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Abstract. This paper deals with numerical solution of two-dimensional turbulent MHD incompressible free-
surface �uid �ow problems. The numerical method employed to solve the conservation equations is an extension of
GENSMAC: a �nite-di�erence marker-and-cell technique for the numerical solution of incompressible free-surface
�ows using the velocity-pressure formulation. The Maxwell and the Prandtl mixing length turbulent Navier-Stokes
equations are solved in open square containers with electromagnetic coils aligned externally on their sides. These
produce an alternating magnetic �eld, creating eddy currents within the molten metal and, consequetly, a Lorentz
force which drives the �uid. When the frequency of the �eld is low, the Lorentz force penetrates far into the
liquid and may introduce a turbulent �uid �ow and a good mixing. Results of the simulations are presented for
electromagnetic stirring of steel.

keywords: turbulent electromagnetic stirring, free-surface MHD �uid �ow, �nite-di�erence formulation.

1. Introduction

There are several industrial applications that arise from a rotating magnetic �eld on a container of liquid
metal: the continuous stirring of castings can lead to �ner grain structure and centrifuging can be used to
remove impurities. Historically, the mechanism of electromagnetic stirring was observed at the beginning of
the century in an experiment conduced by Northrup, 1907 when surface agitation was detected on a sample of
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liquid sodium situated between alternating current electrodes. In this instance, the force causing the agitation
was due primarily to the special geometry of the container which created a �pinching� e�ect on the electrical
and magnetic �elds which in turn determined the nature of the Lorentz force within the liquid metal.

The pioneering work of Mo�att, 1965 was later extended by several authors. Sneyd, 1971 considered a circular
cylindrical container of conducting �uid in an alternating �eld; Nigam, 1969 examined a spherical container of
conducting �uid in a rotating magnetic �eld; Richardson, 1974 examined the stability of Dahlberg's solution
concluding that instability would occur for very small magnetic �eld strengths; and Sneyd, 1979 showed that
in containers of any shape the rate of vorticity generation includes both constant and oscillatory terms with
complex �ows developing in the viscous-magnetic boundary layer.

Fluid �ow applications must solve not only Maxwell's equations for the electromagnetics, but also Navier-
Stokes' equations governing the �ow itself. In a �uid �ow application a balance must be set between the
computational requirements of the numerical �uid solver and the demands of the electromagnetic solver. This
paper deals with the numerical solution of two-dimensional turbulent MHD incompressible free-surface �uid �ow
problems. The numerical method employed to solve the conservation equations is an extension of GENSMAC:
a �nite-di�erence marker-and-cell technique for the numerical solution of incompressible free-surface �ows using
the velocity-pressure formulation.

2. Governing equations

Maxwell's equations for a linear homogeneous material are

∇ ·B = 0, (1)

∇×B = µ0J, (2)

∇ ·E =
ρc

ε0
, (3)

∇×E = −∂B
∂t
, (4)

where E, B, and J are, respectively, the electric �eld, the magnetic induction, and the electric current density.
In Eqs. (1)-(4), ρc is the net electric charge, ε0 is the electric permittivity of the material, and µ0 is the magnetic
permeability of the material. In the case of liquid steel, these material properties are assumed constant and
equal to those of free space (Davidson and Hunt, 1987).

The constitutive equation relating the current density to the applied �elds in a �uid with velocity V is the
Ohm's law

J = σ(E + V ×B), (5)

where σ is the electrical conductivity that is assumed scalar (isotropy). The motion of MHD incompressible
viscous �uid �ows is described by mass conservation and Navier-Stokes equations

∇ ·V = 0, (6)

∂V
∂t

+∇ · (VV) = −1
ρ
∇p∗ + ν∇2V + G + J×B, (7)

where ν is the constant kinematic viscosity, ρ is the constant density, p∗ is the pressure �eld, and G is the
gravitational �eld. Equations (2) and (5) couple the Maxwell equations to the turbulent Navier-Stokes equations.
These equations together with the continuity equation are

∇ · u = 0, (8)

∇ · b = 0, (9)

∂u
∂t

+∇ · (uu) = −∇pe +
1
Re

[(1 + νt)∇2u +∇νt ·D] +
1
Fr2

g +N (j× b) , (10)

∂b
∂t

= ∇× (u× b) +
1

Rem
∇2b, (11)

where νt is the turbulent viscosity, D = 1
2 [∇u + (∇u)T ] is the rate-of-strain tensor, and the non-dimensional

variables x/L, tU/L, here denoted by x and t, are space and time, respectively. The non-dimensional �elds
are u = V/U , b = B/B, pe = p∗/ρU2 and g = GL/U2. The Reynolds number, the Froude number, the
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magnetic Reynolds number, and the interaction parameter are, respectively, given by Re = UL/ν, Fr = U√
|G|L ,

