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Abstract. In this paper we present improved lumped-di®erential formulations for one-dimensional transient heat

conduction in multilayered composite media. Hermite approximations for integrals are used to obtain the average

temperatures and heat °uxes in each layer. Average temperatures calculated with improved lumped parameter

formulation agree well with reference ¯nite di®erence solutions. The proposed heat conduction models can be used

in fuel dynamics calculation for stability analysis of BWR, simpli¯ed model of PWR or real-time simulator of

nuclear power plants.
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1. Introduction

Transient heat transfer in multilayered composite plates or pipes is of great interest in a number of engineering
applications (de Monte, 2000). The use of composite media is necessary when the thermal and mechanical
properties of a single layer are not su±cient to ful¯l both thermal and mechanical requirements. Various methods
are available for the determination of the transient temperature distribution in multilayered composite media,
such as Laplace transformmethod (Carslaw and Jaeger, 1959), the orthogonal expansion technique (Mikhailov et
al., 1983), the Green's function approach (Haji-Sheikh and Beck, 1990), and ¯nite integral transform technique
(Yener and ÄOzi»sik, 1974).

From an engineering point of view, most of the analytical or numerical methods are not convenient to be used
because of the involved analytical work or numerical computation. In some engineering applications, simpli¯ed
methods to predict transient history of average temperatures in multilayer composite media are more e±cient
for the analysis of the system in study. The lumped approach has been widely used in a variety of thermal
engineering applications where a simpli¯ed formulation of transient heat conduction is sought. The classical
lumped parameter approach is in general restricted to problems with low to moderate temperature gradients,
typically with Biot number (Bi = hD=k) less than 0.1. In most engineering problems, the Biot number is much
higher. Cotta and Mikhailov (1997) proposed a systematic formalism to provide improved lumped parameter
formulation for steady and transient heat conduction problems based on Hermite approximation for integrals
that de¯ne averaged temperature and °uxes. Regis et al. (2000) have developed an improved lumped analysis
of transient heat conduction in a nuclear fuel rod which is represented by a two-region concentric cylinder. A
higher order lumped-di®erential formulation for the same heat transfer problem has been developed by Su and
Cotta (2001) and applied in a simpli¯ed model for light water reactor (LWR) thermohydraulic analysis. Su and
Cerqueira (2001) carried out numerical simulation of transient thermal events during warm-up and cool-down of
subsea oil and gas pipelines, using an improved lumped-di®erential formulation for the transient heat conduction
in multilayered composite pipes.

In this work, we present improved lumped-di®erential models for the analysis of transient heat conduction
in multilayered composite media in cartesian, cylindrical or spherical coordinate systems. The accuracy of the
lumped models is shown by comparison with numerical solutions of the distributed models of transient heat
conduction.
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2. Mathematical Formulation

We consider a composite medium consisting of M parallel layers in cardesian, cylindrical, or spherical
coordinates, as shown in Figure 1. The layers are labelled as 1 to M from the left to the right. Let x be the
coordinate perpendicular to the layers, xi(i = 1;2; :::;M) is its value at the left surface of each layer, and xM+1

is the value of x at the right surface of M-th layer. Each layer is considered as homogeneous, isotropic, and with
constant thermal properties, but di®erent from the adjacent layers. The thermal contact resistance between
adjacent i-th and (i + 1)-th layers at interface xi+1, i = 1; :::;M ¡ 1 is modelled by a constant interface heat
transfer coe±cient hi+1. The volumetric rate of heat generation in i-th layer is gi(x; t). Initially each layer is
at a speci¯ed temperature Ti(x;0) = Fi(x), in xi < x <i+1, i = 1; :::;M , for t > 0. Convective heat transfer
occurs at the two outer boundary surfaces x = x1 and x = xM+1, with heat transfer coe±cient h1 and hM+1,
to environmental °uids with temperatures T11 and T12 respectively.

Figure 1: Illustration of M-layers composite medium

The mathematical formulation of the one-dimensional heat conduction problem is given as
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in xi < x < xi+1; t > 0; i = 1;2; :::;M

where p = 0;1;2 for planar, cylindrical, and spherical layers respectively. Eq.(1) is to be solved with the
following boundary and interface conditions:
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; at x = xi+1 i = 1; :::;M ¡ 1 (5)

and the initial conditions for temperatures in each layer

Ti(x; 0) = Fi(x); xi < x < xi+1: i = 1; :::;M (6)

where Ti(x; t) is the temperature in the i-th layer, ®i = ki=½icpi its thermal di®usivity, ki the thermal conduc-
tivity, ½i the density, and cpi the speci¯c heat.

Introducing the following dimensionless variables and parameters,
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Bii =
hiL
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Ti(x; t)¡ Tref
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The mathematical formulation is cast in dimensionless form
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with the respective dimensionless boundary and interface conditions,
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at X = °1 and ¿ > 0
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X = °i+1 and ¿ > 0 i = 1; :::;M ¡ 1
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at X = XM+1 and ¿ > 0

and the dimensionless intial conditions,

µi(X; ¿) = F ¤i (X) in Xi < X < Xi+1 at ¿ = 0 (12)

The reference length L might be chosen as the thickness of one of the layers, say the ¯rst layer, L = x2¡x1,
or as the inner radius in the cases of concentric cylindrical or spherical layers, L = x1, or as the outer radius in
the cases of solid concentric cylinder or sphere, L = xM+1. The reference thermal conductivity and di®usivity
are taken as that of one of the layers, say the ¯rst layer, kref = k1 and ®ref = ®1.

