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Abstract. The so-called Generalized Integral Transform Technique (GITT) is employed in the analysis of two-dimensional laminar 
flow in the entrance region of parallel-plates ducts. A formulation in terms of primitive variables is adopted and, expansions for the 
velocity field are proposed in such way that the continuity equation is automatically satisfied, after that the integral transformation 
process leads to a coupled system of ordinary differential equations formulation similar to one when the streamfunction formulation 
is employed. Results for the velocity and the product of the friction factor-Reynolds number are computed and critically compared 
with those in the literature. 
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1. Introduction 
 

The laminar flow and heat transfer inside ducts are of great applications in most of the industrial thermal facilities. 
Equipment like heat exchangers, condensers and combustible elements of nuclear reactors are typical examples of these 
applications. For the project and optimization of such devices, information about the flow and heat transfer is of the 
fundamental importance. The full incompressible Navier-Stokes equations are sometimes employed in the mathematical 
formulation of such problems, instead of their simplified forms, the boundary-layer equations. Because of this, the 
velocity field analysis in the developing region of straight channels becomes prohibitive through analytical 
methodologies. 

In this context, purely numerical techniques have been used in such analysis. A literature review reveals 
contributions of authors that treated of the laminar flow in the inlet region of straight ducts, such the parallel-plates 
channels, for low Reynolds numbers. The works of Wang and Longwell (1964), Brandt and Gillis (1966) and 
McDonald et al. (1972) who employed different versions of the finite difference method and Comini and Del Giudice 
(1982), which used the finite element method are considered classical examples that dealt with this type flow. 

More recently, the ideas in the Generalized Integral Transform Technique (GITT) were extended for the solution of 
the Navier-Stokes equation in incompressible steady state flow within a parallel-plates channel (Pérez Guerrero and 
Cotta, 1995). The authors considered a streamfunction only formulation with two inlet flow conditions, i.e., uniform 
parallel flow and uniform irrotational flow and, in addition, the outflow boundary conditions were handled via 
consideration of a fully developed velocity profile at a sufficiently large truncated duct length. 

In this context, the present study is also motivated by using the GITT approach in the solution of the Navier-Stokes 
equations in the same physical problem analyzed by Pérez Guerrero and Cotta (1995). The differential aspect is that the 
present work employs a formulation in terms of primitive variables, with eigenfunction expansions for the components 
of the velocity field, in such a way that the continuity equation is automatically satisfied, and after the integral 
transformation process, it is obtained a coupled system of ordinary differential equations similar to one when the 
streamfunction formulation is used. However, this type of formulation can be attractive for the solution of the Navier-
Stokes equations in three-dimensional problems, avoiding more involved formulations as the scalar and vector 
potentials ones (Quaresma and Cotta, 1997). Therefore, the computational algorithm is tested by comparing the present 
results for the velocity field and for the product of the friction factor-Reynolds number with the available ones in the 
literature. 
 
2. Mathematical formulation 
 

Developing laminar flow of an incompressible Newtonian fluid within a parallel-plates channel according to Fig. 
(1) is considered, with the respective inlet and boundary conditions. Thus, the flow is governed by the continuity and 
Navier-Stokes equations in the primitive variables formulation, which for this problem are written in dimensionless 
form in the region –1 < y < 1 and x > 0, respectively, as 
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The dimensionless groups employed in equations above are defined as 
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Figure 1. Geometry and coordinate system for hydrodynamic developing rectangular duct flow. 
 
 

It is taken the derivative of Eq. (1b) in relation to y and of Eq. (1c) in relation to x and the results are subtracted, so 
that the pressure field is eliminated, to yield 
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In order to improve the series convergence, a "filter" is proposed, which reproduces the solution of the fully 

developed flow and makes homogeneous the boundary conditions in the y direction, one chosen for the process of 
integral transformation 

 

Fu(x, y) u (y) u (x, y)∞= +  (5) 
 

where u∞(y) represents the fully developed velocity profile, uF(x,y) is the velocity potential to be solved, and u(x,y) is 
the original velocity potential in the longitudinal direction. 