Rem = σµ0UL, and N = σLB2/(ρU), where U , L, and B are characteristic velocity, length, and magnetic
induction, respectively. In Eq. (10), the driving force N(j × b) is known as the Lorentz force. The non-
dimensional electric current density j is given by the expression

j =
1

Rem
∇× b. (12)

For the Prandtl mixing length turbulence model

νt = Re`2(D : ∇u)1/2, (13)

where ` is the Prandtl's mixing length parameter. The Prandtl mixing length model is based upon an analogy
with the Kinetic Theory of the Gases, and adds an additional turbulent viscosity determined by the velocity
gradients at a given point and an additional empirical parameter, namely, Prandtl mixing length. For this, a
value of ` = 0.003m was found to give good agreement with experiments in the steel industry and this values
will be used in this work.

This turbulence model is the simplest of the eddy viscosity models. It is isotropic so it will fail to take any
anisotropic turbulence into account which will exist at a surface and may exist due to electromagnetic induction.
Even some of the more advanced models such as two-equations models share this restriction. In order to account
for anisotropy it would be necessary to use either the full Reynolds stress models or Direct Numerical Simulation.
These approaches would require considerably more computation and any electromagnetically induced turbulence
would have to be incorporated, thus modifying these basic equations.

The magnetic induction satis�es the divergence-free constraint expressed by Eq. (9). To enforce this condi-
tion we introduce a vector potential

b = ∇× a, (14)

with non-dimensional �eld a = A/BL.
If the oscilation of the magnetic �eld is much greater than the induced �uid speed, i.e.Rem ¿ Reω, then

the magnetic �eld is una�ected by the �uid �ow, so the �eld calculation proceeds as if the �uid volume were a
solid conductor. From the computational point of view, it means that the �uid calculation decouples from the
�eld computation. Unfortunately, the condition U/L ¿ ω leads to a viscous-magnetic boundary layer which
inhibits good mixing in the body of the �uid. Thus, the industrial interest is in the case when ω = O(U/L).
The �uid and magnetic �elds must be solved as a coupled system.

Assuming the Coulomb gauge (see, e.g., Jackson, 1975) and using Eq. (12), we can expressed the electric
current density as

j = − 1
Rem

∇2a. (15)

With no net electric charge and non-dimensional form of the Faraday's Law (4) and of the Ohm's Law (5),
we can write a di�usion equation to the vector potential a

∂a
∂t

=
1

Rem
∇2a + u× (∇× a). (16)

In the two-dimensional case b = (bx, by, 0)T and a = (0, 0, a)T , the equation (16) becomes
∂a

∂t
=

1
Rem

∇2a− u
∂a

∂x
− v

∂a

∂y
. (17)

Assuming a sinusoidal time dependence for a, we can write

a = (a1 + ia2) exp(−iωt) (18)

so that ∂a
∂t = −iω(a1 + ia2) exp(−iωt) yielding

Reωa2 = ∇2a1 −Rem

(
u
∂a1

∂x
+ v

∂a1

∂y

)
, (19)

−Reωa1 = ∇2a2 −Rem

(
u
∂a2

∂x
+ v

∂a2

∂y

)
, (20)

where Reω = µ0σωL
2 is the shielding parameter, and a1, a2 are, respectively, the real and imaginary parts.
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3. Initial and boundary conditions

Equations (8),(10) and (16) are coupled, non-linear, partial di�erential equations and, together with the
eddy-viscosity model (13), are su�cient, in principle, to solve for the �ve unknowns u, v, pe, a1 and a2 when
appropriated initial and boundary conditions are speci�ed. In this work, a staggered grid is used where the
pressure pe, the potential values a1 and a2 are stored at the center of a computational cell, whereas velocities
u and v are stored at the cell boundaries. With this grid system, pressure boundary conditions are not needed.

For initial conditions, the values of all variables are prescribed. Two types of boundary conditions are used,
namely free-surface and rigid-wall boundaries. The �uid equations are solved in the square domain. The bottom
and two vertical walls are assumed to be rigid. For the top of the cavity we have a free surface.

For simplicity the material of the container will be neglected so that only a liquid/air interface need be
considered. This is not an unreasonable assumption since the thickness of the container in comparison with
its width is negligible and for a container made of refractory material, the permeability is close to that of free
space.

