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Abstract. The objective of the present work is to report preliminary results on the investigation being made on heating crops inside 
greenhouses. The real problem involves Convective and Radiation Heat Transfer in presence of participating gases, a much 
complex situation that precludes closed  form solutions.  The analysis presented here consider pure Radiative transfer in presence of 
a transparent gas, a situation that has an analytical solution fully discussed herein, but also in presence of a semi transparent gas, a 
situation studied numerically using a CFD numerical package.   Results indicate clearly that in both cases finding a tube position 
and its diameter is straight forward provided the Newton´s method is used.  However, due to the existance of multiple solutions, the 
optimization search implemented was able to find an optimum solution but also indicated numerical problems due to a very ill 
conditioned matrix, requiring a different algorithm, currently under investigation.    Furthermore, the results so far obtained for the 
participanting gas indicate that tube location and sizing are clearly affected by the nature of the gas and its effects need to be taken 
under consideration provided  an accurate analysis of the problem is needed..   
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1. Introduction  
 

Due to the ever increasing fuel and heat production costs coupled to gradually more stringent environmental 
restrictions, many efficiency analyses in mechanical systems have been developed.   Among others, thermal systems 
have been receiving greater attention lately perhaps due to their widespread applications (Boehm, 1987).   In many 
cases, however, only approximated analyses are possible, as the physics underlying the process is not fully understood 
due to their inherent complexity.  Nevertheless, interesting optimization problems have been introduced in which 
objective functions based on many arguments such as maximum (or minimum) temperatures, local heat fluxes, and 
entropy generated (Bejan, 1982, Bejan, 1988 and Braga, 2002) are studied.    Most of these optimization studies dealt 
mainly with conductive-convective systems, neglecting thermal radiation for many different reasons.  However, 
experience indicates (Siegel and Howell, 2002) that radiative heat fluxes are often of the same order as natural 
convection fluxes, besides being the most important heat transfer mechanism on high temperature devices. Due to 
modern engineering technology and the long known fact that thermal efficiency increases with temperature, analysis of 
such situations are becoming gradually more important and more sophisticated studies are becoming necessary.  

One of the many areas in which radiative heat transfer is relevant is on greenhouse thermal designs, in which tubes 
are used in order to keep the crop at the desired temperature levels.    Recently, Teitel & Tanny (1998) analyzed a very 
simplistic model for a greenhouse and concluded that the heating pipes should be installed as close as possible to the 
crop.   Unfortunately, many simplifications were introduced on their investigation.  For instance, their study neglected 
the radiation blocking coming from the crops toward the pipes and other surfaces (resulting on a very stringent criteria 
for tube sizing), the likely solar heating occurring mostly over one of the surfaces, the influence of gas participation on 
the radiation heat transfer, and the convective heat transfer.    This paper addresses most of such previously neglected 
effects but it is focused on radiative heat transfer.  On a coming article the combined radiation + natural convection 
heating on the greenhouse will be fully studied.     The main objectives of the present paper are to introduce a deeper 
analysis of the influence of Radiative Heat Transfer in the problem of increasing efficency on greenhouses, considering 
not only the cost of the fuel needed to heat the ambient as well as the maximum heat fluxes that the crop may take to 
avoid surface burning, included herein as restrictions to the optimization procedure.   In the near future, the unsteady 
analysis may also be considered.    
  