The continuity and momentum equations, Eqs. (1a) and (4), respectively, after the application of the separation 
process for the velocity potential given by Eq. (5), are then rewritten as 
 

Fu v 0
x y

∂ ∂
+ =

∂ ∂
 (6) 

 

2 2 2 2 2 2 2v∂F F F
F F2 2 2 2

u u u d u v vu u v v u u v
x y x y x yy dy x x

∞
∞ ∞

∂ ∂ ∂ ∂ ∂
+ + + − − −

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂

3 3 3 3
F F

2 3 3
u u4 v

Re x y y x x y

⎛ ⎞∂ ∂ ∂ ∂
⎜ ⎟= + − −
⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

2
v  (7) 

 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004 – Paper CIT04-0525 
 

0

∞

1=

with boundary conditions 
 

Fu 1 u ;   v 0 at x∞= − = =  (8a,b) 
 

Fu 0;   v 0     as x= = →  (8c,d) 
 

Fu 0;   v 0    at y 1= = = −  (8e,f) 
 

Fu 0;   v 0  at y= =  (8g,h) 
 

3. Solution methodology 
 

In the light of applying the GITT approach in the solution of the PDE system given by Eqs. (6) and (7), due to 
homogeneous characteristics of the boundary conditions in the y direction, it is more appropriate to choose this 
direction for the process of integral transformation, and the auxiliary eigenvalue problem is taken as (Pérez Guerrero 
and Cotta, 1995) 
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where Yi(y) and µi are, respectively, the eigenfunctions and eigenvalues of the problem (9a), which satisfy the 
following orthogonality property: 
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Problem (9a) can be analytically solved to yield 
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The eigenvalues µi are obtained from the following transcendental equation: 
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while the normalization integral is computed as 

 
iNV 2=  (13c) 

 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004 – Paper CIT04-0525 
 

The eigenvalue problem defined by Eq. (9a) allows the definition of the following integral transform pair: 
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Equations (15) and (16) represent the eigenfunction expansions for the components of the velocity field, in such a 
way that the continuity equation (Eq. (6)) is automatically satisfied (Pérez Guerrero et al., 1998). 

The process of integral transformation is made as follows: Eq. (7) is multiplied by  and is then integrated 
over the domain [-1,1] in y, after that the inverse formulae given by Eqs. (15) and (16) are employed, resulting in 
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where the coefficients in Eq. (18a) are given by 
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The same process of integral transformation is accomplished in the boundary conditions in the direction x,  
Eqs. (8a-d), to furnish 
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For the computational implementation of the transformed system given by Eqs. (18) to (20), the summations should 
be truncated in orders NTV sufficiently high to guarantee results completely converged within a prescribed accuracy. 

Therefore to solve the system by efficient numerical algorithms for boundary value problems, such as the 
subroutine DBVPFD from the IMSL library (1991), which offers an automatic adaptive scheme for local error control 
of the results for the transformed potentials, it is necessary rewritten the system as a first order one, in the form 
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Now, introducing Eqs. (21) into Eqs. (18a) and (19), and truncating the infinite summations in the order NTV for 
the velocity field, we obtain 
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with boundary conditions 
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Instead of working with an approximate formulation, based on the truncation of the channel at a sufficiently large 
finite length, L, a domain transformation is made in the ordinary differential equations system, mapping the infinite 
domain into a finite one, through the following simple algebraic transformation: 
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where c is a parameter of scale compression, and . Therefore, the original boundary conditions of the problem 
are exactly satisfied. 
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function depending only on η and of the parameter c, therefore the ordinary differential system is rewritten as 
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In the realm of applications, one is concerned with quantities of practical interest such as the product of the Fanning 
friction factor-Reynolds number, fRe. Then, the friction factor is defined as 
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with the introduction of the inverse formula for the velocity field given by Eq. (15), we obtain 
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4. Results and discussion 

 
The developed computational code was validated using the benchmark results presented by Pérez Guerrero and 

Cotta (1995) for various Reynolds numbers and different inlet conditions, u = 1 and v = 0, characterizing a parallel 
flow, and, u = 1 and ω = 0, which characterize an irrotational flow. 

