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Abstract. In the present work we apply a deterministic, an stochastic and a hybrid method for the estimation OF the Biot numbers in 
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results with synthetic data are presented. 
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1. Introduction 
 

The analysis of the simultaneous heat and mass transfer phenomena in porous media has several relevant 
applications in different areas such as mechanical, biomedical, food and environmental engineering (Mikhailov and 
Özisik, 1994; Ekechukuwu, 1999; Neményi et al., 2000; Pavón-Melendez et al., 2002). In most cases the mathematical 
model is based on the Luikov’s equations (Mikhailov, and Özisik, 1994; Luikov and Mikhailov, 1965; Luikov, 1975; 
Mikhailov and Shishendjiev, 1975; Pandey et al., 1999; Chang and Wang, 2000; Pandey et al., 2000). 

More recently the inverse problem of simultaneous heat and mass transfer has attracted the attention of several 
researchers (Kanavce et al., 2002; Kanevce et al., 2002; Huang and Yeh, 2002; Dantas et al., 2002-2003; Lugon and 
Silva Neto, 2003a-2003b). The Levenberg-Marquardt (LM) method (Marquardt,1963) was used by many researchers 
(Kanavce et al., 2002; Kanevce et al., 2002; Lugon and Silva Neto, 2003a and 2003b) and the Alifanov’s Iterative 
Regularization method (for details see Alifanov et al., 1995) was used by Dantas et all, 2002 and 2003. Hunag and Yet 
(2002) used the using Alifanov’s iterative regularization method (Alifanov et al, 1995) to estimate the heat and mass 
Biot. In Lugon and Silva Neto, 2003a, a stochastic method, SA-Simulated Annealing, was used to estimate the 
dimensionless numbers of Luikov and Possnov. The studies were extended by Lugon and Silva Neto (2003b) including 
a hybrid solution, SA-LM, for the estimation of the Luikov and Possnov dimensionless numbers. 

Lugon and Silva Neto (2004) studied the same problem including a hybrid solution, SA-LM  (Silva Neto and Soeiro, 
2003), for the estimation of the Luikov, Possnov and Kossovitch dimensionless numbers. In the present work we 
proceed the analysis of the same problems, investigating the estimation of the Biot numbers of heat and mass transfer in 
Luikov’s formulation for simultaneous heat and mass transfer in a porous medium. 
 
2. Mathematical Formulation and the Solution of the Direct Problem 
 

Consider the problem of simultaneous heat and mass transfer in a one-dimensional porous media in which heat is 
supplied to the left surface of the porous media, at the same time that dry air flows over the right surface. 

 

Dry air flow 
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Figure 1 – Drying process schematic representation 
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The mathematical formulation of the direct heat and mass transfer problem considered, in the dimensionless form, 
is given by Mikhailov and Özisik (1994) and by Cotta (1993) 
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subject to the initial conditions 
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the dimensionless variables are defined as 
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and a represents the thermal diffusivity of the porous medium, am the moisture diffusivity of the porous media, c the 
specific heat of the porous medium, h the heat transfer coefficient between the porous medium and the air, hm the mass 
transfer coefficient between the porous medium and the air, k the thermal conductivity, km the moisture conductivity, l 
the width of the medium, q the thermal flux supplied to the porous medium at the left side (see Fig. 1), r the latent heat 
of evaporation, T0  the initial uniform temperature of the porous medium, Ts  the dry air initial temperature, u0 the initial 
moisture content, u* the moisture content of the surrounding air, X the spatial coordinate axis, ε the phase change 
criterion (i.e., ε = 1, vapor, ε = 0, liquid) and � is the thermogradient coefficient. 

When the geometry, the initial and boundary conditions, and the medium properties are known, the system of 
equations (1-8) can be solved yielding the temperature and moisture distribution in the media. The finite difference 
method was used for that purpose. We first choose initial guesses for 1θ  and 2θ . Then we solve Eqs. (1),(3),(5) and 

(7), with  2θ  fixed, in order to obtain a new estimate for 1θ . Then 1θ  is fixed and we solve Eqs. (2), (4), (6) and (8) to 

obtain a new estimate for 2θ . Such procedure is repeated until a convergence criterion related to the values of 1θ  and 

2θ  is satisfied. 
 
3. Mathematical Formulation and Solution of the Inverse Problem 
 
3.1 Inverse Problem Formulation 
 

In the present work we focus on the determination of parameters associated with Luikov’s model, in particular the 
heat and mass Biot numbers, using a deterministic and a stochastic method. A hybrid approach combining the 
deterministic and stochastic method is also analyzed. For that purpose it is considered that transient temperature 
measurements, , 1, 2,...iY i M= , are taken at one location of the medium. 