3.1. Free surface

At the free-surface, we are considering that the �uid is moving into a passive atmosphere (zero-pressure) and,
in the absence of surface tension forces, the normal and tangential components of the stress must be continuous
across any free-surface, so that on such a surface we have (see, for example, Landau and Lifshitz, 1987)

n · (σ · n) = 0, (21)

m · (σ · n) = 0, (22)

where n and m are unit normal and tangent vectors to the surface, and σ is the general constitutive equation
(Cauchy stress-tensor) de�ned as

σ = −pe I +
1
Re

(1 + νt)D, (23)

being I the identity tensor. From Eqs. (21) and (22), we determine the pressure and the velocities, respectively.
For more details, see Ferreira et al., 2004.

We consider that the magnetic �eld rapidly decays for a large container compared to the magnet site (Mo�att,
1965). It seems reasonable to assume that at the free surface the tangential components of the magnetic �eld
are continuous i.e.

n× (b2 − b1) = 0, (24)

where n is the unit normal vector to the surface pointing outside.

3.2. Rigid wall

At the rigid walls, the no-slip conditions are applied. We assume that at the bottom of the cavity (y = 0 -
excluding the site of the magnet), bx = 0, that is ∂a

∂y = 0. At the magnet site the value of b will be determined
from the position and strength of the magnets. A sinusoidal distribution is chosen for the y-component of b at
y = 0, i.e.

by =
By

B
= sin

(
π
x

l

)
(25)

where l is the lenght of the magnet. Further, in practical applications it is well known that the array of magnets
exerts a magnetic �eld in a boundary layer close to the wall y = 0. As one moves away from this wall the
magnetic �eld rapidly decays and for a large container compared to the magnet site it seems reasonable to
assume that, for walls parallel to the y-axis, the tangential components of the magnetic �eld are continuous i.e.

∂by
∂x

= 0 or ∂2a

∂x2
= 0. (26)

Note that a = a1+ia2 and so these boundary conditions hold for both components. The side walls containing
the molten metal are made of ceramic brick. Since this has a low conductivity, it has been neglected.
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4. Solution procedure

The governing equations (8), (10), and (16) are solved with an extension of the GENSMAC methodology
for turbulent MHD free surface �uid �ow. The detailed information of this code for the simulation of free-
surface �ows without turbulence modelling is provided in Tomé and McKee, 1994. It is a �nite-di�erence,
explicit, �rst/second-order accurate numerical method based on a predictor-corrector scheme. By using a
guessed e�ective pressure p̃e and an eddy-viscosity νt, the method consists of solving the Navier-Stokes equations
(10) at the (k + 1) time-step for a tentative velocity �eld ũ. The ũ is related to the true velocity �eld u, at
the (k+ 1) time-step, by an auxiliary potential function ψ which is calculated from a Poisson equation, derived
by imposing ∇ · u = 0 at the (k + 1) time-step. The e�ective pressure is then updated, and the procedure
is repeated at each time-step. In particular, when calculating ũ in the �rst step, we employ an adaptive
time-stepping routine (see Tomé and McKee, 1994). The numerical solution procedure may be summarized as
follows.

It is supposed that, at a given time t = t0, the velocity �eld u is known and suitable boundary conditions are
given. Let p̃e(x, y, t) be an arbitrary e�ective pressure �eld, which satis�es the correct pressure condition on the
free-surface. This pressure �eld is constructed by employing the normal-stress condition (21) at the free-surface,
and it is chosen arbitrarily (for instance p̃e(x, y, t) = 0) in the �uid. The updated velocity �eld, the e�ective
pressure, the pontential components of the magnetic �eld, and the eddy-viscosity variables, at time t = t0 + δt,
are calculated by the following steps:

1. With the eddy-viscosity νt known at t = t0 and ũ(x, y, t0) = u(x, y, t0), compute an approximate velocity
�eld ũ(x, y, t) from a �nite-diference discretization of

∂ũ

∂t

∣∣∣∣
t=t0

=
{
− ∂(uu)

∂x
− ∂(uv)

∂y
− ∂p̃e

∂x
+

1
Re

∂

∂y

(
∂u

∂y
− ∂v

∂x

)
+

1
Fr2

gx

+
1
Re

[
2
∂

∂x

(
νt
∂u

∂x

)
+

∂

∂y

(
νt

(
∂u

∂y
+
∂v

∂x

))]
+ F

}∣∣∣∣
t=t0

, (27)

∂ṽ

∂t

∣∣∣∣
t=t0

=
{
− ∂(vu)

∂x
− ∂(vv)