3. Improved Lumped-Di®erential Formulation

We introduce the de¯nition of spatially averaged dimensionless temperature for each layer as
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where the heat source term is de¯ned as,
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i+1 ¡Xp+1
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Eq.(14) is an equivalent integro-di®erential formulation of the original mathematical formulation without
any introduced approximation.

In classical lumped-di®erential analysis, the boundary temperatures are assumed to be the same as the
average temperatures. The approach is limited to low Biot numbers.

The basic idea of the improved lumped-di®erential approach is to provide reasonably accurate relations
between the boundary °uxes and the averaged temperatures, which are to be developed from Hermite ap-
proximations for the integrals that de¯ne the average temperatures and heat °uxes. The general Hermite
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approximation for an integral, based on the values of the integrand and its derivatives at the integration limits,
is written in the following form
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where y(x) and its derivatives y(º)(x) are de¯ned for all x 2 (a; b). It is assumed that the numerical values
of y(º)(a) for º = 0; 1; :::; ®, and y(º)(b) º = 0;1; :::; ¯ are available. The general expression for the H®;¯

approximation is given by
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For example, the plain trapezoidal rules (H0;0 approximation) for averaged temperature and heat °ux
integrals in each layer are given in the following form:
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For each layer, we have two unknown boundary temperatures, µi jXi
and µi jX=Xi+1

, and two unknown heat
°uxes, @µi=@X jX=Xi

and @µi=@X jX=Xi+1
. Now, we have 2M equations provided by Eqs. (18, 19), 2(M ¡ 1)

equations by Eqs. (10, 11), and two equations by Eqs. (8, 9). That is, we have exactly 4M equations for 4M
unknowns which are solved to give the sought relations between the boundary temperatures and heat °uxes and
the averaged temperatures in the multilayered composite pipe. These relations are then used in the Equations
(4) to close the M ordinary di®erential equations for the averaged temperatures, to be solved with the initial
conditions for the averaged temperatures

µavi(X) = µav0i ; i = 1; :::;M: (20)

4. Results and Discussions

The proposed higher order lumped parameter model for one-dimensional transient heat conduction is solved
numerically with a fourth order Runge-Kutta method, implemented in Compact Visual Fortran 6.6. The
solution is then compared with a ¯nite di®erence solution of the original partial di®erential equations and with
the classical lumped parameter model as described in Levy (1999).

Numerical results were obtained for typical parameter values encountered in nuclear reactor enginnering
applications (Levy, 1999). The parameters used in the test cases are given in Tables 1 and 2.

Table 1: Table 1. Fixed Parameters for Selected Test Cases

kf (W/m K) 4.1 kc (W/m K) 12.8
½f (kg/m3) 10980.0 ½c (kg/m3) 6570.0
cf (J/kgoC) 299.0 cc (J/kgoC) 330.0
rfo (m) 0.00445 rci (m) 0.00455
rco (m) 0.00503 hg (W/m2 oC) 5670.0
g (W/cm3) 482.256
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Figure 2: Average fuel temperatures for Bi = 4:18838.

Figure 3: Average clad temperatures for Bi = 4:18838.

Table 2: Experimental results of bending properties of materials MAT1 and MAT2. Average values obtained
in 20 experiments

Case h (W/m2 oC) Bi
1 10658.3 4.18838
2 21316.6 8.37676
3 31974.9 12.5651

In Figures 2 and 3 it is shown the averaged fuel and cladding temperatures for case 1 (Bi = 4:18838)
obtained by the improved and classical lumped formulations, compared with a ¯nite di®erence solution with
fully implicit scheme and central di®erence in spatial coordinate. The steady state solution obtained by the
¯nite di®erence method agrees perfectly with the exact analytical solution. We can observe that the averaged
fuel temperature obtained by the improved lumped parameter formulation is in excellent agreement with the
¯nite di®erence solution, while the agreement for averaged cladding temperature is still quite reasonable. The
cladding temperatures are shown in the lowermost set of curves in each graph. There is a signi¯cant improvement
over the classical lumped parameter formulation also for the averaged cladding temperature. In Table 1, we
give the parameters used in all the three test cases. In Table 2, the cladding-coolant heat transfer coe±cients
are given for the three test cases.

With increased Biot numbers, there is an improvement in the agreement between the improved lumped
parameter formulation and the ¯nite di®erence solution, as can be observed in Figures 4 and 5 for Bi = 8:37676
and in Figures 6 and 7 for Bi = 12:5651.
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Figure 4: Average fuel temperatures for Bi = 8:37676.

Figure 5: Average cladding temperatures for Bi = 8:37676.

Figure 6: Average fuel temperatures for Bi = 12:5651.
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Figure 7: Average cladding temperatures for Bi = 12:5651.

5. Conclusions

In this paper we presented improved lumped-di®erential models for one-dimensional transient heat con-
duction in multilayered composite media. Hermite approximations for integrals are used to obtain the average
temperatures and heat °uxes in each layer. The partial di®erential equations are reduced to a system of ordinary
di®erential equations that can be readily solved numerically. The proposed models are applied to a PWR fuel
rod analysis and the average temperatures calculated with improved lumped parameter formulation agree well
with ¯nite di®erence solutions. The proposed heat conduction models can be used in fuel dynamics calculation
for stability analysis of BWR, simpli¯ed model or real-time simulator of nuclear power plants.
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