Since the number of experimental data, M, is larger than the number of unknowns to be estimated, the inverse 
problem is implicitly formulated (Silva Neto and Soeiro, 2003) as a finite dimensional optimization problem where we 
seek for the minimization of the functional of squared residues 
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where Yi represents the dimensionless temperature measured in the porous media, θ1i (((( ))))P
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3.2 Sensitivity Analysis 
 

The sensitivity analysis plays a major role in several aspects related to the formulation and solution of an inverse 
problem. Such analysis may be performed with the study of the sensitivity coefficients. Here we use the modified or 
scaled, sensitivity coefficients 
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where V  is the observable state variable (which can be measured), jP , is a particular unknown of the problem and 

pN  is the total number of unknowns. 

In the following table we have the reference values examined in this investigation for a wood sample, in all cases we 
considered forced convection, and studied changes in width, dry air temperature and heat flux (Dantas et al., 2003). 
 
Table 1 – Reference values for experiments examined 

Physical variables Experiment 1 Experiment 2 Experiment 3 
l  (m) 0.01 0.01 0.025 

0ρ  (kg/m3) 370 370 370 

qh  (W/m2 M) 22.5 22.5 22.5 

mh  (W/m2 so M) 2.5 x 10-6 2.5 x 10-6 2.5 x 10-6 

qk  (W/m K) 0.65 0.65 0.65 

mk  (kg/m so M) 2.2 x 10-8 2.2 x 10-8 2.2 x 10-8 

δ  ( o M/K) 2.0 2.0 2.0 

pc  (J/kg K) 2500 2500 2500 

mc (kg/kg o M) 10-2 10-2 10-2 

λ  (J/kg) 2.5 x 10-6 2.5 x 10-6 2.5 x 10-6 

0T  (o C) 24 24 24 

sT  (o C) 36 26 36 

0u (o M) 86 86 86 

*u  (o M) 8 8 8 

qBi  0.34 0.34 0.85 

mBi  1.14 1.14 2.85 

Lu  0.008 0.008 0.008 

Pn  0.3 0.05 0.3 

Ko  65 390 65 
ε  0.2 0.2 0.2 
Q  5.0 5.0 5.0 

 
In the present work the state variable is the temperature 1θ , and we are interested in investigating the estimation of 

Lu , Pn , Ko , qBi  and mBi . 

Here we have used a central finite difference approximation for the computation of the scaled sensitivity coefficients 
given by Eq. (23) with respect to the unknowns listed in the previous paragraph. 

As a general guideline the sensitivity of the observable state variable with respect to the parameter we want to 
estimate must be high enough to allow an estimate within reasonable confidence bounds. Moreover, when two or more 
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parameters are simultaneously estimated, their effects on the state variable must be independent (uncorrelated). 
Therefore, when represented graphically the sensitivity coefficients should not have the same shape. If they do, it means 
that two or more different parameters affect the observable state variable in a similar way, being therefore difficult to 
distinguish their influences separately, which yields to poor estimations. 

In Fig. 2 and 3 are represented the sensitivity coefficients with the same material, with characteristics and conditions 
described by the reference values in Table 1, experiments 1, 2 and 3, with respect to Lu , Pn , Ko , qBi  and mBi . It 

must be said that the heat and mass Biot numbers depend on the width of the material and that the Pn  and Ko  
numbers depend on the dry air temperature, so they were calculated accordingly. 

It must be observed that the sensitivity coefficients depend in general on the values of the unknowns we want to 
determine, e.g. qBi  and mBi . Therefore, they could be calculated only after we solve the inverse problem, and then it 

may be too late to find out that the sensitivity to a particular unknown is to small or that there is a correlation of that 
unknown with another one we are trying to estimate simultaneously. Nonetheless, we may use reference values for the 
unknowns and then we may perform the sensitivity analysis. In the present analysis we use the values presented in 
Table 1. 

 

Figure 2 – Sensitivity coefficients for Lu , Pn , Ko , qBi  and mBi  for experiments 1 and 2 

Figure 3 – Sensitivity coefficients for Lu , Pn , Ko , qBi  and mBi  for experiment 3 

 
In the case of experiment 1, the sensitivity to qBi  is higher than all others and in the interval 150 << τ  it seems 

to be high enough to allow its estimation. The sensitivity to Lu , Ko  and mBi  in experiment 2 are uncorrelated in the 

range 156 << τ  and are high enough to allow the estimation. In experiments 1 and 2, 15=τ  correspond to 
hourst 5=  of real time for a sample with cml 1= . To estimate Pn  the best experiment is number 3 using 

15=fτ , that is hourst 30=  for a sample with cml 5.2= .  

