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Abstract. Detailed numerical computations for steady state laminar natural convection within a square cavity filled by 
periodic square obstacles are numerically analyzed using the finite volume method in a generalized coordinate system. 
The square cavity composed by several obstacles was taken as the calculation domain to simulate a porous square 
cavity of regular arrangement. Governing equations are written in terms of primitive variables and are recast into a 
general form. The average Nusselt number at the hot wall obtained from the microscopic numerical results for several 
Darcy numbers are than compared with those obtained from the macroscopic model. Thus, a correlation is proposed 
to correct the average Nusselt number given by the macroscopic model with respect to the clear square cavity with 
several obstacles. Analyses of important environmental and engineering flows can benefit from the derivations herein 
and, ultimately, it is expected that additional research on this new subject be stimulated by the work here presented 
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1. Introduction  
 

The thermal convection in porous media has been studied extensively in recent years and has several applications in 
many fields of science, technology and environment. Heat exchangers , underground spread of pollutants, grain storage, 
food processing, geothermal systems, oil extraction, store of nuclear waste material, solar power collectors, optimal 
design of furnaces and solar collectors, crystal growth in liquids, packed-bed catalytic reactors, nuclear reactor safety, 
food processing and underground spread of pollutants are just some applications of this theme. The monographs of 
Nield & Bejan (1992) and Ingham & Pop (1998) fully document natural convection in porous media. 

Basically, modeling of macroscopic transport for incompressible flows in porous media has been based on the 
volume-average methodology for either heat (Hsu & Cheng (1990)) or mass transfer (Bear (1972),Whitaker 
(1966),Whitaker (1967)). If time fluctuations of the flow properties are also considered, in addition to spatial deviations, 
there are two possible methodologies to follow in order to obtain macroscopic equations: a) application of time-average 
operator followed by volume-averaging (Masuoka & Takatsu (1996), Kuwahara & Nakayama (1998), Nakayama & 
Kuwahara (1999)), or b) use of volume-averaging before time-averaging is applied (Lee & Howell (1987), Antohe & 
Lage (1997), Getachewa et al  (2000)). However, both sets of macroscopic mass transport equations are equivalent 
when examined under the recently established double decomposition concept (Pedras & de Lemos (2000), Pedras & de 
Lemos (2001a), Pedras & de Lemos (2001b), Pedras & de Lemos (2001c)). This methodology, initially developed for 
the flow variables, has been extended to heat transfer in porous media where both time fluctuations and spatial 
deviations were considered for velocity and temperature (Rocamora & de Lemos (2000)) and (De Lemos & Rocamora 
(2002)). A general classification of all proposed models for turbulent flow and heat transfer in porous media has been 
recently published (De Lemos & Pedras (2001)). Extension of the double-decomposition theory for treating turbulent 
natural convection, (De Lemos & Braga (2003)), and mass transfer, (De Lemos & Mesquita (2003)), in saturated rigid 
porous media has also been recently documented. 

The case of free convection in a rectangular cavity heated on a side and cooled at the opposing side is an important 
problem in thermal convection in porous media. Walker & Homsy (1978), Bejan (1979), Prasad & Kulacki (1984), 
Beckermann et al. (1986), Gross et al (1986) and Manole & Lage (1992) have contributed with some important results 
to this problem. 

The recent work of Baytas & Pop (1999), concerned a numerical study of the steady free convection flow in 
rectangular and oblique cavities filled with homogeneous porous media using a nonlinear axis transformation. The 
Darcy momentum and energy equations are solved numerically using the (ADI) method. 

