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Abstract. The fundamental objective of this work is the construction of a specialist system capable of diagnosing different 
configurations of horizontal two-phase flow regimes. It is important to emphasize that the development of this know-how is capital 
to the efficient operation of facilities for manipulation and transportation of multiphase fluids, and represents today one of the most 
important challenges in petrochemical and thermonuclear industries.The working principle of the proposed system is based on the 
signals acquired by a rapid response pressure gradient sensor, and on its post processing through Gabor Transform and on a 
previously trained artificial neural network. The implementation is accomplished in way that the diagnosis operation is performed 
on-line, from acquisition of the signal to its  post-processing. Experimental results were obtained on the experimental circuit at 
NETeF – Núcleo de Engenharia Térmica e Fluidos of USP – Universidade de São Paulo, at São Carlos, using a horizontal test 
section, with 12 m length and 30mm internal diameter. Experiments were done with the following air-water flow regimes: stratified 
smooth, stratified wavy, intermittent, annular and bubbly. Results show that the percentage of correct flow regime diagnosis in 
steady state conditions is practically of 100%. 
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1. Introduction 
 

Multiphase flow regimes are very common in industrial pipelines. In the petrochemical industry, for instance, the 
monitoring of oil-gas flows is more and more necessary for a safe operation in exploration and production fields. The 
unexpected arrival of slugs at the inlet of three-phase separators installed on of-shore production platforms results in 
severe transients to their control systems and contributes to reduce the operation efficiency of such equipment. The 
possibility to interfere on such regimes, together with flow regime inference algorithms, can widen the amount of 
available information for the operators of such industrial processes, increasing security and efficiency. Another 
interesting example is the development of new transport technologies for ultra-viscous oils, based on creating an 
annular regime with the oil phase flowing in the center and the water flowing near the walls of the tube – the so-called 
core annular flow (Bannwart, 2001). The reduction in the pumping power is dramatic but the applicability of such 
technology under field conditions depends on the development of active control systems capable of identifying when 
the annular structure of the flow becomes unstable in order to avoid the imminent regime transition. 

The development of objective criteria for detecting flow regimes has been the central objective of many researches. 
The first approaches were based on the analysis of pressure signals and the corresponding spectra (Hubbard and Dukler, 
1966) because such signals are very common in industrial processes. A comprehensive review can be found in Drahos 
and Cermak (1989). Less restrictive signal analysis techniques, such as adaptative filtering, wavelets and fractals, 
constituted strong tendencies in the 90’s. Interesting methods were proposed for the characterization of flow regimes 
from fractal or chaotic aspects of the analyzed signal. Also, Hervieu and Leducq (1991) demonstrated the applicability 
of the wavelet transform in the investigation of vertical gas-liquid flows. In the sequence of this work, Seleghim and 
Hervieu (1994) proposed an objective indicator for the bubbly-slug transition in vertical flows, based on quantifying the 
loss of stationarity through the standard deviation of Ville’s instantaneous frequency calculated from void signals. This 
same approach was adopted and improved in the work of Hervieu and Seleghim (1998), in which the time-frequency 
covariance calculated from the Gabor transform of void signals was acknowledged as a universal flow regime transition 
indicator. This claim was confirmed in a subsequent work by Klein et al. (2004) which investigated the existence of 
sub-regimes in intermittent gas-liquid horizontal flow.  