Table (1) illustrates the convergence behavior of the longitudinal velocity at the centerline of the duct, for  
Re = 0, in various axial positions along the channel. It is observed that the velocity is converged to four significant 
digits for increasing truncation orders (NTV≈18-22) at positions near the duct inlet, where the convergence is slower, 
and it can be observed that the convergence is improved as the axial position increases. In addition, it is shown a 
comparison with the results of Pérez Guerrero and Cotta (1995) that also analyzed the problem by employing a 
streamfunction only formulation and the GITT approach. An excellent agreement between the set of results is observed 
for this situation. 

 
 

Table 1. Convergence behavior of the longitudinal velocity component u(x,0) at the centerline of the channel for Re = 0 
(inlet conditions: u = 1 and v = 0). 

NTV x = 0.2 x = 0.4 x = 0.6 x = 0.8 x → ∞ 
6 0.9910 1.187 1.319 1.406 1.500 

10 1.043 1.197 1.321 1.406 1.500 
14 1.059 1.198 1.321 1.406 1.500 
18 1.065 1.198 1.321 1.406 1.500 
22 1.066 1.198 1.321 1.406 1.500 
26 1.066 1.198 1.321 1.406 1.500 

Pérez Guerrero and Cotta (1995) 1.066 1.198 1.321 1.406 _____

 
 
In Table (2) the convergence behavior is presented for Re = 40. The same observations are verified as in the 

previous case of Re = 0. Also, the results are validated by comparing them with those ones of Pérez Guerrero and Cotta 
(1995), and an excellent agreement is observed. In this table comparisons are also shown with solutions obtained by 
purely numerical techniques (finite difference and finite element methods), where it is observed a good agreement with 
such results. 

 
 
Table 2. Convergence behavior of the longitudinal velocity component u(x,0) at the centerline of the channel for  

Re = 40 (inlet conditions: u = 1 and v = 0). 
NTV x = 0.2 x = 0.4 x = 0.6 x = 0.8 x → ∞ 

6 0.9253 1.063 1.163 1.249 1.500 
10 0.9914 1.082 1.166 1.251 1.500 
14 1.013 1.083 1.166 1.251 1.500 
18 1.019 1.083 1.166 1.251 1.500 
22 1.021 1.083 1.166 1.251 1.500 
26 1.022 1.083 1.166 1.251 1.500 

Pérez Guerrero and Cotta (1995) 1.022 1.083 1.166 1.251 _____

Brandt and Gillis (1966) 1.0223 1.0849 1.1693 1.2535 _____

Comini and Del Giudice (1982) 1.0243 1.0884 1.1737 1.2580 _____
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Tables (3) and (4) show that few terms are required for the convergence of the longitudinal velocity at the position 
closest to the duct inlet (x = 0.20833). The irrotational inlet flow condition demonstrates a slight influence in the 
convergence. However, a monotonically convergence is observed for the case of parallel flow, while are required more 
terms in the series expansions for the irrotational case (around NTV = 38) for a complete convergence of the results. It 
is observed that the overall convergence rate is not markedly affected when increases the importance of the convective 
effects, as in this case, but higher truncation orders are needed for the complete convergence in relation to the previous 
cases of lower Reynolds number. Once again, comparisons with the results of Pérez Guerrero and Cotta (1995) shown 
an excellent agreement, as well as a good one with those of purely numerical techniques. 

 
Table 3. Convergence behavior of the longitudinal velocity component u(x,0) at the centerline of the channel for  

Re = 300 (inlet conditions: u = 1 and v = 0). 
NTV x = 0.20833 x = 0.8333 x = 3.3333 x = 7.5 x → ∞ 

6 0.8293 1.029 1.281 1.425 1.500 
10 0.9165 1.071 1.282 1.426 1.500 
14 0.9669 1.072 1.281 1.425 1.500 
18 0.9915 1.071 1.280 1.425 1.500 
22 1.001 1.071 1.280 1.425 1.500 
26 1.005 1.071 1.280 1.425 1.500 
30 1.006 1.071 1.280 1.425 1.500 
34 1.006 1.071 1.280 1.425 1.500 

Pérez Guerrero and Cotta (1995) 1.007 1.071 1.280 1.425 _____

McDonald et al. (1972) 1.008 1.075 1.283 1.425 _____

 
Table 4. Convergence behavior of the longitudinal velocity component u(x,0) at the centerline of the channel for  