In order to verify the reability of the macroscopic model to predict results for porous square cavities, this paper 
presents values for average Nusselt number at the hot wall obtained from the microscopic numerical results for several 
Darcy numbers and than compares with those obtained from the macroscopic model. Thus, a correlation is proposed to 
correct the macroscopic model in relation to the microscopic one. 
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Figure 1 – Geometry and grid under consideration 

 
2. Geometry And Boundary Conditions 
 

The problem considered is showed schematically in Fig. 1 and refers to an porous square cavity with width L=1 m 
completely filled with porous medium. The cavity is isothermally heated from the left, TH, and cooled from the 
opposing side, TC. The other two walls are insulated. The porous medium is considered to be rigid and satured by an 
incompressible fluid. The Ram is the dimensionless parameter used for porous media and it is defined as, 
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3. Governing Equations 
 

The equations used herein are fully developed in the work of Pedras & de Lemos (2001a), De Lemos & Rocamora 
(2002) and De Lemos & Braga (2003). 

Thus, for steady-state laminar natural convection, the macroscopic equations for continuity, momentum and 
temperature take the form: 
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where 
D

u is the Darcy velocity defined as i

D 〉〈= uu φ ,where i〉〈u  is the intrinsic velocity vector, p is the total 
pressure and µ is the dynamic viscosity. The βφ is the macroscopic thermal expansion coefficient. iT 〉〈  and Tref are the 
intrinsic and the reference temperatures respectively. Finally, cF is the Forchheimer coefficient. Its important to 
emphasize that when ∞→K  and 1=φ  the medium is interpreted as a clear medium. 
 
4. Numerical Method And Computational Details 
 

The numerical method employed for discretizing the governing equations is the control-volume approach with a 
generalized grid. A hybrid scheme, Upwind Differencing Scheme (UDS) and Central Differencing Scheme (CDS), is 
used for interpolating the convective fluxes. The well-established SIMPLE algorithm (Patankar  & Spalding (1972)) is 
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followed for handling the pressure-velocity coupling. Individual algebraic equation sets were solved by the SIP 
procedure of Stone (1968).  

The present results were performed with φ=0.84. The Prandtl number and the conductivity ratio between the solid 
and fluid phases are assumed to be equal to one. Runs for macroscopic laminar flow were performed with an 80x80 
control volumes in a stretched grid like shown in Fig. 1. Although not shown here, several runs were performed with 
others meshes in order to guarantee grid independence. These runs showed that the 80x80 CV´s stretched mesh is 
refined enough to capture the thin boundary layers that appear along the vertical surfaces giving a percent error in 
relation with other with 110x110 CV´s stretched mesh less than 1%. The convergence process is terminated when the 
residual error is less than 10-5. 
 
5. Results and discussion 
 

The main idea of this work is to submit the porous square cavity using the macroscopic model and the clear cavity 
with several obstacles using the clear medium formulation to the same conditions. It is expected that the two models 
could give the same average Nusselt number at the hot wall. But, this point will be shown later, the macroscopic model 
gives overall lower average Nusselt number values when compared with those obtained from the clear cavity with 
several obstacle. Thus a correlation is proposed in order to correct the macroscopic approach in relation to the clear one. 

Further, When other parameters, e.g., (Porosity, Prandtl number, conductivity ratio between the fluid and solid 
matrix) are fixed the available literature shows that for the non-Darcy region, (Merrikh & Mohamad (2002), Braga & de 
Lemos (2004)), fluid flow and heat transfer depend on the fluid Rayleigh number, Raf, and the Darcy number, Da 

In the work of Braga & de Lemos (2004) it was observed that for a fixed Ram the lower the permeability, the higher 
the average Nusselt number at the hot wall. It is evident that different combinations of Raf and Da yields different heat 
transfer results. The increasing of the fluid Rayleigh number increases the natural convection inside the enclosure. Since 
the Ram is fixed, a higher fluid Rayleigh number is associated with a less permeable media (i.e. lower Darcy number). 

The range of Darcy numbers analyzed varies from 14 10.3087,010.206,1 −− ≤≤ Da . The parameter β  is the 
controller parameter while the other parameters are kept fixed. Here, all calculations were made for Ram=104 and its 
evident that for different Darcy number there are different β  parameters to keep the Ram fixed at 104. Table (1) shows 
all values used in the calculations. 