A different and also promising approach is the application of connectionist or neural models to the problem of flow 
regime identification. Among many interesting mathematical properties these models possess the so-called associative 
memory from which it is possible to infer a correct conclusion from incomplete or truncated input data. One of the first 
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works reported in the scientific literature is probably the article by Mi et al. (1998) in which statistical moments 
calculated from impedance signals were used to classify vertical flow regimes with a supervised neural network. 
Another prospective work was reported by Crivelaro et al. (2002) in which the impedance signals obtained from a 
direct imaging probe were processed through an elaborated neural architecture constituted of six independent modules, 
trained to detect specific flow regimes,  followed by a winner-take -all layer to resolve conflicts between modules. In a 
more recent work by Yan et al. (2004) trained a classificatory network constituted of multiple exits, one for each flow 
regime, using simulated data from a capacitive tomographic sensor. In general the results reported in these works are 
very good, in some cases the probability of correct regime detection nears 100%, but they are all based on impedance 
signals what is frequently difficult to obtain in field conditions. For instance the piping section on which the sensor is to 
be installed must be made of a dielectric material. A more applicable approach should be based on the signals obtained 
from more practical sensors, such as pressure or acceleration transducers. The problem though is that the information 
regarding the flow structure is not as well structured as it is in impedance signals. On the contrary, it is well known that 
pressure signals reflect not only the local flow conditions but also many diameters up and downstream the region where 
it is installed. Acceleration signals have a somewhat similar problem, namely its poor localization, with the additional 
difficulty of being strongly dependent on the mechanical behavior of the piping (vibration modes, damping, etc.). An 
adequate method to handle these types of signals (excessively rich) is the time-frequency decomposition: the 
information contained in the original one-dimensional signal is spread over a 2D distribution and is, therefore, better 
resolved.   

There are many possible time-frequency decompositions such as the Wigner-Ville and Choi-Williams distributions. 
Also, the wavelet transform can be seen as a time-frequency distribution if the analyzing wavelet has good time and 
frequency localization properties (strictly speaking it constitutes a time-scale decomposition). We will adopt the Gabor 
transform in this work because its Gaussian analyzing function equals the minimum of the uncertainty principle (best 
simultaneously localized in time and frequency), and also for being well suited for on-line processing. The approach 
adopted in this work is then to use pressure signals, given that they are interesting for industrial applications, to Gabor 
transform them in order to resolve the useful information and to process the corresponding time-frequency coefficients 
through a previously trained neural network model in order to detect the flow regime. Our basic assumption is that each 
flow regime has a characteristic time-frequency signature that can be identified by the neural network. This assumption 
has been shown to be true by Seleghim et al. (1998) in horizontal gas-liquid flows for impedance signals but, to our 
knowledge, still remains to be demonstrated for pressure signals. Our main objective is to develop an expert system 
suited for industrial application and capable of on-line detecting the flow regime in horizontal gas-liquid flow.  

The text is organized as follows: introduction of the basic concepts regarding the Gabor transform and neural 
network models, description of the experimental loop and the corresponding instrumentation used to validate the 
proposed methodology, information about the experimental tests and results, conclusions and suggestions for future 
work. 
 
2. The Gabor transform 

 
The analysis of the spectral content based only on Fourier transform may not be sufficient to describe the process or 

physical phenomena from which the analyzed signal was extracted, mainly because all temporal information is hidden 
due to the integration on time. In other words, the Fourier transform emphasizes all information regarding frequencies 
(which frequencies are present) at the cost of temporal aspects (when these frequencies occurred). But in many 
processes frequencies vary along time and this information, i.e. the modulation law of the spectral content, is usually of 
utmost importance for the correct interpretation of the signal. Good examples are the so-called tonal languages, such as 
Mandarin Chinese and Cantonese, in which changes in the pitch of a sound mean completely different words. Thus, the 
objective of time -frequency analysis is to construct, from the original one-dimensional signal, an associated two-
dimensional distribution that identifies the instantaneous or local spectral content, just like in a musical score. There are 
many possible alternatives for constructing such joint time-frequency distribution. If one recognizes the scalar product 
as a measure of the similarity between a generic signal s( ⋅ ) and an analyzing function h t,ω( ⋅ ) well localized around the 
time t and the frequency ω, this joint distribution can be defined as 
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Different definitions for generating the family of analyzing functions lead to different classes of distributions. For 
instance, if h t,ω( ⋅ ) is generated from affine transformations applied to an admissible mother function h( ⋅ ), that is  
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than P( t , ω ) becomes the well known wavelet transform which is an example of the affine class. The short time 
Fourier transform belongs to Cohen’s class and is obtained by translating in time and frequency the admissible mother 
function according to 

