (R ( ), ) 0;    V (R ( ), ) 0θ θ = θ θ =  (2,3) 

 
Z Z

Z Z
V (R,0) V (R,2 )V (R,0) V (R,2 );    ∂ ∂= π =

∂θ ∂θ
π  (4,5) 

 
The following dimensionless variables were employed in the above formulation: 
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2
2

2

r ( )
L

θ  (6) 

 
where L2 is a radial characteristic length of the outer surface, Dh is the hydraulic diameter of the duct and r1(θ) and r2(θ) 
are the functions that describe the inner and outer surfaces, respectively. 
 
 

θ = π 

θ = 0 θ = 2π

θ 

θ = 3π/2 θ = π/2 

r

r2(θ) 

r1(θ) 

 
 

Figure 1. Coordinates system and geometrical representation of the general doubly connected duct. 
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2.1 Solution methodology 
 

An analytical solution for the problem defined by Eqs. (1) to (5) is difficult to find in light of the irregular nature of 
the domain, given by the functions R1(θ) and R2(θ). In order to overcome this difficulty, the GITT approach will be 
employed in the hybrid numerical-analytical solution of the present formulation. 

Following the ideas in the GITT (Cotta, 1993; 1994), an appropriate auxiliary eigenvalue problem is selected, 
which shall provide the basis for the eigenfunction expansion. Here, due to the angular dependence of the boundaries, it 
is needed to choose the radial coordinate R to provide the auxiliary eigenvalue problem and to be eliminated in the 
integral transformation process. Therefore, the following eigenvalue problem is proposed: 
 

2i
i i2

1 (R, ) 1R ( ) (R, )
R R R R

∂ ∂ψ θ⎡ ⎤ + µ θ ψ θ =⎢ ⎥∂ ∂⎣ ⎦
1 2  R ( ) R R ( )θ < < θ0 ,   in    (7) 

 

i 1(R ( ), ) 0ψ θ θ = ;    (8,9) i 2(R ( ), ) 0ψ θ θ =
 
Equations (7) to (9) can be analytically solved to yield, respectively, the eigenfunctions and eigenvalues as 

 

2
i i

R ( )(R, ) sin ( ) ln
R

⎡ θ ⎤⎛ ⎞ψ θ = µ θ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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2

1

i( )
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R ( )
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µ θ ,   i = 1,2,3,... (10,11) 

 
It can be shown that the eigenfunctions  enjoy the following orthogonality property: i (R, )ψ θ

 
2

1

R ( )
i j

iR ( )

0,            i j(R, ) (R, )
dR

R N ( ),     i j

θ

θ

≠ψ θ ψ θ ⎧
= ⎨ θ =⎩∫  (12,13) 

 
where Ni(θ) is the normalization integral computed as 
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2
i
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θ

θ
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Equations (7) to (9) together with the above properties allow the definition of the integral transform pair for the 

velocity field as: 
 

2

1

R ( )
i Z

Z,i
i

R ( )

(R, )V (R, )1V ( ) dR
N ( ) R

θ

θ

ψ θ θθ =
θ ∫ ,         transform (15) 

 

Z i
i 1

V (R, ) (R, )V ( )
∞

=

θ = ψ θ θ∑ Z,i ,         inverse (16) 

 
To obtain the resulting system of differential equations for the transformed potentials Z,iV ( )θ , the partial 

differential equation (1) is multiplied by , integrated over the domain [Ri(R, ) / Rψ θ 1(θ),R2(θ)] in the R-direction, and 
the inverse formula, Eq. (16), is employed in place of the velocity distribution VZ(R,θ), resulting in the following 
transformed ordinary differential system: 
 

2
Z, jZ,i

ij ij Z, j i2
j 1 j 1

dV ( )d V ( )
A ( ) B ( )V ( ) C ( )

dd

∞ ∞

= =

θθ
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θθ ∑ ∑ θ ,   i = 1,2,3,... (17) 

 
The same operation can be performed over the θ-direction boundary conditions given by Eqs. (4) and (5), to furnish 
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d d