Table 1 – Parameters used in the calculations 

 
Pr=1, 84.0=φ , Ram=104, 

fs
kk =1, g=10 [m/s2], 

f
ν =10-3 [m2/s], α =10-3 [m2/s], ρ =1 [kg/m3], cp=1 [k CkgJ o. ], 

TH=1 [°C], TC=0 [°C] 
Da ββ

φ
= [1/K] Dp [m] N=number of obstacles 

0,3087.10-1 0,0324 0,400 1 
0,7717.10-2 0,1295 0,200 4 
1,9290.10-3 0,5000 0,100 16 
0,4823.10-3 2,0734 0,050 64 
1,2060.10-4 8,2918 0,025 256 

 
Figure (3) shows the streamlines for a clear square cavity with several obstacles for Da ranging from 0,3087.10-1 to 

1,2060.10-4. Its clearly seen from the Fig. (3) that, the lower the permeability, the higher the intensity of the 
recirculation motion, as discussed in Merrikh & Mohamad (2002), Braga & de Lemos (2004) for the macroscopic 
model. Figure (3) also shows that, in comparison with those patterns from the macroscopic model, Figs. (4b, d, f, h), the 
higher the number of obstacles inside the clear cavity, the higher the agreement of the basic features of the flow 
between the two approaches, namely, the clear cavity filled with obstacles and the macroscopic model. In other words, 
the macroscopic model is more representative when the number of obstacles inside the clear cavity is higher, i.e., for 
lower permeability media. However, the overall values of the streamlines for the macroscopic model are lower when 
compared with those from the clear square cavity with several rods configuration. This point will be discussed later. 

Figure (2) shows the isotherms for a clear square cavity with several obstacles for Da ranging from 0.3087x10-1 to 
1.2060x10-4. Figure (2) shows that, the higher the number of obstacles the higher the stratification of the thermal field. 
This characteristic is also observed for the patterns of the macroscopic model, Fig (4a, c, e, g). It is also an indication of 
the increasing of the capacity of the macroscopic model in fairly representing a porous square cavity. 

Figure (4) shows the isotherms and streamlines for a porous square cavity using a macroscopic model for Da 
ranging from 0.7717x10-2 to 1.2060x10-4. Figures (4a, c, e, g) shows that the isotherms tends to stratify with the 
decreasing of the Da, i.e., the medium permeability. Figures (4a, c, e, g) shows, as discussed above, that the 
recirculation intensity also increases with the decrease of the medium permeability and this increasing is more 
pronounced near to the heated walls. 
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Figure (5) shows the behavior of the average Nusselt number at the hot wall for the two types of approaches here 
adopted, namely, the macroscopic model and the clear model with several obstacles. It is expected that if the two 
approaches were submitted to the same conditions, both approaches could be give the same average Nusselt number at 
the hot wall. However, its clearly seen from Fig. (5) that the overall values of average Nusselt number at the hot wall 
for the macroscopic model are lower than those obtained from the clear model with several obstacles. The macroscopic 
model fails in to predict correctly the average Nusselt number for this particular situation and a correlation is here 
proposed to correct the average Nusselt number from the macroscopic model with respect of those obtained from the 
clear model with several obstacles. The Nusselt number for the macroscopic model is calculated as, 

effmacro
khLNu = , 

where h is the heat transfer coefficient, L is the cavity side and 
fmicro

khLNu = . 
 