 
( ) τω

ω −τ=τ i
,t eth)(h  (3) 

 
where 1i −= . The Gabor transform corresponds to a special case of a short time Fourier transform in which the 

mother function is a Gaussian window. That is  
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where α is a parameter controlling the Gaussian’s decaying speed. By applying the definition (1) one obtains 
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The Gabor transform is an interesting choice because its analyzing function, i.e. translated versions of a Gaussian 
window, satisfies the minimum of the uncertainty principle. More precisely, by defining a measure of the support of 
h( ⋅ ) and of its Fourier transform h( ⋅ ) according to 
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where E stands for the energy of the signal and t0 and ω0 respectively for its central time and frequency, then it is 
possible to demonstrate that  
 

π=∆∆ 2ĥh  (8) 

 
whereas for any other signal s( ⋅ ), different from a Gaussian window, this relation becomes (Gabor, 1946) 
  

π>∆∆ 2ŝs  (9) 

 
An important consequence of this is that the Gabor transform produces an optimal partition of the time-frequency 

plane by translating h( ⋅ ) by steps T in time and Ω  in frequency, that is  
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where k = 0, ±1, ±2… and m = 0, ±1, ±2… By defining T and Ω  according to 
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one obtains a redundant (β > 1), an exact (β = 1) or a loose (β < 1) partition of the time -frequency plane, on which it is 
possible to associate the following decomposition coefficients (named atoms by Gabor): 
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In this work these coefficients will be calculated from pressure signals and will be used to identify the flow regime 

through a previously trained neural network model. For a comprehensive text on time-frequency analysis the reader is 
pointed to the book by Cohen (1995). 
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3. Neural network models 

 
A neural network can be defined as a nonlinear mapping of an input onto an output vector space. This is achieved 

through layers of activation functions or neurons in which the input coordinates are summed according to weighting 
values and bias to produce single output or firing values. In this work, we used a feed forward network for which there 
is no recursiveness, i.e. the input vector of a specific neuron layer is formed only by the firing values of the preceding 
layer, as shown in Fig. (1). 
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Figure 1. Schematic representation of a feed forward neural network mapping a 5 coordinates input vector onto a 3 
coordinates output vector. 

 
Formally, if the activation function of i-th neuron in the j-th layer is indicated by Fi,j( ⋅ ), its output si,j can be 

calculated from the outputs of the preceding layer si,j -1 and the corresponding bias bi,j and weighting values wi,k,j -1 (the 
second subscript k indicates the neuron in the (j-1)-th layer from which the connection is being established) according 
to the expression 
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The network’s input and output values being denoted respectively by ηi, and ξi, the mapping relation of one onto 

another can be calculated by successively applying (1), what for the example in Fig. (1) results 
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Expression (14) makes clear that the relation between ηi, and ξi, is unambiguously defined by choosing the 

activation functions and by setting the bias and weighting values. Among many, a very important characteristic of 
neural networks is the so-called learning potential, i.e. the possibility of adjusting the bias and weighting values through 
a convenient training rule to closely reproduce pre-assigned pairs of input/output values. The back-propagation is 
probably the most used training heuristics and is particularly well adapted to feed forward architectures. It is based on 
the iterative application of a discrete gradient descent algorithm, computed from the first derivatives of a conveniently 
defined error function with respect to the parameters of the network. In general lines the basic steps of the back-
propagation procedure implemented in this work are the following: 

 
1. Initialize the parameters of the network b i,j and wi,k,j  with random numbers 
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4. Calculate the derivatives of the error e with respect to b i,j  and wi,k,j    
5. Modify the network parameters according to a steepest descent strategy and a specified learning rate γ 
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6. Iterate from 2 to 5, successively modifying bi,j and wi,k,j  , until a defined number of learning epochs 