∂y
− ∂p̃e

∂y
− 1
Re

∂

∂x

(
∂u

∂y
− ∂v

∂x

)
+

1
Fr2

gy

+
1
Re

[
2
∂

∂y

(
νt
∂v

∂y

)
+

∂

∂x

(
νt

(
∂u

∂y
+
∂v

∂x

))]
+G

}∣∣∣∣
t=t0

, (28)

where F and G, the components of the time-averaged Lorentz forces, are given by

F = N < j× b >x=
−Nω
2π

∫ 2π
ω

0

∂a

∂x

(
∂a

∂t
+ u

∂a

∂x
+ v

∂a

∂y

)
dt =

−N
2

{[
ωL

U
a2 +

(
u
∂a1

∂x
+ v

∂a1

∂y

)]
∂a1

∂x
+

[−ωL
U

a1 +
(
u
∂a2

∂x
+ v

∂a2

∂y

)]
∂a2

∂x

}
, (29)

G = N < j× b >y=
−Nω
2π

∫ 2π
ω

0

∂a

∂y

(
∂a

∂t
+ u

∂a

∂x
+ v

∂a

∂y

)
dt =

−N
2

{[
ωL

U
a2 +

(
u
∂a1

∂x
+ v

∂a1

∂y

)]
∂a1

∂y
+

[−ωL
U

a1 +
(
u
∂a2

∂x
+ v

∂a2

∂y

)]
∂a2

∂y

}
. (30)

It can be shown (see, for example, Ferreira et al., 2004) that ũ(x, y, t) possesses the correct vorticity at
time t but does not satisfy (8), in general. By writting

u(x, y, t) = ũ(x, y, t)−∇ψ(x, y, t) (31)

and imposing

∇2ψ(x, y, t) = ∇ · ũ(x, y, t), (32)

a velocity �eld is obtained in which the vorticity and mass are conserved;
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2. Solve the Poisson equation (32) for ψ. The appropriate boundary conditions for this elliptic equation
are homogeneous Dirichlet-type on the free-surface and homogeneous Neumann-type on �xed boundaries.
These are treated in a similar way as in the GENSMAC code;

3. Calculate the velocity �eld u(x, y, t) from (31);

4. Compute the e�ective pressure. It can be shown (see Ferreira et al., 2004) that the e�ective pressure �eld
is given by

pe(x, y, t) = p̃e(x, y, t) + ψ(x, y, t)/δt; (33)

5. Compute the potential components a1 and a2 from a �nite-di�erence approximation of (18) and (19);

6. Update the eddy-viscosity νt from (13);

7. Particle movement. The last step in the calculation involves the movement of the marker particles to their
new positions. These are virtual particles (without mass, volume, or other properties), whose coordinates
are stored and updated at the end of each cycle by solving the ordinary di�erential equations

dx

dt
= u and dy

dt
= v (34)

by Euler's method. This provides a particle with its new coordinates, allowing us to determine whether
or not it has moved into a new computational cell;

8. Update the boundary conditions and go back to the �rst step.

5. Discretization

In the solution procedure outlined above, the di�erential equations are discretized in time and space in
precisely the same manner for all dependent variables. The temporal derivatives are discretized using the Euler's
method, while the spatial derivatives are evaluated using speci�c �nite-di�erences on a uniform staggered grid
system. The non-linear terms in F and G of (29) and (30) are, respectively, approximated using the �rst order
upwind discretization. The others non-linear terms are approximated by the Variable-Order Non-Oscillatory
Scheme (VONOS) of Varonos and Bergeles, 1998, which satisfy the Convection Boundedness Criterion (CBC)
formulated by Gaskell and Lau, 1998. All the other derivatives are approximated using standard second-order
central-di�erence formulation. The Poisson equation (32) is discretized using the usual �ve-point Laplacian
operator, and the corresponding symmetric-positive de�nite linear system is solved by the conjugate-gradient
method.

5.1. Discretization of the magnetic �eld equations

Equations (19) and (20) are applied at the center of the cell. The approximations for the velocities u and
v at the cell center will be denoted by uij and vij respectively. These values are interpolated by taking the
averages over the face values.