Re = 300 (inlet conditions u = 1 and ω = 0). 
NTV x = 0.20833 x = 0.8333 x = 3.3333 x = 7.5 x → ∞ 

10 0.9817 1.137 1.321 1.438 1.500 
14 1.023 1.149 1.326 1.440 1.500 
18 1.039 1.156 1.330 1.441 1.500 
22 1.046 1.161 1.332 1.442 1.500 
26 1.049 1.165 1.334 1.443 1.500 
30 1.050 1.167 1.335 1.443 1.500 
34 1.051 1.169 1.336 1.444 1.500 
38 1.052 1.171 1.337 1.444 1.500 

Pérez Guerrero and Cotta (1995) 1.052 1.170 1.337 1.444 _____

Wang and Longwell (1966) 1.0581 1.1880 1.3572 1.4509 _____

McDonald et al. (1972) 1.050 1.170 1.34 1.44 _____

 
Figure (2) shows the comparison of the longitudinal velocity component at the centerline along the channel for 

different Reynolds numbers with the two types of inlet conditions analyzed (u = 1, v = 0 and u = 1, ω = 0). It can be 
observed that the solution of the Navier-Stokes equations for the irrotational case in these conditions has better 
agreement with the boundary layer results. It is also observed that the condition of parallel flow tends more slowly to 
the approximate results of the boundary layer formulation in relation to the irrotational case, especially for increasing 
Reynolds numbers. 
 

0.1 1 10 100 1000
x

1

1.1

1.2

1.3

1.4

1.5

u(
x,

0)

Re = 0 (u = 1, v = 0)
Re = 300 (u = 1, ω = 0)
Boundary Layer
Re = 40 (u = 1, v = 0)
Re = 300 (u = 1, v = 0)

 
 

Figure 2. Comparison of the longitudinal velocity component of u(x,0) along the channel for different Reynolds 
numbers. 
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Figure (3) shows the development of the velocity profile v(x,y) for Reynolds number 300 with inlet condition  
(u = 1, v = 0). It is observed an axial increasing and traverse of this velocity component, until to reach the distribution 
of fully developed flow. 
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Figure 3. Distribution of the transversal velocity component v(x,y) along the channel length for Re = 300. 
 
Figure (4) brings a comparison of the longitudinal velocity component along the developing region for the case of 

Re = 300. It is verified that the effect of the concavity of the longitudinal velocity profile is more clearly observable in 
the situation of parallel flow (u = 1, v = 0). It is also observed that this effect tends to disappear for regions far from the 
channel entry. 
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Figure 4. Development of the longitudinal velocity component u(x,y) along the channel for uniform and irrotational 
inlet conditions (Re = 300). 

 
The graphical analyses of the product of the Fanning friction factor-Reynolds number are shown in Figs. (5) to (7). 

It can be observed in these figures that the product fRe is strongly dependent of the Reynolds number. One can see that 
this relationship tends to approximate of fRe = 24, which characterizes the fully developed flow. 
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Figure 5. Product fRe along the channel length for Re = 40 (parallel flow). 
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Figure 6. Product fRe along the channel length for Re = 300 (parallel flow). 
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Figure 7. Product fRe along the channel length for Re = 300 (irrotational flow). 

 
 
 

Figure (8) presents a comparison of the longitudinal velocity component along the channel for different Reynolds 
numbers with inlet conditions (u = 1, v = 0) and the solution for the boundary layer formulation. It is verified that the 
concavity in the velocity profile is clearly observable in the situation for Re = 40, which tends to disappear in the fully 
developed region, where there is an excellent approximation of this profile with the boundary layer results. 
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Figure 8. Comparison of the longitudinal velocity component u(x,y) along the channel for different Reynolds numbers. 
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5. Conclusions 

 
The results demonstrated the applicability of the Generalized Integral Transform Technique (GITT) as an 

appropriate tool to solve flow problems in parallel plate channels involving the Navier-Stokes equations. The validation 
of the results for this case of two-dimensional flow suggests that the extension of the present formulation may be more 
attractive for the solution of the Navier-Stokes equations in three-dimensional problems than those with involved 
formulations as the scalar and vector potentials ones. 
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