(cycles) or a convenient stopping criterion be achieved 
 
The performance of a neural network is profoundly affected by its internal architecture (the number hidden layers 

and the number of neurons in each one) and the type of interconnections (feed-forward, recursive, winner-take -all, etc.). 
The exact shape of the activation function has limited effects on the overall performance and is usually set according to 
the needs of the training heuristics (a sigmoid function in the case of back-propagation method). There is no general 
mathematical theory but rather a number of empirical rules to be considered when constructing such models. The 
architecture of the neural module adopted in this work is shown in Fig. (2). It is constituted of one feed forward module 
containing N1 × N2 input neurons, a single hidden layers containing M neurons each and 5 output neurons. These 
parameters were set after an exploratory analysis aiming at optimizing the performance of the system, considering 
simultaneously the computational effort (which delays the output) and the probability of correct regime identification. 
Each neuron at the output layer is responsible for identifying one of the following five horizontal gas-liquid regimes: 
stratified smooth, stratified wavy, intermittent, bubbly and annular. The training procedure constitutes in acquiring 
pressure signals from known flow regimes (determined both visually and with the help of Taitel and Dukler´s map 
(Taitel and Dukler, 1976) and by setting the desired output values to zero, except for the neuron corresponding to the 
flow regime which is set to one. Several and varied example signals were taken from each flow regime to compose the 
training data set. 
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Figure 2. Neural network architecture adopted in this work (the inputs are the Gabor coefficients calculated with (12) 
and the outputs are numb ers varying between 0 and 1 indicating, respectively, if a particular regime was not 

detected or positively detected) 
 

4. Experimental circuit, instrumentation and software 
 
Different horizontal air-water flow regimes were generated in an experimental loop at the Thermal and Fluids 

Engineering Laboratory of the University of São Paulo at São Carlos – Brazil. The test section is constructed in 
Plexiglas and has an internal diameter of 30 mm and a total length of 12 m. It is mounted on an articulated structure that 
can be inclined between ± 10o approximately. Air is supplied by a 47 kW screw compressor. The flow rate is controlled 
through servo-valves (Smar FY-301) and orifice plates (ASME MFC-3M-1998) installed in parallel lines to allow 
independent operation. SMAR LD301 and Danfoss MBS33 pressure transducers are responsible for measuring the 
differential pressure and the upstream static pressure respectively. Water is supplied by a 10 kW pump which is 
controlled by a frequency converter (Yaskawa VFD-B). The flow rate is measured by an orifice plate.  The loop was 
conceived to be able to work with a second liquid, oil for instance, which is pumped through a 20 kW pump also 
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controlled by a frequency converter and an orifice plate. The three fluid lines are connected to a mixing device designed 
to create extremely unstable flow structures in order to minimize the stabilization length downstream. A primary 
separator, connected by a flexible tube to the test section, is responsible for the separation of the gas phas e and by pre-
separating the liquid phases. Secondary separators are responsible for the final separation of the liquids that are 
recirculated through the corresponding pumps. The following figure illustrates NETeF’s experimental loop. 
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Figure 3. NETeF’s experimental loop designed to reproduce the main flow regimes associated with gas-liquid and gas-
liquid -liquid flows (the test section is inclinable by ± 10o approximately) 

 
A driver written in LabView© and implemented on a 500 MHz Pentium based computer is responsible for 

acquiring the signals from the pressure transducers and by controlling the servo-valves and the frequency converters 
through PID algorithms. The acquisition system is supplied by National Instruments and is constituted of an A/D AT-
MIO-16DE10 board connected to a SCXI-1000 chassis with two SCXI-1331 multiplexers and SCXI-1180 feed through 
modules. The analog outputs of the acquisition system are connected to the servo-valves and to the frequency 
converters via Smar AM01P auto/manual transfer modules, which allow automatic control by the soft driver or direct 
manual control by the user. The following figure illustrates the acquisition system described above. 

 

water

oil

air

k P a

H z

H z

k P a

A/D 12 bits
TCP/IP

LabView
Driver

MS Windows

Gabor and
Neural Netw.