π
=

θ θ
 (18,19) 
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where the coefficients in Eq. (17) are defined as follows: 
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The coefficients Aij(θ), Bij(θ) and Ci(θ) vary along θ, due to the irregular characteristic of the duct in this direction, 

and need to be reevaluated along the solution procedure. Equations (17) to (19) form an infinite nonlinear boundary 
value problem, which has to be truncated in a sufficiently high order NV, in order to compute the transformed potentials 
for the velocity field, Z,iV ( )θ , to within an user prescribed accuracy goal. For the solution of such a system, due to its 
expected stiff characteristics, specialized subroutines have to be employed, such as the subroutine DBVPFD from the 
IMSL Library (1991). This subroutine provides the important feature of automatic controlling the relative error over the 
solution of the ordinary differential equations system, allowing the user to establish error targets for the transformed 
potentials. Once this system is solved for the transformed potentials, the inverse formula, Eq. (16), is recalled to provide 
the velocity field. 

In the realm of applications, related to pumping power estimation, one is concerned with quantities of practical 
interest such as the product of the Fanning friction factor-Reynolds number, fRe. As a consequence, the average flow 
velocity is also required, which in dimensionless form can be obtained as: 
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where At(γ) is the cross-section area of the annular passage and it is a function of the aspect ratio γ = L1/L2. Here L1 is a 
radial characteristic length of the inner surface. 

Applying the inverse formula, Eq. (16), into Eq. (24), the dimensionless average flow velocity becomes 
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The Fanning friction factor and Reynolds number are defined as: 
 

h
2
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dp (D / 4)f
dz v / 2

⎛ ⎞= −⎜ ⎟
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;   z,m hv D
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ρ
=
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Then, it is concluded that the product fRe is given as: 

 

Z,m

1fRe
2V

=  (30) 

 
Three types of doubly connected ducts are considered in the present analysis, namely, confocal elliptical ducts, 

elliptical ducts with central circular cores and eccentric annular ducts, as shown in Fig. (2). In order to improve the 
computational performance, since in all the cases there is symmetry in the velocity field at angular positions θ = 0 and  
θ = π, the domain in this direction is taken [0,π], and the boundary conditions given by Eqs. (4) and (5) are replaced by 
 

ZV (R,0) 0∂ =
∂θ

;   ZV (R, ) 0∂ π =
∂θ

 (31,32) 
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These conditions are also integral transformed following the steps previously described, to yield 
 

Z,idV (0)
0

d
=

θ
;   Z,idV ( )

0
d

π
=

θ
 (33,34) 

 
The system given by Eq. (17) together with the transformed boundary conditions given by Eqs. (33) and (34) was 

then solved by the subroutine DBVPFD from the IMSL Library (1991). However, for general cases when there is no 
symmetry in the velocity field, one needs to consider the boundary conditions given by Eqs. (18) and (19). 
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Figure 2. Details of the doubly connected ducts analyzed: confocal elliptical ducts, elliptical ducts with central 
circular cores and eccentric annular ducts. 

 
 

Table (1) below compiles information on the geometric configurations of the three cases of doubly connected ducts 
here considered. The additional parameters that appear in this table are: α = bo/ao, the dimensionless relation of the 
semi-axes of the outer ellipse (for confocal elliptical ducts and elliptical ducts with central circular cores), and 

, the complete elliptic integrals of the second kind, based on 

2
iE(k )

2
oE(k ) 2 2 2 2 2

ik 1 /( 1 )= − α 2γ α γ + − α  and , 
respectively, and ε = ε

2 2
ok 1= − α

*/(ro – ri), the dimensionless eccentricity of the annular duct. 
 
 
Table 1. Geometric configurations of the confocal elliptical ducts, elliptical ducts with central circular cores and 
eccentric annular ducts. 

