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Abstract. This work is concerned with the development of a numerical technique for solving free surface �ows
described by the PTT model. The governing equations for incompressible isothermal viscoelastic �ows described
by the PTT model together with appropriate boundary conditions are given. The free surface stress conditions are
treated in details. A formulation for calculating the extra stress components on rigid boundaries, following Tomé
et al., 2002, is presented. The numerical technique presented in this work uses the �nite di�erence method on
a staggered grid and employs the ideas of the MAC (Marker-and-Cell) method. Numerical results demonstrating
that this numerical technique can solve viscoelastic �ows governed by the PTT model are presented. Moreover,
validation results are given.
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1. Introduction

The investigation of the behaviour of viscoelastic free surface �uids in transient �ows is very important
in studying the rheological properties of viscoelastic materials and their processing. The non-linear viscoelas-
tic constitutive equation Phan-Thien-Tanner (PTT) model (Phan-Thien and Tanner, 1977; Xue et al., 1998;
Oliveira and Pinho, 1999; Alves et al., 2001; and Pinho et al., 2003) has been considered the more realistic
model for polymer melts and concentrated solutions in comparison with other models. Therefore, in this paper
the PTT model is adopted to model two-dimensional viscoelastic �ows in the presence of moving free surfaces.
A numerical technique capable of simulating viscoelastic free surface �ows using the PTT constitutive equation
is developed. The approach employed is based upon the SMAC (Simpli�ed-Marker-and-Cell) method (Amsden
and Harlow, 1970). The method described herein is applied to a two-dimensional channel �ow and jet buckling
(Cruickshank, 1988; Cruickshank and Munson, 1981; Tomé et al., 2002). The channel �ow is used to validate
the numerical method presented in this paper and it is shown that viscoelasticity has a strong in�uence on the
jet buckling phenomenon. Moreover, it is shown that for the same nondimensional parameters Re, We and Fr
di�erents jet buckling are obtained by varying the polymer-contributed viscosity. This paper is organized as
follows: the governing equations are presented in Section 2; Section 3 presents the boundary conditions. The
essence of the method is given in Section 4 while in Section 5 the basic �nite di�erence equations are presented.
Section 6 provides validation results and in Section 7 the numerical simulations of jet buckling are discussed.

2. Basic Equations

The basic equations governing incompressible isothermal �ows described by the PTT model are the mass
conservation equation, the equation of motion and the constitutive equation for the PTT model which in tensor
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notation are given by
∂ui

∂xi
= 0 , (1)

ρ
∂ui

∂t
+ ρ

∂ukui

∂xk
= − ∂p

∂xi
+
∂τik
∂xk

+ ρgi , (2)

f(τkk)τij + λ
5
τ ij= 2ηPDij . (3)

where t is the time, ui = (u, v) is the velocity vector, p is the pressure, ρ is the density, gi is the gravitational
�eld, τik is the extra stress tensor, which is related with kinematic quantities by the constitutive equation
(3), Dij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
is the rate of deformation tensor, λ is the �uid relaxation time, ηP is the polymer-

contributed viscosity, (
5· ) represents the following convected derivative:

5
τ ij=

∂τij
∂t

+
∂(ukτij)
∂xk

− (Lik − ξdik) τkj − (Ljk − ξdjk) τki ,

and

f(τkk) = 1 +
λε

ηP
τkk ,

where Lij = ∂ui/∂xj is the velocity gradient tensor; ξ, ε are the parameters describing the PTT model. The
Simpli�ed PTT (SPTT) model is obtained by setting ξ=0 (Phan-Thien and Tanner, 1977).

To solve Eqs. (1)�(3), we employ the EVSS formulation - Elastic-Viscous Stress - Splitting (Rajagopalan
et al., 1990)

τij = 2ηNDij + Σij , (4)

where ηN is the Newtonian-contribuition viscosity, Σij is the extra stress tensor, which is the polymer-contribuition
stress.

Introducing the retardation ratio de�ned as β = ηP /η0 with η0 = ηN + ηP being the total viscosity, it is
interesting to remark that the Oldroyd-B model and the UCM model are special cases of the PTT model, if
ξ=0, ε = 0 and λ2 =(1−β)λ we obtain the Oldroyd-B model; in addition, if β=1 we obtain the UCM model
(Bird et al., 1977). Thus, ηP = βη0 and ηN = (1− β)η0.