2. Physical Model 
 

Consider a rectangular greenhouse such as the one displayed on Fig. 1.  Following Teitel & Tanny (1998), the 
aspect ratio may shift from 1 (for roses) to 3 (for tomatoes).  Both cases are analyzed here.   At this stage, the 
enclosure is considered to be infinitely long.  Surfaces 2 (left) and 4 (right) simulate the crop.  The heating pipe, of 
diameter D, is located at a position defined as (x, y).   Depending on the specific case to be considered later on, some or 
all of such variables are to be estimated following the current analysis.     Instead of modelling all surfaces as black 
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bodies as done by Teitel & Tanny (1998), the present work uses the gray body approximation (although a better model 
could be used as done by Braga, 2002.  The lack of good spectral data on the crop emissivity turns this to be a not 
important feature). Results shown here were obtained considering that all plane surfaces have the same emissivity while 
the tube emissivity is chosen to be a design parameter, although always smaller than the others. As it is known from the 
literature (e.g. Siegel and Howell, 2002), the emissivities for nonconductors are usually higher than for conductors.  The 
temperatures chosen are T1 = 293 K = T2 = T4 and T3 (the ambient) = 283 K.  The tube temperature is chosen to be 
equal to 358 K.  As already mentioned, the unsteady analysis to be made will drop such somewhat unreal specifications.    
External radiation (coming from the Sun, for instance) reaches the greenhouse at a specified angle.  For simplicity, in 
the present work, surface 3 is a virtual one, although it could be modified to be a physical one, such as a glass panel, for 
instance.  

As it is well known, both the radiative and the convective heat transfer depend on physical parameters such as the 
temperatures, the thermal properties, but also on the geometry.   Hot fluid (water, for instance) being pumped 
throughout the tube heats the greenhouse walls directly by radiation and indirectly by convection.     As previously 
mentioned, the present work deals only with radiation and the geometric aspects are handled using configuration factors 
for diffuse surfaces (specular surfaces could also be handled, as done by Braga, 2002 but those are simply not feasible 
for practical greenhouses).     This is discussed next.  

 

 
 

Figure 1. Greenhouse Geometry 
 

3. Radiative Geometric Configuration Factors   
 

Configuration factors take care of the relative geometry of all surfaces involved in the balance of energy, that is, the 
First Law of Thermodynamics.  In the current situation, a rectangular cavity, most of such factors are found in standard 
heat transfer books but not those associated to the tube surface.   A careful analysis of Fig. 1 indicates that there are two 
particular tube locations to be considered.  In the first one, the tube is located to the left of the cavity diagonal linking 
the corner of surfaces 2 and 3 and the corner of surfaces 1 and 4.  This region will be named as region A. In the second, 
the tube is located to the right of the same diagonal, region B.  If the heating tube is located in region A, clearly it will 
not affect  the radiative heat exchange between surfaces 3 and 4, but  it will definitely alter the exchange between 
surfaces 1 and 2.    

Before proceeding, it is instructive to notice that the configuration factor between the pipe and surface 1 (or 2, for 
that matter) is found in the literature (see, for instance Siegel & Howell, 2002).  However, the configuration factor 
between 1 and 2 in presence of the tube in a location such as A was not found, even under the assumption of a very long 
enclosure, the situation considered herein, and that is manageable using Hottel’s crossed-string method.   As this is the 
most critical geometrical issue in the present analysis, brief comments are due next. 

Suppose that the configuration factor from surface 1 (bottom surface) to surface 2 (left surface), named as , is  to 
be determined.  Drawing tangents to the tube, one obtains pseudo-surfaces such as 1’, 1”, 2’ and 2” as shown in Figure 
2.   Clearly, the length of surface 1, , is given by 

12F

1L 1' 1"L L+ .  Similarly, it may be seen that .  Such 
lengths most certainly depend on the tube location, indicated by the pair (x, y) in Fig. 1, the diameter, D, and the cavity 
aspect ratio and it is not difficulty to obtain such auxiliary lengths using simple planar geometry. 

2 2 'L L= + 2"L
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Figure 2.  Auxiliary Surfaces for Configuration Factors 
 

Using the reciprocity rule for the configuration factors, one may write: 
 
1" 1"2" 2" 2"1"L F L F=                                                                                                                                                             (1) 

 
in which  is given by Hottel´s crossed-string method (taking care of the arc along the pipe connecting the two 
tangent points as it may be seen in Fig. 2). 