Parameter confocal elliptical duct elliptical duct with 
central circular core eccentric annular duct 

L1 bi a ri

L2 bo bo ro

R1(θ) 2 2 2 2 2 2 2[ (1 )] [ (1 )cos ]γ α γ + − α α γ + − α θ  γ γ 

R2(θ) 2 21 1 (1 )sin− − α θ  2 21 1 (1 )sin− − α θ  2 2 21 (1 ) sin (1 )cos− ε − γ θ − ε − γ θ  

Dh

2 2 2
o

2 2 2 2 2
i o

b (1 1 )

[E(k ) 1 E(k )]

π − γ α γ + − α

α γ + − α +
 

2
o

2
o

2 b (1 )
2E(k )

π − αγ
παγ +

 o2r (1 )− γ  

At(γ) 2 2 2 2
ob (1 1 )π − γ α γ + − α α  2

o oa b (1 )π − αγ  2 2
or (1 )π − γ  

 
 
3. Results and discussion 
 

Numerical results for the product of the Fanning friction factor-Reynolds number and for the velocity field inside 
doubly connected ducts were obtained from a code developed in the FORTRAN 90 programming language. The code 
was implemented on a PENTIUM IV 1.7 GHz microcomputer, and the system given by Eqs. (17), (33) and (34) was 
handled through the subroutine DBVPFD from the IMSL Library (1991). A relative error target of 10-5 was employed 
throughout the computations. The complete solution was computed using up to twenty nine terms (NV ≤ 29) in the 
expansion, for all considered ducts, and the results were obtained in terms of geometric parameters α, γ and ε. 
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Tables (2) and (3) illustrate a comparison of the present results for the product fRe against those given by Shah and 
London (1978). The cases of confocal elliptical ducts and elliptical ducts with central circular cores are here analyzed in 
order to demonstrate the ability of the present approach in handling such irregular domains. As verified in Table (2) a 
reasonable overall agreement is obtained, to at least three significant digits between the two sets of results. This 
behavior provides a direct validation of the numerical code developed in the present work. 
 
 

Table 2. Comparison of the product fRe for confocal elliptical ducts and elliptical ducts with central circular cores. 
fRe (confocal elliptical ducts) fRe (elliptical ducts with central circular cores) 

γ α Present work Shah and London (1978) γ α Present work Shah and London (1978) 
0.5 0.6 21.536 21.585 0.5 0.5 19.321 19.321 
0.5 0.9 23.678 23.773 0.5 0.7 21.694 21.694 
0.6 0.4 20.273 20.171 0.5 0.9 23.520 23.519 
0.6 0.9 23.746 23.819 0.6 0.9 23.435 23.435 
0.7 0.6 21.826 21.896 0.7 0.7 19.403 19.402 
0.7 0.9 23.804 23.851 0.7 0.9 23.159 23.159 

0.95 0.9 23.895 23.896 0.95 0.9 16.822 16.816 
 
 
 

Similarly, Table (3) brings a set of integral transform results for the case of eccentric annular ducts together with a 
comparison with those presented by Shah and London (1978). An excellent agreement is also verified for this type of 
duct in a wide range of governing parameters. In general, an increase in the aspect ratio γ, results in increasing fRe 
because of the reduction in the cross-section of the annular duct. On the other hand, the increase of ε diminishes the 
product fRe, basically due to an increase in the dimensionless average velocity. 
 
 