Substituting Eq. (4) into Eq. (2) and Eq. (3) we obtain:

ρ
∂ui

∂t
+ ρ

∂ukui

∂xk
= − ∂p

∂xi
+ (1− β)η0

∂

∂xk

(
∂ui

∂xk

)
+
∂Σik

∂xk
+ ρgi , (5)

f(Σkk)Σij + λ
5
Σij= 2η0 [β − (1− β)f(Σkk)]Dij − 2λ(1− β)η0

5
Dij , (6)

with f(Σkk) = 1 +
λε

βη0
Σkk .

Therefore, we shall solve the Eq. (1), (5) and (6) for the dependent variables ui, p and Σij .

We consider two-dimensional cartesian coordinate system xk = (x, y) and let L and U denote reference
values for length and velocity and introduce the nondimensionalization

uk = Uūk, xk = Lx̄k, t =
L

U
t̄, p = ρU2p̄, Σik =ρU2Σ̄ik, gk = gḡk.

Then Eqs. (1), (5) and (6) produce the following nondimensional equations (the bars have been dropped for
convenience)

∂u

∂x
+
∂v

∂y
= 0 , (7)

∂u

∂t
=−∂u

2

∂x
− ∂(vu)

∂y
− ∂p

∂x
+ (1− β)

1
Re

(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂Σxx

∂x
+
∂Σxy

∂y
+

1
Fr2

gx , (8)

∂v

∂t
=−∂(uv)

∂x
− ∂v2

∂y
− ∂p

∂y
+ (1− β)

1
Re

(
∂2v

∂x2
+
∂2v

∂y2

)
+
∂Σxy

∂x
+
∂Σyy

∂y
+

1
Fr2

gy , (9)
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∂Σxy

∂t
=−f(Σkk)

1
We

Σxy− ∂(uΣxy)
∂x

− ∂(vΣxy)
∂y

−
[(
ξ

2
−1

)
∂v

∂x
+
ξ

2
∂u

∂y

]
Σxx−

[(
ξ

2
−1

)
∂u

∂y
+
ξ

2
∂v

∂x

]
Σyy

+ [β−(1− β)f(Σkk)]
2

ReWe
Dxy−(1−β)

2
Re

[
∂

∂t
Dxy+

∂(uDxy)
∂x

+
∂(vDxy)
∂y

+
(
∂u

∂y
− ∂v
∂x

)
∂u

∂x

]
, (10)

∂Σxx

∂t
=−f(Σkk)

1
We

Σxx− ∂(uΣxx)
∂x

− ∂(vΣxx)
∂y

−2(ξ−1)
∂u

∂x
Σxx−

[
(ξ−2)

∂u

∂y
+ξ

∂v

∂x

]
Σxy

+ 2 [β−(1− β)f(Σkk)]
1

ReWe
Dxx−2(1−β)

1
Re

[
∂

∂t
Dxx+

∂(uDxx)
∂x

+
∂(vDxx)
∂y

+ 2(ξ−1)
(
∂u

∂x

)2

+
ξ

2

(
∂v

∂x

)2

+
(
ξ

2
−1

)(
∂u

∂y

)2

+(ξ−1)
∂v

∂x

∂u

∂y

]
, (11)

∂Σyy

∂t
=−f(Σkk)

1
We

Σyy− ∂(uΣyy)
∂x

− ∂(vΣyy)
∂y

−2(ξ−1)
∂v

∂y
Σyy−

[
(ξ−2)

∂v

∂x
+ξ

∂u

∂y

]
Σxy

+ 2 [β−(1− β)f(Σkk)]
1

ReWe
Dyy−2(1−β)

1
Re

[
∂

∂t
Dyy+

∂(uDyy)
∂x

+
∂(vDyy)
∂y

+ 2(ξ−1)
(
∂v

∂y

)2

+
ξ

2

(
∂u

∂y

)2

+
(
ξ

2
−1

)(
∂v

∂x

)2

+(ξ−1)
∂v

∂x

∂u

∂y

]
, (12)

where f(Σkk) = 1 +ReWe
ε

β
(Σkk); Re = ρUL/η0, We = λU/L and Fr = U/

√
L|g| denote the Reynolds

number, the Weissenberg number and the Froude number, respectively.