1''2 ''F

 
1' 1' (2 ' 2") 1' 1'2 2 21'L F L F L F→ + = =                                                                                                                                           (2) 

 
In the above expression,  is given by Hottel´s crossed-string method.  Similarly, by the reciprocity rule it comes that: 21'F
 

1' 1'2 ' 2 ' 2 '1'L F L F=                                                                                                                                                               (3) 
 

in which  is given by Hottel´s crossed-string method.   Then by the configuration factors algebra (Braga, 2003): 2 '1'F
  

1'2" 1'2 1'2 'F F F= −                                                                                                                                                               (4) 
 

(1' 1") 2 '' 12 '' 1' 1'2 '' 1'' 1'' 2 ''F F (L F L F )+ → = = × + × 1/ L

F

1

                                                                                                                   (5) 
 

1 (1' 1'') 2 ' 1 12 ' 2 ' 2 '1L F L F L F+ → = =                                                                                                                                            (6) 
 

in which  is given by Hottel´s crossed-string method.  Finally, it may be seen that: 2'1F
 

(1' 1'') (2 ' 2 '') 12 12 '' 12 'F F F+ → + = = +                                                                                                                                           (7) 
 
A spreadsheet was prepared to handle all configuration factors (and is available freely upon request).  As it may be 
expected, the validity of all calculations was guaranteed using the summation rule: 
 

5

ij
j 1

F
=

=∑                                                                                                                                                                          (8) 

 
4. Mathematical modeling:  
 

Defining as usual the radiosity, , as the total radiant energy leaving a surface, herein considered as a gray diffuse 
one, 

J
bE  as the total, hemispherical emissive power of a black body, ε  as the total, hemispherical emissivity of a gray 
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surface, as the net radiation transfer from a surface which area is indicated by , and  is the external (i.e. from 
the sun) heat flux reaching the i-surface, the energy equation may be written as (e.g. Braga, 2003): 

Q A iH

+ =

i i(− −

J

Q

actual
Q

actual
Q

actu
Q
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in which summation goes from 1 to 5 (including the pipe surface).  The radiosities are obtained from:  
 

5

ij j i bi i
j 1

J 1 ) F J E (1 )Hε ε ε
=

= + −∑                                                                                                                           (10)  

  
As it may be noticed, Eq. (10) defines, for the current project, a set of 5 equations with 5 unknowns, defined by the 

radiosities .   For the problem under consideration, as all surface temperatures are specified, a set of linear equations 
are to be solved by standard methods.  More interesting situations could be those in which some heat fluxes are 
considered.  However, for a standard greenhouse, such situations have no practical meaning and were, therefore, 
disregarded.      

i

Once the radiosities are found, the heat flux at all surfaces may be calculated, using Eq (9).  In order to evaluate the 
effectiveness of the proposed thermal system in relation to others, a greenhouse thermal efficiency may be defined.  For 
the present considerations, efficiency is defined as the ratio between the total heat reaching both the left and the right 
crops and the total heat input into the cavity, that is, the sum of the energy transferred by the pipe to the external 
heating.  Clearly, other definitions are available but the one chosen here avoids larger than unity efficiencies and is 
directly affected by the thermal participants, if you will.   So,  
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             (11) 

 
Clearly, for any set of variables (x,y,D) a different solution wiil result to the system of equations defined by Eq. 

(10) and a corresponding greenhouse efficiency defined by Eq. (11) will be obtained.  In order to deal with a more 
interesting and realistic situation, the problem to be solved here is stated in terms of finding the solution of the 
mentioned problem that are able to satisfy the specified heat fluxes at both crops and the tube, that is, to some 
constraints.  Two set of problems were analyzed.  In the first one, a solution to the problem was sought. However, it was 
noticed that the problem would offer several different solutions, that is, it was observed that the restrictions were 
satisfied at essentially the practical level for several different tube positions and diameters.   Therefore, it was studied 
how to find the optimum solution, understood as the one indicating the highest possible efficiency.    This defines the 
second problem.   As it comes, both problems may be understood as standard Inverse Problems, the second one being 
also an optimization one.    They are discussed next.   
          