 
3.3 Inverse Problem Solution 
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Here we are interested in using a deterministic method (LM-Levenberg-Marquardt), an stochastic method (SA-
Simulated Annealing) and a hybrid method (SA-LM) for the minimization of the cost functional given by Eq. (22). 
 
3.3.1 The Simulated Annealing Method (SA)  

 
Based on statistical mechanics reasoning, applied to a solidification problem, Metropolis (1953) introduced a simple 

algorithm that can be used to accomplish an efficient simulation of a system of atoms in equilibrium at a given 
temperature. In each step of the algorithm a small random displacement of an atom is performed and the variation of the 
energy ∆E is calculated. If ∆E<0 the displacement is accepted, and the configuration with the displaced atom is used as 
the starting point for the next step. In the case of ∆E>0, the new configuration can be accepted according to Boltzmann 
probability 
 

( ) ( )TkEEP B/exp ∆−=∆  (24) 

 
A uniformly distributed random number p in the interval [0,1] is calculated and compared with P(∆E). Metropolis 

criterion establishes that the new configuration is accepted if p<P(∆E), otherwise it is rejected and the previous 
configuration is used again as a starting point. 

Using the objective function ( )PS
�

, given by Eq. (22), in place of energy and defining configurations by a set of 

variables { } pi NiP ,.2,1, = , where Np represents the number of unknowns we want to estimate, the Metropolis 

procedure generates a collection of configurations of a given optimization problem at some temperature T. This 
temperature is simply a control parameter. The simulated annealing process consists of first “melting” the system being 
optimized at a high “temperature”, then lowering the “temperature” until the system “freezes” and no further change 
occurs. 

The main control parameters of the algorithm implemented (“cooling procedure”) are the initial “temperature”, 0T , 

the cooling rate, tr , number of steps performed through all elements of vector P
�

, sN , number of times the procedure 

is repeated before the “temperature” is reduced, tN , and the number of points of minimum (one for each temperature) 

that are compared and used as stopping criterion if they all agree with a tolerance ε , εN . For more details see 

references  (Goffe et al., 1994; Silva Neto and Soeiro, 2003; Metropolis et al., 1953; Silva Neto and Soeiro, 2002). 
 
3.3.2 The Levenberg-Marquardt Method (LM) 

 
The Levenberg-Marquardt is a deterministic local optimizer method based on the gradient. In order to minimize the 

functional S we first write 
 

( ) 0        0T TdS d
F F J F

dP dP
= = → =
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� �  

(25) 

 
where J  is the Jacobian matrix, with the elements  spps PJ ∂∂∂∂∂∂∂∂==== 1θ   being  Mp ,...2,1= , and pNs ,...2,1= . 

Observe that the elements of the Jacobian matrix are related to the scaled sensitivity coefficients presented in section 
3.2. 

Using a Taylor’s expansion and keeping only the terms up to the first order, 
 

(((( )))) (((( )))) PJPFPPF
�����

∆∆ ++++≅≅≅≅++++  (26) 

Introducing the above expansion in Eq. (25) results 

 

(((( ))))PFJPJJ TT
���

−−−−====∆  (27) 

 

In the Levenberg-Marquardt method it is added to the diagonal of matrix JJ T  a damping λn factor to help to 
achieve convergence (Marquardt, 1963). 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004, Paper CIT04-0598 

Equation (27) is written in a more convenient form to be used in the iterative procedure, 
 

( )[ ] ( ) ( )nTnnnTnn PFJIJJP
���� 1−

+−=∆ λ  
(28) 

 

where I
�

 is the identity matrix and n  is the iteration counter 

The iterative procedure starts with an estimate for the unknown parameters, 0P
�

, being new estimates obtained with 
nnn PPP

���
∆+=+1 , while the corrections nP

�
∆ are calculated with Eq. (28). This iterative procedure is continued until 

a convergence criterion such as 
 

,       1,  2, ,n n
k k pP P n Nε∆ < = �  (29) 

 

is satisfied, where ε  is a small number, e.g. 510− . 
The elements of the Jacobian matrix, as well as the right side term of Eq. (8), are calculated at each iteration, using 

the solution of the problem with the estimates for the unknowns obtained in the previous iteration. 
 
3.3.3 Combination of the Gradient Based Local Optimizer (LM) and the Stochastic Global Optimizer (SA) 

 
Due to the complexity of design space if convergence is achieved with a gradient based method it may in fact lead to 

a local minimum. Therefore, global optimization methods are required in order to reach the global minimum. The main 
disadvantage of these methods is that the number of function evaluations is high, becoming sometimes prohibitive from 
the computational point of view (Silva Neto and Soeiro, 2003; Metropolis et al., 1953; Silva Neto and Soeiro, 2002). 