3. Boundary Conditions

To solve Eqs. (7)-(12) we need to specify appropriate boundary conditions for uk and Σik. On rigid
boundaries the velocity must obey the no-slip condition uk = 0 while on in�ows it is prescribed by un = U and
um = 0 and on out�ows we should have ∂un

∂n
=
∂um

∂n
= 0, where the subscripts n and m denote normal and

tangential directions to the in�ow/out�ow. When calculating the velocity �eld and the non-Newtonian extra
stress tensor, the values of the non-Newtonian extra stress tensor on the boundaries of the domain are required.
They are obtained by the ideas of Tomé et al., 2002. On in�ows we assume that Σxx = Σxy = Σyy = 0 , (Marchal
and Crochet, 1987; Mompean and Deville, 1997) and on out�ows we employ ∂Σxx

∂n
=
∂Σxy

∂n
=
∂Σyy

∂n
= 0 . On

rigid boundaries, the components of the extra stress tensor are calculated from (10) � (12) which we assume to
hold with the initial condition Σik = 0. Following Tomé et al., 2002, it can be shown that on rigid boundaries
parallel to the x-axis, Σxx, Σyy and Σxy are given by

Σxy(x, y, t+δt)=

{
1−[

ξ2+2(ε−1)ξ−2ε
] δt2

4

(
∂u(x, y, t+δt)

∂y

)2
}−1{
e−

1
W e δtΣxy(x, y, t)−

[
β+

(
ξ

2
+ε

)
δt

2

[
e−

1
W e δt(Σxx(x, y, t)

+ (2− ξ)Weβ
(
e

1
W e δt−1

)(
∂u(x, y, t∗)

∂y

)2

+(2− ξ)
δt

2
∂u(x, y, t)

∂y
Σxy(x, y, t)

)]
+

(
ξ

2
+ε−1

)
δt

2

[
e−

1
W e δt(Σyy(x, y, t)

−ξWeβ
(
e

1
W e δt− 1

)(∂u(x, y, t∗)
∂y

)2

−ξδt
2
∂u(x, y, t)

∂y
Σxy(x, y, t)

)]]
∂u(x, y, t+ δt)

∂y
+e−

1
W e δt

[
β−

(
ξ

2
+ε

)
δt

2
Σxx(x, y, t)

−
(
ξ

2
+ε−1

)
δt

2
Σyy(x, y, t)

]
∂u(x, y, t)

∂y
+βe−

1
W e δt

(
e

1
W e δt− 1

) ∂u(x, y, t∗)
∂y

}
, (13)

Σxx(x, y, t+δt)= e−
1

W e δt

[
Σxx(x, y, t)+(2−ξ)Weβ

(
e

1
W e δt−1

)(
∂u(x, y, t∗)

∂y

)2

+(2−ξ)δt
2
∂u(x, y, t)

∂y
Σxy(x, y, t)

]

+(2−ξ)δt
2
∂u(x, y, t+δt)

∂y
Σxy(x, y, t+δt) , (14)
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Σyy(x, y, t+δt) = e−
1

W e δt

[
Σyy(x, y, t)− ξWeβ

(
e

1
W e δt − 1

) (
∂u(x, y, t∗)

∂y

)2

−ξ δt
2
∂u(x, y, t)

∂y
Σxy(x, y, t)

]

−ξ δt
2
∂u(x, y, t+ δt)

∂y
Σxy(x, y, t+ δt) . (15)

whith t∗ ∈ (t, t+ δt).
If the rigid boundary is parallel to the y-axis the calculation of Σxx,Σxy,Σyy on the rigid boundary is similar

to the case above.

3.1. Free Surface Stress Conditions

We consider transient free surface �ows of viscous �uid �owing into a passive atmosphere and neglect surface
tension e�ects. In this case, the appropriate boundary conditions on the free surface can be written as (Tomé
et al., 2002)

p =2(1−β)
1
Re

[(
∂u

∂x
nx

2+
(
∂u

∂y
+
∂v

∂x

)
nxny+

∂v

∂y
ny

2

)]
+Σxxnx

2+2Σxynxny+Σyyny
2 , (16)

(1−β)
1
Re

[
2
(
∂u

∂x
− ∂v
∂y

)
nxny+

(
∂u

∂y
+
∂v

∂x

)
(n2

y − n2
x)

]
+(Σxx−Σyy)nxny+Σxy(n2

y − n2
x) = 0 , (17)

where nk = (nx, ny) is the normal outward unit vector to the free surface.