4.1  First Inverse Problem:  

 
Suppose one decides to use a tube for heating purposes and needs to find out where it should to be installed and 

which should be its size.   The most complete situation is when one desires to estimate a convenient tube location and 
diameter, defined by the pair (x,y) and the diameter D, that is, whenever three unknowns are to be determined.  In order 
to properly pose the problem, one may consider that the heat fluxes at both crops (i.e. surfaces 2 and 4, on Figure 1) are 
limited by some values and also that the heat flux from the pipe is set at some specified value (alternatively, a desired 
efficiency level could also be specified).  That is, the following restrictions are to be satisfied: 

 

2 2 max
Q= or 1 2 2actual max

R (x, y,D) Q Q 0= − =                       (12) 

 

4 4 max
Q= or 2 4 4actual max

R (x, y, D) Q Q 0= − =                                    (13) 

 
and at last,  
 

tube tubeal max
Q= or 3 tube tubeactual max

R (x, y, D) Q Q 0= − =                      (14) 

 
Having three unknowns (x and three equations, Newton´s method may be used in order to determine the solution.     
Although there are other options, results obtained for this first problem, to be presented in a later section, considered the 
use of equations (12) and/or (13) for most problems (for instance, for the situation in which there are only two 

, y, D)
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unknowns).  Equation (14) is used only for cases with three unknowns, for no specific reason (besides the fact that it is 
not one that can be easily implemented).   In many instances, the physical problem is symmetrical with respect to a 
vertical axis crossing the center of the greenhouse cavity (for example, whenever there is no external heating and both 
crops are similar). In such situation, the tube x-location is .     For conciseness, one may consider that 

 for the most general case.   For all cases studied, convergence was always smooth and was based on the 
following algorithm: 
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The solution for Eq. (14) is readily indicated as: 
 

 
o

o

X

F(X )
dX r

r

r r             (15) 

  
and it gives the increments for the next iteration.  Convergence is achieved using some convenient criteria ( 410−≈ ).  In 
many cases, non-unique solutions were obtained as it will be shown.  
 
4.2 Second Inverse Problem:   
 

As previously mentioned, the overall project aims at analyzing the more complete situation in which Radiation + 
Convection and the gas participation are all relevant.  Clearly, this is a much difficulty problem and, consequently, a 
more expensive one to be implemented and studied.    Having noticed the existance of non-unique solutions, it became 
important to investigate the possibility of finding a particular tube location and sizing in which maximum efficiency is 
attained, and externally imposed restrictions are conveniently handled.   Due to the computational costs involved, it 
became evident that the investigation should proceed with the simpler situation considered in the present paper and its 
analytical solution, even considering Natural Convection to be less important.   The analytical solution obtained for the 
pure radiative problem with a transparent medium, previously discussed, allowed a quicker investigation. The results 
are given below.  

In short, the second inverse problem one may be interested is the one in which it is sought to find the optimum 
(hopefully, maximum) value for Eq. (11) subjected to restrictions given by Eq. (12) and (13) but generically indicated 
as below: 

 
0=              (16) 

 
0=              (17) 

 
One way of solving such problem is through the use of Lagrangian multipliers, although there are other techniques.  

Being an exploratory investigation, it was decided to apply those multipliers. Introducing λ  and λ  as such 
parameters, the new objective function is now: 

1 2

 
1 2(x, y, D) g(x, y, D) h(x, y,D)η λ λ= + +          (18) 

 
Both  and  are taken to be held constant during the various steps of any search but gradually reduced towards 
zero, tentatively, after a minimum is found.    Due to the specifics of the current problem, ill conditioned is often found, 
sometimes precluding achieving any solution.    Experience collected herein indicates that an adequate search procedure 
is obtained provided the parameters and  are somehow related.  Among other options, results shown here were 
obtained with: 

2λ

1λ 2λ

 
D)
D)

              (19)

   

1λ

In many instances, it was noticed that whenever initial values of g(x,y,D) and h(x,y,D) were quite large, due to a 
poor location and/or tube sizing estimates, the optimization procedure suffered from oscillations.   Better results were 
always achieved whenever   were select in order that the modified objective function indicated by Eq. (18) and the 
original one, indicated by Eq. (11), would not be significantly different.  As the problem under investigation may have 