Trying to keep the best feature of each method, we have combined the SA and LM methods (SA-LM). We allow the 
stochastic method to run for a while, say 15 minutes corresponding to 1000 evaluations, obtaining quite quickly an 
initial guess for the LM. We then run the LM, reaching within a few iterations a point of minimum. After that we run 
again the SA. If the same solution is reached, it is likely that a global minimum was reached, and the iterative procedure 
is interrupted. If a different solution is obtained it means that the previous one was a local minimum. In that case we run 
again the LM and SA until the global minimum is reached. 
 
3.4 Confidence bounds 

The confidence bounds to the estimates nP
�

 are calculated using the procedure developed by Gallant (1987) 
 

[ ]{ } 211
diag

−= JJ T
P

σσ �  
(30) 

 
Assuming a normal distribution on the experimental data error, and 99 % of confidence, the limits of the confidence 
bounds to the estimates sP , Ms ,...,2,1= , are calculated by Flach and Özisik (1989) as, 

 
( ) MsPP PssPss ,..,2,1, 576,2, 576,2 =+− σσ  (31) 

 
 
4. The computer codes 
 

The Simulated Annealing code used in this work is the same used in “Global Optimization of Statistical Functions 
with Simulated Annealing” by Goffe et al., 1994, that was coded in Fortran. The direct problem solver was coded in 
Delphi as a DLL function that is called from the Fortran routine each time it is needed. Basically the Fortran routine 
calls the Delphi DLL function passing the tentative values for parameters we want to estimate. The Delphi DLL routine 
uses the parameters to solve the direct problem, read values of the experimental data from an ASCII file, calculates the 
value of the cost function S, given by Eq. (22), and finally returns the value of the cost function to the Fortran routine. 

The routine used for the Levenberg-Marquardt method was fully implemented in Delphi by Lugon and Silva Neto, 
2003. 
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5. Numerical Results and Discussion 
 
5.1 Synthetic data 

As real data were not available we have generated synthetic data with 
 

1 , 1, 2,...,meas exacti i
Y e i Mθ σ= + =  (32) 

 
where e is a random number and σ  is the standard deviation of measurement errors. 
 
5.2 Test case results 

 
Although the Simulated Annealing method is independent of the gradient, to keep the compatibility with the 

Levenberg-Marquardt method that is based in the gradient, we used data for which the sensitivity is the highest (see 
section 3.2). So, we have used of temperature measures obtained from experiment 2, considering just one temperature 

sensor located at 0=X , acquiring data starting at 0.00 =τ , at every interval 15.0=∆τ , up to the final time of 

observation 15=fτ . In this particular physical case, the drying of wood (Luikov, A.V. and Mikhailov, Y.A, 1965), 

such dimensionless time corresponds to 5 hours of experiment, taking measurements in a frequency of  every 3 minutes.  
In order to perform the validation of the methodology we have solved the inverse problem with noiseless data, i.e. 

0=σ  in Eq. (32). Both heat and mass transfer Biot numbers were simultaneously estimated and the results obtained 
are shown in Table 2 (test cases 1 and 4).  

Initial guesses were made with a deviation up to 50% with respect to the exact values. 
To solve a more realistic problem we considered noisy data, i.e. we used synthetic data with 25.0=σ  and 

62.0=σ  resulting in approximately 2% and 5% of measurement error respectively. The results obtained are also 
shown in Table 2 (test cases 2, 3, 5 and 6). 

Observe that LM presented no difficult at all to estimate the parameters, both with and without error in data. No 
problem is noticed when we change the initial guess.  
 
Table 2 – Test case results using Levenberg-Marquardt method 

 % error Inform. 
qBi  mBi  Time 

Initial Guess 0.300 1.250 1 0% 
Result 0.340 1.140 

2 min. 

Initial Guess 0.300 1.250 2 2% 
Result 0.339 1.140 

2 min. 

Initial Guess 0.300 1.250 3 5% 
Result 0.324 1.196 

2 min. 

Initial Guess 0.170 1.710 4 
 

0% 
 Result 0.340 1.140 

2 min. 

Initial Guess 0.170 1.710 5 2% 
Result 0.339 1.140 

2 min. 

Initial Guess 0.170 1.710 6 5% 
Result 0.332 1.184 

2 min. 