4. Numerical Method

To solve Eqs. (7)-(12) we employ the procedure used by Tomé et al., 2002. We suppose that at time t0 the
velocity �eld ui(xk, t0) and the non-Newtonian tensor Σik(xk, t0) are known and the values of ui and Σik on
the boundary are given. To compute the velocity �eld ui(xk, t) and the non-Newtonian tensor Σik(xk, t), where
t = t0 + δt, we proceed as follows:
Step 1: Calculate a tentative velocity �eld, ũi(xk, t), from

∂ũi

∂t
+
∂ukui

∂xk
= − ∂p̃

∂xi
+ (1− β)

1
Re

∂2ui

∂x2
k

+
∂Σik

∂xk
+

1
Fr2

gi , (18)

with ũi(xk, t0) = ui(xk, t0) using the correct boundary conditions for ui(xk, t0). The pressure �eld p̃(xk, t0) can
be arbitrary with the restriction that p̃(xk, t0) must satisfy the pressure condition on the free surface (see Eq.
(16)).
Step 2: Solve the Poisson equation: ∂

∂xk

(
∂ψ

∂xk

)
=
∂ũk

∂xk
. The appropriate boundary conditions for this

equation are: ∂ψ
∂n

= 0 on rigid boundary and in�ows and ψ = 0 on the free surface and out�ows.

Step 3: Compute the �nal velocity: ui(xk, t) = ũi(xk, t)− ∂ψ(xk, t)
∂xi

.

Step 4: Compute the pressure: p(xk, t) = p̃(xk, t0) +
ψ(xk, t)
δt

.

Step 5: Update the components of the non-Newtonian extra stress tensor according to the Eq. (13) � (15)
derived in Section 3.
Step 6: Compute the components of the extra-stress tensor using Eq. (10) � (12).
Step 7: Update the marker particles positions. The last step in the calculation is to move the marker particles
to their new positions. This is performed by solving dx

dt
= u, dy

dt
= v by Euler's method. The �uid surface is

de�ned by a list containing these particles and the visualization of the free surface is obtained by connecting
them by straight lines.

5. Finite Di�erence Approximation

The equations describing the numerical method presented in Section 4 will be solved by the �nite di�erence
method on a staggered grid (see Fig. (1) a)) with cell dimensions δx × δy. The pressure and the components
of the non-Newtonian extra stress are located at cell centres (i, j) while the velocity u and v are staggered
by (i + 1/2, j) and (i, j + 1/2), respectively. A scheme for identifying the �uid region and the free surface is
employed. To e�ect this the cells in the mesh can be of several types, namely: cells Full of �uid (F), Surface
cells (S), Empty cells (E), In�ow cells (I), Out�ow cells (O) and Boundary cells (B). The F-cell is required to
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contain �uid and to have no E-cell face in contact with any of its faces while S-cells are de�ned to contain �uid
and to have at least one face in contact with an E-cell face. I-cells de�ne an in�ow boundary and O-cells de�ne
an out�ow boundary. B-cells de�ne rigid boundaries where the no-slip condition is imposed. Figure (1) b))
displays the types of cells within the mesh.

The time derivative in the Eq. (18) is approximated by the explicit Euler method which is �rst order. The
pressure gradient and the linear terms of the momentum equations are approximated by central di�erences.
For the convective terms we employ a high order upwind method. In this work the VONOS method � Variable
Order Non-Oscilatory Scheme (Ferreira et al., 2002; Varonos and Bergeles, 1998) is employed to approximate
the convective terms. The terms involving the divergent of the non-Newtonian extra stress are approximated
by central di�erences. Therefore, the ũ-momemtum equation in the Eq. (18) is approximated by

a)

u i+1/2,ju

v

Σ
Σ

i,j+1/2

xx

xy

v

Σ
~p

i−1/2,j

yy

i,j−1/2

Ψ
i,j

i,j
i,j

i,j

i,j

b)
I

I

I

I

F

F

F

F

F F

F

F

F

F F

F

FF

F F

F

F

B B B B B B B B B B B B B B

B B B B B B B B B B B B B B

O

O

O

O

S

E

E

E

E E

E

E

E E

E

E

E

E

E

E E

E

E E

E

E

E

E

E
FF

F FF F F F

S

S

S

F

F

Figure 1: Types of cells in the domain.