1λ
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up to three unknowns (although only results for up to two simultaneous independent variables will be presented herein), 
for the most general situation, the 3x3 Hessian matrix is to be calculated: 

 
2 2 2

2
1 2 1 31

2 2 2

2
2 2 2 32

2 2 2

2
1 3 2 3 3

F(X) F(X) F(X)
X X X XX

F(X) F(X) F(X)H(X)
X X X XX

F(X) F(X) F(X)
X X X X X

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂∂ 
 ∂ ∂ ∂=
∂ ∂ ∂ ∂∂ 

 ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ 

          (20) 

 
The numerical discretization of the second order derivatives are done following standard procedures (Abramowitz 

& Stegun, 1970).  As the problem is strongly non-linear, its solution must be found by an iterative procedure.  At 
iteration i+1, the new estimates are obtained from Newton’s method: 
 

1i 1 i i iX X H(X ) F(X )
−+  = − ∇              (21) 

 
in which∇  is the gradient of F at XiF(X ) i-1.   As it is known, solution to Eq (21) is not always smooth as a near singular 
Hessian matrix can result in large changes in the predicted values, resulting on a unstable numerical procedure.   
 
4.3  Semi Transparent Medium 

 
Energy transfer between surfaces is significantly altered in presence of semi transparent medium, due to absorption, 

emission and scattering of radiation (Siegel & Howell, 2002). Due to non homogeneous air condition inside 
greenhouses, resulting from the mixture of what is generally called greenhouse gases, powder, small particles and 
others, it was decided to investigate how the tube size and location would be affected by changes in the radiation 
intensity in the medium. For simplicity, a non-scattering medium was considered, although this may be corrected.    Due 
to the objectives of the present investigation, it was decided to use a specialized CFD package named FLUENT, 
available at the Mechanical Engineering Department of PUC-Rio, to solve the Radiative Transfer Equation.  In spite of 
the fact that other methods are available, it was decided to use the method of discrete ordinates, MDO, mainly because 
it could handle both the transparent medium case (in which an analytical solution was available, as indicated by the 
previous discussion, allowing assessment and numerical error control) and the translucent medium.   

In essence, MDO substitute the Radiative Transfer Equation by a set of equations for an intensity of radiation 
angularly averaged over a finite number of ordinate directions.   Integrals over a range of angles are replaced by sums 
over those ordinate directions.    The results to be shown were obtained considering a total of 576 directions (12 theta 
divisions times 12 Phi divisions times 4, due to symmetry), a number sufficiently small to give results close to the 
analytical ones for the case of transparent media, matching engineering level of accuracy and cost of computation.   The 
triangular mesh used for the present simulations handled 150 points along the vertical walls, 30 points along the 
horizontal walls and 20 points along the tube surface.  Such numbers allowed good agreement to the analytical results.  
Details of the accuracy results will be available elsewhere.    The results were obtained considering the absortion 
coefficient for the gas was considered to be equal to 0.2, although results with higher values were also obtained.   
 
5.  Solution Procedure 
 

The solution procedure chosen consisted of the following steps: 
 
i. Direct Problem (or specification of a desired goal).   In order to assess and evaluate the solution method 

proposed herein, it was necessary to find the solution of a direct (to oppose to the inverse) problem.  The 
direct problem starts when a specific set of data is chosen (from now on, named the reference solution), 
that is, the location indicated by the pair (x.y) and the tube sizing, indicated by D is selected.  Surface 
emissivities, greenhouse aspect ratio and temperature levels are also specified and kept constant 
throughout the entire simulation.   For the chosen set of independent variables (either one or two, chosen 
from the three possible options: x, y and D), the thermal efficiency, indicated by Eq. (11), is determined 
from the solution of Eqs. (9) and (10).  Among other data, the desired heat exchanged at each crop (and, 
eventually, at the tube) are selected.   