Table 3. Comparison of the product fRe for eccentric annular ducts. 
fRe 

γ ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9 ε = 0.95 ε = 1.0 
19.505a 19.444 19.210 18.845 18.380 17.857 17.317 16.802 16.352 16.012 15.901 15.843 0.005 19.504b 19.444 19.210 18.844 18.380 17.857 17.317 16.802 16.352 16.012 15.900 15.842 
20.004 19.932 19.654 19.222 18.674 18.062 17.432 16.833 16.309 15.907 15.770 15.690 0.01 20.004 19.932 19.654 19.221 18.674 18.061 17.432 16.833 16.309 15.907 15.769 15.690 
20.600 20.512 20.174 19.651 18.993 18.262 17.514 16.805 16.182 15.693 15.517 15.400 0.02 20.600 20.512 20.174 19.650 18.993 18.261 17.514 16.805 16.182 15.693 15.517 15.399 
20.993 20.894 20.510 19.919 19.179 18.360 17.527 16.738 16.042 15.486 15.278 15.127 0.03 20.993 20.893 20.509 19.918 19.179 18.360 17.527 16.737 16.041 15.486 15.277 15.126 
21.290 21.180 20.759 20.111 19.304 18.414 17.511 16.656 15.900 15.288 15.051 14.870 0.04 21.289 21.180 20.758 20.110 19.304 18.414 17.511 16.656 15.900 15.288 15.051 14.869 
21.528 21.410 20.955 20.259 19.393 18.442 17.480 16.569 15.761 15.099 14.837 14.628 0.05 21.528 21.409 20.955 20.258 19.393 18.442 17.479 16.569 15.761 15.099 14.836 14.627 
21.727 21.601 21.117 20.377 19.459 18.454 17.439 16.479 15.626 14.919 14.633 14.399 0.06 21.726 21.600 21.116 20.376 19.459 18.454 17.439 16.479 15.625 14.919 14.633 14.399 
22.045 21.905 21.370 20.554 19.548 18.450 17.345 16.301 15.369 14.585 14.257 13.979 0.08 22.044 21.905 21.369 20.553 19.548 18.450 17.345 16.301 15.369 14.584 14.257 13.978 
22.292 22.141 21.562 20.681 19.599 18.423 17.243 16.129 15.131 14.280 13.918 13.601 0.10 22.292 22.140 21.561 20.680 19.599 18.423 17.243 16.129 15.131 14.280 13.917 13.600 
22.731 22.556 21.888 20.878 19.647 18.317 16.990 15.739 14.610 13.629 13.199 12.809 0.15 22.731 22.555 21.887 20.877 19.647 18.317 16.990 15.739 14.610 13.629 13.198 12.808 

a - Present work 
b - Shah and London (1978) 
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Table 3. Continued. 
fRe 

γ ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9 ε = 0.95 ε = 1.0 
23.023a 22.830 22.094 20.986 19.641 18.197 16.760 15.407 14.181 13.105 12.625 12.185 0.20 23.023b 22.829 22.093 20.985 19.641 18.197 16.760 15.406 14.181 13.105 12.625 12.184 
23.232 23.024 22.234 21.049 19.615 18.081 16.558 15.125 13.825 12.677 12.161 11.684 0.25 23.231 23.024 22.234 21.048 19.615 18.081 16.558 15.125 13.825 12.677 12.161 11.683 
23.387 23.168 22.335 21.087 19.583 17.975 16.384 14.887 13.529 12.325 11.781 11.277 0.30 23.387 23.168 22.335 21.086 19.582 17.975 16.384 14.887 13.528 12.325 11.781 11.276 
23.598 23.362 22.465 21.125 19.515 17.800 16.107 14.517 13.073 11.791 11.210 10.670 0.40 23.598 23.362 22.465 21.125 19.515 17.800 16.107 14.517 13.073 11.791 11.210 10.669 
23.729 23.481 22.542 21.139 19.458 17.671 15.909 14.256 12.755 11.422 10.818 10.255 0.50 23.729 23.481 22.541 21.139 19.458 17.671 15.909 14.256 12.755 11.422 10.818 10.254 
23.811 23.555 22.587 21.144 19.415 17.579 15.770 14.075 12.537 11.170 10.551 9.9741 0.60 23.811 23.555 22.587 21.144 19.415 17.579 15.770 14.075 12.537 11.170 10.551 9.973 
23.861 23.601 22.615 21.146 19.386 17.518 15.678 13.955 12.392 11.004 10.375 9.7893 0.70 23.861 23.601 22.615 21.145 19.386 17.518 15.678 13.955 12.392 11.004 10.375 9.788 
23.891 23.628 22.631 21.146 19.367 17.480 15.622 13.882 12.304 10.903 10.268 9.6764 0.80 23.891 23.627 22.631 21.145 19.367 17.480 15.622 13.882 12.304 10.903 10.268 9.675 
23.906 23.642 22.639 21.145 19.358 17.460 15.593 13.844 12.258 10.850 10.213 9.6181 0.90 23.908 23.642 22.639 21.145 19.358 17.460 15.593 13.843 12.258 10.850 10.213 9.617 
23.910 23.645 22.642 21.145 19.355 17.455 15.584 13.833 12.245 10.835 10.197 9.6012 1.00 23.910 23.645 22.642 21.145 19.355 17.455 15.584 13.833 12.245 10.835 10.196 9.600 

a - Present work 
b - Shah and London (1978) 
 