ũ
(n+1)

i+1
2,j

= ũi+ 1
2 ,j−conv(u2)i+ 1

2 ,j−conv(vu)i+ 1
2 ,j−

p̃i+1,j−p̃i,j

δx
+(1−β)

1
Re

(
ui+ 3

2 ,j−2ui+ 1
2 ,j +ui− 1

2 ,j

δx2

+
ui+ 1

2 ,j+1−2ui+ 1
2 ,j +ui+ 1

2 ,j−1

δy2

)
+

Σxx
i+1,j−Σxx

i,j

δx
+

Σxy

i+ 1
2 ,j+ 1

2
−Σxy

i+ 1
2 ,j− 1

2

δy
+

1
Fr2

gx ,

where terms like Σxy

i+ 1
2 ,j+ 1

2
are obtained by averaging the four nearest values, e.g. Σxy

i+ 1
2 ,j+ 1

2
:= (Σxy

i,j + Σxy
i+1,j +

Σxy
i,j+1 + Σxy

i+1,j+1)/4 . However, if the cell (i, j) is adjacent to a B-Cell or to an E-cell, a forward di�erence or
a backward di�erence is used to approximate the derivatives ∂Σxy

∂y

∣∣∣i+ 1
2 ,j and ∂Σxy

∂x

∣∣∣i,j+ 1
2
. The ṽ-momemtum

equation in Eq. (18) is approximated in the same manner. Thus, the approximations described for discretizing
the momentum equations are second order in space and �rst order in time.

The Poisson equation (see Section 4 - Step 2) is discretized at cell centres using the �ve-point Laplacian,
namely,

ψi+1,j − 2ψi,j + ψi−1,j

δx2
+
ψi,j+1 − 2ψi,j + ψi,j−1

δy2
=
ũi+ 1

2 ,j − ũi− 1
2 ,j

δx
+
ṽi,j+ 1

2
− ṽi,j− 1

2

δy
. (19)

Equation (19) leads to a symmetric and positive de�nite linear system for ψi,j . In order to solve this linear
system we employ the conjugate gradient method. The �nal velocities are given by

un+1
i+ 1

2 ,j
= ũi+ 1

2 ,j −
(
ψi+1,j − ψi,j

δx

)
, vn+1

i,j+ 1
2

= ṽi,j+ 1
2
−

(
ψi,j+1 − ψi,j

δy

)

and the pressure is calculated by

pi,j = p̃i,j +
ψi,j

δt
.

The components of the non-Newtonian extra stress Eq. (10)� (12) are approximated by �nite di�erences.
The time derivative is explicitly approximated by the Euler method, the convective terms are computed using
the VONOS method and the spatial �rst order derivatives are second order approximated. For instance, the
component Σxy is computed as follows:

Σxy
ij

(n+1)=−f(Σkk)i,j
1
We

Σxy
ij−conv(uΣxy)i,j− conv(vΣxy)−

[
ξDxy

i,j −
vi+1

2 ,j−vi−1
2 ,j

δx

]
Σxx−

[
ξDxy

i,j −
ui,j+1

2
−ui,j−1

2

δy

]
Σyy

+[β−(1− β)f(Σkk)i,j ]
2

ReWe
Dxy

i,j− (1−β)
2
Re

[
1
δt

((
Dxy

i,j

)(n+1)− (
Dxy

i,j

))
+ conv(uDxy)i,j +conv(vDxy)i,j

+Dxy
i,j

ui+1
2 ,j−ui−1

2 ,j

δx

]
, (20)
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where Dxy
i,j = 1

2

(
u

i,j+1
2
−u

i,j−1
2

δy +
v

i+1
2 ,j
−v

i−1
2 ,j

δx

)
and f(Σkk)i,j = 1 +

ε

β
ReWe(Σxx

i,j + Σyy
i,j).