ii. Inverse Problem.   After the selection of an initial set of estimates, roughly 50-100% off the correct values,  
the procedure is followed until some adequate convergence criteria is achievable.  At each step, either the 
Jacobian that appears in Eq. (15) (first problem) or the Hessian matrix given by Eq. (20) (second problem) 
is computed and from that the new estimates are obtained.  No convergence difficulty was observed for the 
first problem.  For the second problem, a suitable set of values for 1λ and 2λ  are chosen.   
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iii. If the convergence criterion is attended, the procedure for the first problem is stopped.  For the second 
problem, after convergence, a new set of values for 1λ and 2λ  is determined and step ii is re-initialized.  If 
the increment is considered to be small enough, the global iterative search is stopped.    In many 
instances, no convergence was achievable, most likely due to the ill conditioning of the Hessian matrix.   

i 1 iX X+ −

iv. For both problems, results are compared to the “correct” set of data (specified for the direct problem) for 
assessment and error control. 

 
Results for all problems discussed herein are shown next.   

 
6.  Results 
 

In this paper, it was decided to indicate two sets of results: one neglecting the influence of external heating, and the 
other considering it.  Again, three cavity aspect ratios were investigated: 5:1, 3:1 and 1:1.     Some of the results are 
given in the tables below.   
 
6.1  First Problem 

 
As previously mentioned, in this first problem, the goal was to obtain the right solution for the variables in order to 

meet some criteria.    Table 1 below indicates some of the available results.   The first column indicates the set of 
unknown variables chosen from the possible set (x - y - D).  For instance, the first case, defined by (101) indicates that 
the first (x) and the last (D) variables were set free, while the second (y) was fixed (i.e. was not a variable) during that 
particular situation. All but the last two cases shown in such table were obtained considering external heating equal to 
zero.   
 

Table 1.  Results for First Problem.  Tube Emissivity = 0,8, others = 1,0; Aspect Ratio = 5:1 

 
 

As it may be observed, these results are quite good, indicating that the numerical methodology developed is able to 
handle properly all situations tested.    It may be also seen that multiple solutions are available.  Consider, for instance, 
the results indicated in the second and the third lines.   Starting from very different initial estimates, the numerical 
procedure finds two sets of results, both meeting the imposed restrictions and having the same thermal efficiency (to the 
significant digits shown here).    Something similar is shown in the 5th and the 6th cases studied.   

Table 2 indicates some of the results obtained for a different aspect ratio (3:1) and considering that the emissivity of 
the greenhouse walls are equal to 0,8 and the tube emissivity equal to 0,6.  The convergence rate is again quite smooth. 

 

Table 1.  Results for First Problem.  Tube Emissivity = 0,6, others = 0,8; Aspect Ratio = 3:1 

 

 
 

Next, it was decided to investigate the effect of the tube emissivity and the greenhouse aspect ratio in the tube 
location.  The cavity walls emissivities were all taken equal to 0,8 and no external heating were considered.  In order to 
proceed with the analysis, the following set of restrictions was taken: 
 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004 – Paper CIT04-0587 
 

2
1

2
2

2
tube

Q 20 W / m

Q 20 W / m

Q 100 W / m

= −

= −

=

           (22) 

 
In this situation, the greenhouse efficiency is always equal to 40%, as given by Eq. (11).  Due to the symmetry of 

the problem in this situation, the horizontal tube location was always equal to 0,5, that is, the tube is to be installed at 
the cavity center line.  Table 3 indicates the results. 
 

Table 3.  Results for First Problem.  Tube y-position and diameter 

 
 

As it may be seen, no solution was obtained for a square greenhouse.  Furthermore, it should be observed how the 
tube y-location changes significantly depending on the aspect ratio (a reasonable effect) but not the tube diameter.   For 
a give aspect ratio, the y-location does not change as much as the tube diameter as functions of the tube emissivity.  
This is a much to be expected result as long as the tube heat flux is specified.  Provided other variables and parameters 
are fixed, the tube heat flux is strongly dependent on the surface area (i.e. the diameter) and the tube emissivity. As the 
tube surface temperature is set at some specified value it may be concluded that the larger the area the smaller the 
emissivity to attend the prescribed condition.  This explains the trend observed on the data shown.  
 