Thus, two curves are proposed to fit the points of the two approaches in Fig. (5); 

82738,2ln.26511,0 += βmicroNu  (4) 

43972,2ln.20142,0 +=
φ

βmacroNu  (5) 

 
           (a) 

 
              (b)      (c) 

 
             (d)      (e) 

Figure 2 - Isotherms for laminar natural convection within a clear square cavity with several obstacles for Ram=104 and 
φ =0.84; a) N=1, Da=0,3087.10-1, b) N=4, Da=0,7717.10-2, c) N=16, Da=1,9290.10-3, d) N=64, Da=0,4823.10-3, e) 

N=256, Da=1,2060.10-4. 
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Equation (4) refers to the clear cavity with several obstacles and Eq. (5) refers to the macroscopic model. 
Combining Eq. (4) and Eq.(5) one yields a correlation between 

φ
β  and β , given by: 

βββ
βφ

2.
1

c
c=  (6) 

where, c1β=6,8525 and c2β=1,3162. It is important to emphasize that this work is a preliminary study and the correlation 
given by Eq. (6) must be better defined in future studies. 

After that, new runs were performed for the macroscopic model with the corrected 
corr,φ

β . Table (2) shows the 
values of the corrected macroscopic average Nusselt number, macroscopic model Nusselt number and the clear model 
with several obstacles Nusselt number. 

 
           (a) 

 
              (b)      (c) 

 
             (d)      (e) 

Figure 3 – Streamlines, [m2/s], for laminar natural convection within a clear square cavity with several obstacles for 
Ram=104 and φ =0.84; a) N=1, Da=0,3087.10-1, b) N=4, Da=0,7717.10-2, c) N=16, Da=1,9290.10-3, d) N=64, 

Da=0,4823.10-3, e) N=256, Da=1,2060.10-4. 
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                (a)     (b) 

 
 

                (c)     (d) 

 
   (e)     (f) 

 
               (g)     (h) 

Figure 4 – Isotherms and streamlines, [m2/s], for laminar natural convection within a square cavity using a macroscopic 
model for Ram=104 and φ =0.84; a,b) Da=0,7717.10-2, c,d) Da=1,9290.10-3, e,f) Da=0,4823.10-3, g,h) Da=1,2060.10-4. 
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Table 2 – Comparison between the corrected macroscopic model average Nusselt numbers and the macroscopic model 
and clear model with several obstacles average Nusselt numbers. 

 
Da macroNu  microNu  corrmacroNu ,  

0,3087.10-1 5,5468 6,6309 7,1151 
0,7717.10-2 7,7477 9,8734 11,2048 
1,9290.10-3 10,3087 14,3620 16,7587 
0,4823.10-3 13,5155 21,5369 24,8839 
1,2060.10-4 16,9754 28,2167 35,5048 

 
According to Tab. (2), the overall values of the corrected average Nusselt number are higher than those obtained 

from the clear model with several obstacles. As mentioned above, this work is a preliminary study and the correlation 
proposed by Eq. (6) must be better defined in future studies. However, although the overall values of corrmacroNu ,  are 
higher than the microNu , the percentual error between them is lower than the percentual error with respect to the 
macroscopic model without correction. 
 
6. Conclusions 

 
This work deals with numerical computations for steady state laminar natural convection within a clear square 

cavity filled by periodic square obstacles are numerically analyzed using the finite volume method in a generalized 
coordinate system. The square cavity composed by obstacles was taken as the calculation domain to simulate a porous 
square cavity of regular arrangement. The average Nusselt numbers at the hot wall obtained from the microscopic 
numerical results for several Darcy numbers were than compared with those values obtained from the macroscopic 
model. Thus, a correlation was proposed to correct the average Nusselt number given by the macroscopic model in 
relation to the clear square cavity with several obstacles. As pointed out in the previous section, this work is a 
preliminary study and the correlation proposed by Eq. (6) must be better defined in future studies. Although the overall 
values of corrmacroNu ,  are higher than the microNu , the percentual error between them is lower than the percentual error with 
respect to the macroscopic model without correction. Analyses of important environmental and engineering flows can 
benefit from the derivations herein and, ultimately, it is expected that additional research on this new subject be 
stimulated by the work here presented 
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Figure 5 – Behavior of average Nusselt number at the hot wall for the two approaches under consideration. 
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