UNIX

x %

FY301

A
M

01
P

A
M

01
P

A
M

01
P

A
M

01
P

A
M

01
P

LD301

LD301

FC

FC
LD501

0-10 V

kPa

LD301

4-20 mA loops

SCXI 1000/1331/1180

x %

FY301

kPa

LD301x %

FY301

k P a

LD301

k P a

mixer separator
MBS33

MBS33

MBS33

 
 

Figure 4. Schematic representation of the acquisition system and of the control instrumentation 
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The pressure transducer used for regime identification is a Smar LD501 model, with a cutoff frequency of 

approximately of 15 Hz. As indicated in Fig. (4) its connections were positioned 200 mm apart at the bottom of the test 
section in order to assess the longitudinal pressure gradient (dP/dL ≅ ∆P/∆L), also called fluctuating pressure. Some 
preliminary tests were made to determine the necessary pressure range to encompass all flow regimes. The transducer 
was then recalibrated in the range 0 – 100 mbar. The signal delivered by the LD501 transducer was acquired at 50 Hz to 
avoid aliasing effects and transferred via TCP/IP to a UNIX based machine to be processed separately from the loop’s 
control routines. A UNIX machine was chosen because of its higher computational performance in on-line Gabor 
transforming the signal and processing the resulting coefficients through the neural network to determine the flow 
regime. The software for both calculations was developed in ANSI C. The neural network was trained using SNNS – 
Stutgart Neural Network Simulator (http://www-ra.informatik.uni-tuebingen.de/SNNS), and the converged weights and 
bias were exported to the on-line calculating neural module already mentioned.  

 
5. Experimental tests and results 

 
As previously stated, several fluctuating pressure signals were randomly sampled from each flow regime in order to 

constitute a representative training data set, particularly regarding the possible existence of unknown sub-regimes, 
which is very likely in intermittent flow (Klein et al., 2004). These signals were acquired at 50 Hz during at least 20.48 
seconds which corresponds to a minimum of 1024 samples. Low velocity flows, characterized by a spectral content 
centered on 0.25 Hz, required longer acquisition periods of up to 16384 samples or 327.7 seconds. The following figure 
shows the area on Taitel and Dukler’s map from which the signals were sampled, defined by the maximum flow rates 
supplied by the water pump and by the compressor. The lower limits, indicated by the dashed lines, are associated with 
the stability of the flow rates in steady state operation, what is related with the influence of the resolution of the flow 
metering instruments on the PID algorithms.  
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Figure 5. Region in Taitel and Dukler’s map from which the training signals were randomly sampled 
 
The intrinsic parameters in Gabor transforming the pressure signals were determined after an exploratory analysis 

in which the performance of the system was optimized, considering both computational efficiency and the percentage of 
correct regime identification. More specifically, an exact partition of the time-frequency plane was chosen (β = 1) with 
T = 0.5 s and Ω  = 0.63 rad/s ( = 0.1 Hertz). The decaying speed of the Gaussian window was set to α = 0.01 s -2, what 
results in 19 (N1) and 20 (N2) significant coefficients respectively in time and frequency directions. Thus, the total 
number of time-frequency coefficients given by equation (12) results in 380 (the number on input neurons in the neural 
model), or 19 instantaneous spectra with 20 frequency amplitudes each, as indicated in Fig. (2).  