Exact values: 340.0=qBi  and 140.1=mBi  

 
But in the real case, we do not know the material properties, so we can not fix the dimensionless numbers of Luikov, 

Possnov and Kossovitch ( Lu , Pn  and Ko ). In Lugon and Silva Neto, 2003 we successfully estimated Lu , Pn  and 
Ko  using an hybrid SA-LM method.. The association of SA and LM proved to be very effective, the global minimum 
was found within a reasonable computation time and accuracy. So now we study a little further this possibility, applying 
again an hybrid SA-LM method, to estimate Lu , Pn , Ko , qBi  and mBi . 

First we run the SA method using data from experiment 2 for estimating Lu , Pn  , Ko , qBi  and mBi .  These 

estimates are called SAZ
�

, which are used as the initial guess for the LM method, i.e. SAZZ
LM

��
=0 . The LM method is 
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used first taking data from experiment 1 for estimating qBi , then using data from experiment 2 for estimating Lu , 

Ko  and mBi , then finally with data from experiment 3 to estimate Pn . In all experiment we used 15=fτ . Only 5 

iterations of each LM method are needed. We repeated the procedure until a convergence criteria is achieved, i.e. 

LMSA ZZ
��

= . Therefore, this is probably a good estimate to the global minimum. In Fig. 2 we have a diagram 

describing this procedure. 
 
 

 
Fig 2 – Diagram describing the hybrid SA-LM estimation process 
 
 
It can be observed from Table 3 that both LM and SA methods isolated performed poorly. The LM does not succeed 

to simultaneously estimate the 5 parameters within a reasonable number of iterations, that is, within a reasonable time, 
even when no error is present in the data and with initial guess near the exact values, see test cases 1-3 in Table 3. The 
SA needs a large number of function evaluations, therefore requires a great computational effort ( see test case 4). 
 
 
Table 3 – Test case results using SA, LM and SA-LM. 

Run SA using data from experiment 2 
to estimate 

Lu , Pn  , Ko , qBi  and mBi  

Run LM using data from experiment 1 
and previous results as initial guesses 

to estimate qBi  

Run LM using data from experiment 2 
and previous results as initial guesses 

to estimate Lu , Ko  and qBi  

Run LM using data from experiment 3 
and previous results as initial guesses 

to estimate Pn  

Run SA using data from experiment 2 
to estimate 

Lu , Pn  , Ko , qBi  and mBi  

Convergence? 

END 

yes 

no 
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 Method % 
error 

Information Lu  Pn  Ko  qBi  mBi  Time and 
Iterations 

Guess 0.0040 0.0750 195 0.170 1.710 1 LM – experiment 2 0% 
Result 0.0056 0.0770 267 0.400 2.730 

4 min. 
5 iterations 

Guess 0.0040 0.0750 195 0.170 1.710 2 
 

LM – experiment 2 
 

2% 
 Result 0.0054 0.0714 245 0.419 3.012 

3 min. 
5 iterations 

Guess 0.0070 0.0550 350 0.300 1.250 3 LM – experiment 2 2% 
Result 0.0076 0/0719 359 0.341 1.289 

3 min. 
5 iterations 

Guess 0.0040 0.0750 195 0.170 1.710 4 SA – experiment 2 
20.000 eval. 

2% 
Result 0.0082 0.0446 380 0.346 1.150 

336 min. 

Guess 0.0040 0.0750 195 0.170 1.710 
0
LMZ
�

 0.0078 0.0620 316 0.354 1.500 
5 SA-LM 

SA - experiment 2 
(1.000 eval. SA) 

LM – experiment 1,2 and 3 

2% 

Result 0.0078 0.0568 392 0.336 1.140 

 
35 min. 

Exact values: 008.0=Lu , 05.0=Pn , 390=Ko , 340.0=qBi  and  

 
The confidence bounds, calculated with the procedure developed by Gallant in test case 5 (section 3.4), are shown in 

Table 4. We observe that the estimated values are near the exact values and within the confidence bounds. 
 
Table 4 – Confidence bounds calculated for test case 5 

 
sP estimate sP min sP  max sP  exact 

Lu  0.0078 0.0076 0.0080 0.0080 

Pn  0.0568 0.0500 0.0636 0.0500 

Ko  392 389 395 390 

qBi  0.336 0.332 0.340 0.340 

mBi  1.140 0.905 1.375 1.140 

 
6. Conclusions 

 
The use of the SA method is effective in avoiding local minima but requires a great computational effort and did not 

achieve the global minimum with the desired accuracy. The LM did not work even for initial guesses near the global 
minimum and with no error in the data within a reasonable number of iterations, that is a reasonable time. 

So, each method separately performed poorly, but the hybrid combination considered (SA-LM) yielded satisfactory 
results.  
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