In Eq. (20), terms which are not de�ned at cell position are obtained by averaging, e.g.

ui,j+ 1
2

:=
ui+ 1

2 ,j + ui+ 1
2 ,j+1 + ui− 1

2 ,j + ui− 1
2 ,j+1

4
, vi+ 1

2 ,j :=
vi,j+ 1

2
+ vi+1,j+ 1

2
+ vi,j− 1

2
+ vi+1,j− 1

2

4
.

The free surface stress conditions eqs. (16) and (17) are approximated in the same way as in Tomé et al.,
2002.

6. Validation of the Numerical Method

We validate the numerical technique presented in this paper by simulating the �ow in a two-dimensional
channel governed by the PTT Model. We consider a 2D-channel formed by two parallel walls at a distance L
from each other and having a length of 10L. At the channel entrance we impose the analitical pro�les of fully
developed �ow given by

u(y) = −4y2 + 4y , v = 0 . (21)

In this case, the constitutive equations Eqs.(10)�(12) reduce to

−f(Σkk)
1
We

Σxy− ξ
2
∂u

∂y
Σxx−

(
ξ

2
−1

)
∂u

∂y
Σyy+[β−(1− β)f(Σkk)]

1
ReWe

∂u

∂y
=0 , (22)

−f(Σkk)
1
We

Σxx−(ξ−2)
∂u

∂y
Σxy−2(1−β)

1
Re

(
ξ

2
−1

)(
∂u

∂y

)2

= 0 , (23)

−f(Σkk)
1
We

Σyy−ξ ∂u
∂y

Σxy−(1−β)ξ
1
Re

(
∂u

∂y

)2

= 0 . (24)

Equations (22)�(24) constitute a nonlinear system for Σxy, Σxx and Σyy. This nonlinear system has been
solved by Newton's method employing Gaussian elimination with partial pivoting.

On the channel walls the no-slip condition is imposed and at the channel exit the conditions for out�ow
boundaries are applied (see Section 3). To simulate this problem the following input data was employed:
L = 1 m, U = 1 ms−1, ν = 2 m2s−1, λ = 0.4 s, ε = 0.001, ξ = 0.001, β = 0.2, where ν is the kinematic viscosity
de�ned by ν = η0/ρ. Hence Re = LU/ν = 0.5 and We = λU/L = 0.4. To demonstrate the convergence of
the numerical method we ran this problem using three meshes as follows: M1 - (50 × 5 cells) δx = δy = 0.2;
M2 - (100 × 10 cells) δx = δy = 0.1 and M3 - (200 × 20 cells) δx = δy = 0.05. We started with the channel
empty and injected �uid at the in�ow until the channel became full and the steady state was reached. Under
steady state conditions the velocity �eld and the viscoelastic extra-stress on the channel must have the same
values as those imposed at the in�ow (see Eqs. (21)�(24)). Figure (2) displays the values of the velocity �eld
and the values of the non-Newtonian extra-stress components Σxy, Σxx, Σyy at the line x = 5 (middle of the
channel) together with the respective analytic values (see Eq. (21) � (24)). The solid lines in Fig. (2) are the
analytic solutions while the symbolds represent the numerical solutions obtained for the velocity �eld and the
extra-stress components Σik using the three meshes.

a)
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

u(
y)

y

M1
M2
M3

Exact

b)
-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Si
gm

ax
y(

y)

y

M1
M2
M3

Newton’s solution 

6



Proceedings of the ENCIT 2004, ABCM, Rio de Janeiro � RJ, Brazil � Paper CIT04-0271

c)
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Si
gm

ax
x(

y)

y

M1
M2
M3

Newton’s solution

d)
-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Si
gm

ay
y(

y)

y

M1
M2
M3

Newton’s solution 

Figure 2: Numerical solution of 2D fully developed channel �ow at x = 5m and t = 100s : Comparison between
numerical and analytic solutions. a) u(y), b) Σxy(y), c) Σxx(y), d) Σyy(y).

As we can see in Fig. (2) the agreement between the exact and the numerical solutions, which are represented
by (SolEx) and (SolNum), respectively, is very good. Indeed, the relative l2-norm of the errors,

E(SolNum) =
∑

(SolEx− SolNum)2∑
SolEx2 ,

are displayed in Tab. (1) where we can see that the errors decrease with mesh re�nement. These results
demonstrate the convergence of the numerical method presented in this paper. These results were obtained
using a dual Pentium III having a 1Ghz processor and 2Gb of ram memory. The CPU time spent on mesh M1
was approximately 10 minutes while for the intermediate mesh M2 the CPU time was about 150 minutes.