For a typical interior grid point the discretization of (18) produces

C1
i−1,ja

1
i−1,j + C1

ija
1
i,j + C1

i+1,ja
1
i+1,j + C1

i,j−1a
1
i,j−1 + C1

i,j+1a
1
i,j+1 = Reωa

2
i,j , (35)

where ak
ij ' ak(xi, yj), k = 1, 2 and the coe�cients C1 are given by

C1
ij = − 2

h2
x

− 2
h2

y

−Rem
uij − |uij |

2hx
−Rem

vij − |vij |
2hy

, (36)

C1
i−1,j =

1
h2

x

−Rem
uij + |uij |

2hx
, (37)

C1
i+1,j =

1
h2

x

−Rem
uij − |uij |

2hx
, (38)

C1
i,j−1 =

1
h2

y

−Rem
vij + |vij |

2hy
, (39)
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C1
i,j+1 =

1
h2

y

−Rem
vij − |vij |

2hy
. (40)

A similar equation can be derived from the discretization of (19), which is written

C2
i−1,ja

2
i−1,j + C2

ija
2
i,j + C2

i+1,ja
2
i+1,j + C2

i,j−1a
2
i,j−1 + C2

i,j+1a
2
i,j+1 = −Reωa

1
i,j . (41)

where the coe�cients C2 are obtained as C1. Using the row ordering for the unknowns a1
i,j and a2

i,j , equations
(35) and (41) can be rewritten as two coupled linear systems:

(
M1 −ReωI
ReωI M2

)(
A1

A2

)
=

(
a
b

)
(42)

where A1 and A2 are the vectors of the unknowns, M1 and M2 are the discretization matrices and a and b are
vectors representing the boundary conditions. The linear system (42) is large, sparse and non-symmetric. It is
solved by the biconjugate gradient method.

6. Numerical results

A two-dimensional square cavity in a stirring application with free-surface on the top was simulated. For
this free surface �ow, no comparision with experimental data is presented because the authors did not �nd
the similar data in the literature. The material properties of the liquid metal used in the computations are
density ρ = 7, 070kg/m3, kinematic viscosity ν = 0.886.10−6m2/s, magnetic permeability µ0 = 4π.10−7H/m,
and electrical conductivity σ = 715, 000Ω/m. The magnetic �eld strength is B = 0.03T with frequency ω =
62.832s−1. Computations are performed on mesh 20 × 20 computational cells (δx = δy = 0.01m). In these
simulations, the characteristic velocity U = B( σ

ρω )1/2ωL = 0.4782m/s and the characteristic lenght L = 0.2m
were used. The non-dimensional groups are: Reynolds number Re = 107, 900, Froude number Fr = 0.3414,
magnetic Reynolds number Rem = 0.0859, shielding parameter Reω = 2.25817, and interaction parameter
N = 0.0381.

In the sequel, various diagrams are presented depicting the �uid �ow behaviour for di�erent positioning of
the magnets at the non-dimensional time t = 6.5. Figure (1) shows the simulation of the stirring metal in
a cavity with one magnet on the bottom. The magnetic �eld rapidly decays when one moves away from the
bottom wall. This �gure shows the pressure, components of velocity (u, v) and the real part of the magnetic
vector potential a1. This alternating �eld has a sinusoidal magnetic distribution. Results are also shown for
two poles con�guratiom in Fig. (2). In this �gure the same diagrams are displayed, pressure, (u, v), and a1.
There is an overlap of the main �ow from the separate poles. There are more pronunciated e�ects of the magnet
distribution and of the free surface.

Now the convergence test of the numerical solution for the previous problem is reported. This is performed
under the mesh re�nement of the computational mesh. Figure (3) shows the time-dependent free surface pro�le
from computations with the sequence of 20×20, 40×40 and 80×80 computational cells. One can see, from this
�gure, that the computed free surface of the �uid on the 20× 20 and 40× 40 meshes converges to the computed
free surface on the 80× 80 mesh, indicating grid independence of numerical results.

7. Conclusions

The velocity-coupled Lorentz force together with the Prandtl mixing-length turbulent Navier-Stokes equa-
tions for two-dimensional electromagnetically-driven stirring has been solved. The in�uence of coupling e�ects
at low frequency has been observed for alternating magnetic �elds. The Lorentz body force for a simple one-
dimensional model has an exponential decay in the interior of a conducting medium, dependent upon the
frequency of the applied magnetic �eld (Mo�att, 1965). This in�uences the overall distribution of vorticity-
production within the �uid �ow.
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(a) (b)

(c) (d)

Figure 1: One magnet on bottom (t = 6.5): (a) pressure; (b) u velocity; (c) v velocity; (d) a1 real part of the
magnetic vector potential.
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(a) (b)

(c) (d)

Figure 2: Two magnets on bottom (t = 6.5): (a) pressure; (b) u velocity; (c) v velocity; (d) a1 real part of the
magnetic vector potential.
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Figure 3: Transient free surface pro�le using three meshes: (a) t = 0.5s and (b) t = 1.0s
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