6.2  Second Problem 
 

During the early attempts to study this problem, it was noticed the possibility of multiple solutions depending on 
the physical and geometrical parameters.   Table 1 showed a few such cases.  Observing such situation, a search for the 
most efficient tube location and diameter was made using Lagrangian multipliers, as previously mentioned.   Table 4 
gives one of the optimum solutions found for a group of parameters.  In this table, the column “Reference” indicates the 
set of parameters used to define the direct problem (step i of the solution procedure).  The third column indicates the 
initial data and the last column indicates the optimum results.  As it is shown, the greenhouse thermal efficiency is not 
that different from one to the other, at least for this case.  However, the optimization procedure was successful.    

It must be pointed out that in all cases studied, the Hessian matrix was always ill conditioned.  In order to avoid 
handling such matrices, a new search algorithm based on genetic algorithms (Davalos & Rubinsky, 1996) is being 
developed.  As it is known, such algorithms are adaptive search procedures loosely based on the Darwinian notion of 
evolution and have a definitely advantage over those based on the Hessian matrix as they do not require singular or near 
singular matrix inversions.  The present authors hope to present a more robust search algorithm in a sequel to this 
article.   
 

Table 4. Results for the greenhouse restrictive optimization procedure.   
Surface Emissivities = 1,0; Aspect Ratio = 5:1, Case of Study 011.  

 Initial 1λ = 1/256, Final 1λ =1/1450 
 

 
 

6. 3 Semi Transparent Medium 
 
Following the current investigation, it was desired to study the influence of a semi transparent medium on the 

physics of the problem.   This part of the study was performed using the computational package FLUENT, a very 
powerful simulation for CFD problems.   Details of this study will be shown elsewhere but it is imperative to show 
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some of the results and effects.    Table 5 displays the comparative results for the y-location of a tube inside a 5:1 
greenhouse cavity in presence of a transparent and a semi transparent medium.  Figure 3 displays the temperature 
profile inside the semi-transparent gas.  The shift in the tube location is clearly indicated by comparison between data 
on that table and it is visualized in that figure.   The tube location along the y-coordinate was found after the iterative 
procedure indicated on step ii at the Solution Procedure section above (x location and tube diameter were considered as 
constants, to reduce the computational costs).   No attempt to find the optimum solution was considered.  
 

Table 5:  Numerical Estimative of the tube y-location.  
Results for a transparent (a = 0) and a semi-transparent (a = 0,2) medium. 

 

 
 
 

 
 

Figure 3.  Tube location and Temperature Profile for the Semi Transparent Case 
 
7.  Concluding Remarks 
 
The present paper describes the work under development to fully understand the heat transfer inside a greenhouse 
thermal cavity used to grow different crops.   The most complete problem involves Radiation in presence of a semi 
transparent gas and Convection Heat Transfer, a situation that precludes a throughfull optimization analysis.   
Therefore, it was decided to investigate initially the situation of a pure Radiative Cavity with a transparent medium 
inside.  For this situation, an analytical solution was obtained and implemented on a spreadsheet.  This allowed a 
somewhat extensive investigation on the effects of several parameters, either physical such as surface emissivities, 
aspect ratios, temperature levels or numerical, associated to the optimization search (such as the Lagrangian 
multipliers).    In order to prepare for a more complete investigation, the study turned to the numerical CFD package, 
FLUENT, that allowed the analysis of a participant gas.  After an extensive numerical investigation on mesh sizes, 
convergent criterion, optimum number of directions for the Method of Discrete Ordinates and others, a good agreement 
between analytical and numerical results were obtained.  After that, the investigation on the effects of the participant 
medium was conducted.  The results so far obtained indicate that the gas may affect considerably the locatization of the 
tube and its diameter.    Further investigation on these effects is currently being conducted, coupled to the analysis of 
the simultaneous Convective Heat Transfer.     It is hoped that the combined effects will render the simulation more 
efficient and enlighten the physics of the heat transfer mechanisms inside greenhouses.    Finally, a new optimization 
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procedure based on Genetic Algorithms for instance, seems to be necessary to pursue the search for the optimum 
solution.  
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