The performance of the proposed flow regime identification methodology can be assessed in several ways. 
Recalling that the desired target values are exclusively 1 or 0, and that the obtained output values ξi vary continuously 
between these limits, it is convenient to define the following errors: 
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It is important to stress that these errors can be calculated on-line for each acquisition step and thus can be 

monitored with respect to threshold levels or identification limits (elimit). In other words, a specific flow regime is 
identified if its corresponding error signal falls below a conveniently predefined value for elimit. The certainty of the 
identification procedure can then be defined as the number of correct hits divided by the number of signal of that 
particular regime that were sampled from the network’s training region in Taitel and Dukler’s map. Obviously the 
higher is the identification limit the greater is the certainty and vice-versa, tending to zero when elimit = 0. The results 
obtained in this work are shown in Tab. (1) from where it can be seen that 100% certainty is achieved for elimit = 0.050, 
corresponding to an extremely good performance. It is also possible to notice that intermittent flow regimes were 
identified with greater certainty. This can be attributed to the very characteristic time-frequency signature of these flow 
regimes, dominated by the intermittency frequency. This is equally the case for stratified wavy flows, which also have a 
strong time-frequency signature marked by the oscillation frequency of the stratification interface, and which were 
identified with the second best certainties. The lowest certainties were obtained for annular flows, what can be probably 
explained by the fact that these flows were sampled too close to the transitions to intermittent and to stratified flows due 
to limitations in the maximum air flow rate supplied by the compressor. 

 
Table 1. Certainty of the flow regime identification determined with respect to different identification levels in (17) 

 

flow regimes     ?  stratified smooth  stratified wavy intermittent bubbly annular identification 
limit number of  

signals  
?  320 875 2098 313 348 

hits 320 875 2098 313 348 

mistakes 0 0 0 0 0 0.0500 

certainty 100 % 100 % 100 % 100 % 100 % 

hits 294 822 2001 293 303 

mistakes 26 53 97 20 45 0.0045 

certainty 91.87 % 93.94 % 95.37 % 93.61 % 87.07 % 

hits 289 805 1962 279 281 

mistakes 31 70 136 34 67 0.0040 

certainty 90.31 % 92.00 % 93.52 % 89.14 % 80.74 % 

hits 271 758 1889 255 240 

mistakes 49 117 209 58 108 0.0030 

certainty 84.68 % 86.63 % 90.04 % 81.47 % 68.96 % 

hits 251 703 1794 211 190 

mistakes 69 172 304 102 158 0.0020 

certainty 78.44 % 80.34 % 85.51 % 67.41 % 54.59 % 

hits 205 570 1582 152 109 

mistakes 115 305 516 161 239 0.0010 

certainty 64.06 % 65.14 % 75.40 % 48.56 % 31.32 % 
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6. Conclusions and perspectives 

 
A procedure for the on-line identification of horizontal gas-liquid flow regimes was developed in this work. The 

procedure is based on acquiring pressure gradient signals (fluctuating pressure) and on its subsequent decomposition 
into time-frequency coefficients associated with the Gabor transform, followed by their analysis through a previously 
trained neural model. Experimental tests were performed to validate and to assess the performance of the proposed 
identification procedure. Different horizontal air-water flow regimes were generated in the experimental loop of the 
Thermal and Fluids Engineering Laboratory of the University of São Paulo at São Carlos – Brazil. The test section is 
12 m long and has an internal diameter of 30 mm. The network’s training procedure constituted in acquiring pressure 
signals from known flow regimes and by setting the desired output values to zero, except for the neuron corresponding 
to the flow regime which is set to one. A total number of 3954 example signals were sampled from all flow regimes to 
compose the training data set. This dataset also permitted to determine the performance of the proposed procedure, 
particularly in what regards the certainty associated with the identification of each flow regime. An overall certainty of 
100% is achieved when the detection level is set to 0.050 in (17). Intermittent and stratified wavy regimes were 
identified with greater certainty, what can be attributed to its marked time-frequency signature, associated with the 
intermittency frequency and with the oscillation frequency of the stratification interface respectively. The lowest 
certainties were obtained for annular flows, probably because this regime was not properly explored due to limitations 
in the maximum air flow rate supplied by the compressor. Future work should include new experiments with different 
inclinations of the test section and also the detection of anomalies, such as a breach in the pipeline or instance. It would 
be equally interesting to study the influence of the density of the partition of the time-frequency plane, given by β in 
(11), and of the number of neurons in the hidden layer of the neural model on the global performance of the 
identification procedure. 
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