Figures (3) show plots of the fully converged velocity ratio field at θ = 0 and θ = π as function of the radial 
coordinate, Rn = [R - R1(θ)]/[R2(θ)] - R1(θ)], for different eccentricities and aspect ratios. It is observed that an increase 
in the aspect ratio tends to make the velocity field symmetrical. The increase in the eccentricity causes an opposite 
effect at the two angular positions analyzed. For θ = 0, as the eccentricity increases, the velocity peak tends to diminish; 
on the other hand, at θ = π, the opposite behavior is verified, i.e., the velocity peak increases, which is explained by the 
continuity satisfaction, causing an overall increase of the average velocity. Figure (3b) also brings a comparison of the 
present results with those of Manglik and Fang (1995) for the aspect ratio γ = 0.5, and an excellent agreement of the 
results has been observed. 

Figure (4) shows a comparison of the present results for the ratio between the maximum and the average velocity 
with those of Manglik and Fang (1995), at different angular positions, aspect ratios and eccentricities. Once again, it is 
noted a satisfactory agreement between the two sets of results. Also, one confirms that an increase in the eccentricity 
moves the velocity peak to the position θ = π. 

Figure (5) illustrates the effect of eccentricity in the isolines of the VZ/VZ,m ratio. As expected, and previously 
discussed, the increase in the eccentricity tends to move the velocity peak to the angular position θ = π. Finally, Fig. (6) 
shows the effect of aspect ratio on the isolines of the VZ/VZ,m ratio. From this figure the symmetry in the velocity field 
is clearly observable for higher aspect ratios, since ducts with aspect ratios near unit tend to the configuration of a 
parallel-plates channel. It should also be noted that all the above figures do not show any oscillations in the 
eigenfunction expansions representations of the potential, over the entire solution domain. 
 
 
4. Conclusions 
 

A solution based on the GITT approach was developed to predict fully developed laminar flow of Newtonian fluids 
in doubly connected ducts, by considering three types of ducts for illustration, namely confocal elliptical ducts, 
elliptical ducts with central circular cores and eccentric annular ducts. The proposed integral transform approach 
provided reliable and cost effective simulations for the considered cases, by employing a cylindrical coordinates 
mapping of the solution domain and adopting an angular variable eigenvalue problem in the radial coordinate. 
Benchmark results for the product of the Fanning friction factor-Reynolds number and for the velocity field were 
systematically tabulated or graphically shown for different values of the governing geometric parameters, 
demonstrating the usefulness and robustness of the GITT alternative. The good agreement of the present results with 
those in the literature also served to demonstrate the ability of the integral transform approach in handling such class of 
problems, under the here introduced domain mapping and eigenfunction expansion representation. The effects of 
eccentricity and aspect ratio were also noticed in the product fRe, as well as in the resulting velocity field. 
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Figure 3. Behavior of the velocity ratio for eccentric annular ducts: (a) γ = 0.2; (b) γ = 0.5 and (c) γ = 0.9. 
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Figure 4. Comparison of the maximum to average velocity ratio for eccentric annular ducts. 
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Figure 5. Effect of eccentricity on the isolines of the velocity ratio for eccentric annular ducts: (a) ε = 0.0 and γ = 0.5;  
(b) ε = 0.05 and γ = 0.5 and (c) ε = 0.6 and γ = 0.5. 
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Figure 6. Effect of aspect ratio on the isolines of the velocity ratio for eccentric annular ducts: (a) γ = 0.25 and ε = 0.2; 

(b) γ = 0.5 and ε = 0.2 and (c) γ = 0.75 and ε = 0.2. 
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