Table 1: Relative l2-norm of the errors between the exact and the numerical solutions.

Mesh E(u) E(Σxx) E(Σxy) E(Σyy)
M1 4.23 10−4 11.09 10−4 7.45 10−4 13.90 10−4

M2 4.10 10−5 8.96 10−4 2.42 10−4 10.62 10−4

M3 5.00 10−6 2.77 10−4 6.00 10−5 5.38 10−4

7. Numerical Simulation of jet buckling

To show that the technique presented in this paper can simulate viscoelastic free surface �ows we applied
it to simulate the buckling instability of thin jets. This problem has been investigated by several authors
(Cruickshank, 1988; Cruickshank and Munson, 1981; Tomé et al., 2002) and a theory explaining this instability
fully has not yet been presented. However, Cruickshank, 1988, has presented experimental and theoretical
estimates predicting when a two-dimensional Newtonian jet will buckle. These estimates were based upon the
jet width (L), the height of the inlet to the rigid plate (H) and the Reynolds number. From their study they
concluded that if both conditions Re < 0.56 and H/D > 3π are satis�ed then a two-dimensional Newtonian jet
will buckle. To illustrate that viscoelasticity has a strong in�uence on the jet buckling phenomenon we present
three calculations: one calculation using a Newtonian �uid and two calculations employing the PTT Model. In
these calculations we used the following input data: jet width L = 6 mm, inlet velocity U = 0.25 ms−1, height
of the inlet to the rigid plate H = 5cm, mesh spacing δx = δy = 1 mm. The Newtonian �uid was de�ned by
having a kinematic viscosity of ν0 = 0.006 m2s−1 and gravity was acting in the y-direction with gy = −9.81.
The PTT model was de�ned by having λ = 0.036 s, η0 = 6 Pa.s (since ρ0 = 1, 000 kgm−3), ε = 0.01, ξ = 0.2.
In these calculations we used β = 0.1 and β = 0.9. The scaling parameters were L,U, λ, η0, ρ0 and gy, giving
Re = UL/ν0 = 0.25, We = λU/L = 1.5 and Fr = U/

√
L|g| = 1.030457. In this case, the ratio H/L = 8.3

which does not satisfy Cruickshank's second condition and therefore the Newtonian jet should not buckle. The
results of these calculations are displayed in Fig. (3). Indeed, Fig. (3) shows that the Newtonian jet does
not undergo buckling con�rming Cruickshank's prediction. However, the viscoelastic jets modelled by the PTT
constitutive equation did undergo buckling. In the case of the PTT �uid when the bottom of the box, the
viscosity which is given by the relation
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η1
p =

τyy − τxx

Dyy

is not constant within the jet. In fact, the viscosity of PTT �uid is varying during all the process while the
Newtonian �uid has constant viscosity through the jet. Therefore Cruickshank's theory cannot be applied to
the viscoelastic jet. Indeed, considering Fig. (3), at time t = 0.14s, the viscosity η1

p takes values which are
larger than the Newtonian viscosity for both the cases of β = 0.1 and β = 0.9. These high viscosities make the
�uid too viscous making the incoming �uid to accumulate and therefore leading to the buckling instability.

Newtonian PTT Model (β = 0.1) PTT Model (β = 0.9)

t = 0.06s

t = 0.12s

t = 0.14s

t = 0.30s
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Figure 3: Numerical simulation of jet buckling: Fluid �ow con�guration at di�erent times. Re = 0.25, We = 1.5,
ξ = 0.2, ε = 0.01.

t = 0.44s

t = 0.62s

8. Concluding Remarks

This paper has been concerned with the development of a numerical method for solving the PTT model for
free surface �ows. The �nite di�erence method described was validated by simulating the �ow of a PTT �uid
in a 2D channel. The numerical results were compared with analytic solutions and very good agreement was
obtained. In addition, mesh re�nement was performed which showed the convergence of the numerical method.
The problem of jet buckling was simulated and it was found that viscoelasticity has a strong e�ect on the jet
buckling instability. Moreover, it was shown that changing the parameter β a�ects the rheological behaviour of
the �uid.
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