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Abstract. Displacement of a liquid in a capillary tube by gas injection occurs in many situations, like enhanced oil
recovery, coating of catalytic converters and gas-assisted injection molding. Generally the liquid being displaced is
a polymeric solution or dispersion, which is not Newtonian. Viscoelastic forces alter the force balance in various
parts of the flow and consequently change the amount of liquid left attached to the capillary wall. Models of
such flows must rely on theories that can account for the different behavior of microstructured liquids in shear
and extensional flow. Moreover, displacement flows involve a free surface, and the domain where the differential
equations are posed is unknown a priori being part of the solution. These two characteristics make the problem
extremely complex. Here, the two-dimensional free surface flow near the gas-liquid interface was modelled using
three different differential constitutive equations that approximate viscoelastic behavior of dilute polymer solutions,
namely Oldroyd-B, FENE-P and FENE-CR, together with momentum and continuity equations. The equation
system was solved with the Finite Element Method. The resulting non-linear system of algebraic equations was
solved by Newton’s method. The results show the effect of the viscoelastic character of the liquid on the free surface
configuration and the film thickness attached to the capillary wall.

keywords: Free surface flow, two-phase viscoelastic flow, gas-assisted injection molding, gas-liquid interface,
elastic dumbbell models.

1. Introduction

The displacement of a liquid inside small passages and capillary tubes by another liquid or gas occurs in
many practical situations. The most important examples are the flow inside the porous space in enhanced oil
recovery methods, coating process of catalytic converter and inside tubes and gas assisted injection molding.
These flows belong to a class of flows generally referred to as free surface flows; the configuration and position
of the interface between the two fluids is unknown a priori and it is part of the solution of the problem.

Figure 1: Sketch of a liquid-displacement problem.
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Figure (1) shows the region close to the tip of the interface of a liquid being displaced by a gas. Since the
frame of reference is attached to the bubble tip, all happens as if the tube wall is moving with the bubble speed
U in the opposite direction. A certain amount of liquid remains attached to the capillary wall, as shown in the
figure. The more liquid is left on the wall the least efficient is the displacement process. This information is
one of the main goals of theoretical and experimental analysis of displacement flows.

A dimensionless measurement of the thickness of the liquid film attached to the wall used in the literature
is the fractional coverage m, defined as the fraction of the tube cross-sectional area coated with liquid after
bubble penetration, i.e.

m = 1− R2
b

R2
0

, (1)

where R0 is the tube radius and Rb is the radius of the penetrating bubble. In some of the situations described,
the liquid being displaced is a polymeric solution or dispersion and is not Newtonian. Viscoelastic forces near
the interface changes the force balance in that region and consequently the configuration of the free surface
and the fractional coverage. The two important dimensionless groups in the displacement of viscoelastic liquids
in capillary tubes, our case of interest, are the capillary number Ca, which is the ratio of viscous to surface
tension forces, and the Weissenberg number We, which is the ratio between a relaxation time characteristic of
the liquid and a characteristic time of the deformation process:

Ca =
ηU

σ
, We = λγ̇w. (2)

Here η is the total viscosity of the liquid phase, U is the bubble velocity, σ is the interfacial tension between
the inviscid penetrating gas and the displaced liquid, λ is a relaxation time characteristic of the liquid and
γ̇w = 2U/R0 is the (Newtonian) shear rate at the wall, assumed to be characteristic of the process.

Different analyses on displacement of liquids in capillary tubes have been performed for Newtonian as well
as for viscoelastic liquids, and a brief summary of these results is given in the following paragraphs.

The first experimental study of a long gas bubble penetrating through a liquid in a capillary tube was
performed by Fairbrother and Stubbs, 1935. Their most important result is the proposition of a direct relation
between the fractional coverage m with the capillary number Ca, given by m = Ca

1
2 .

The first theoretical analysis on liquid displacement in capillary tubes was developed by Bretherton, 1961.
He studied the motion of long air bubbles in capillary tubes filled with Newtonian viscous liquids. Bretherton
assumed zero shear stress at the interface, as well as small capillary numbers. Bretherton performed experimental
tests with tubes of diameters small enough to neglect gravity effects. His theoretical analysis showed a relation
of the thin film thickness attached at the wall with the capillary number as m ≈ 1.29(3Ca)

2
3 .

Taylor, 1961 developed an experimental study on removal of Newtonian liquids from capillary tubes through
gas injection. The main objective was to determine the amount of liquid deposited on the tube wall during flow.
Taylor showed the dependence of the fractional coverage m, with the capillary number, Ca. The plot suggests a
limit value for m corresponding to approximately 0.56 when Ca tends to 2. Fairbrother and Stubbs had already
proposed a direct relation of m with the capillary number, as mentioned. Taylor compared his experimental
results with the empirical equation proposed by Fairbrother and Stubbs and verified that their relation is only
valid for a narrow capillary number range of 0 < Ca < 0.09.

One year later, Cox, 1962 published the continuation of the experiments initiated by Taylor and concluded
that the fraction of mass deposited at the wall reaches an asymptotic value of 0.60 when Ca tends to 10. Cox
also developed a simplified theoretical analysis to calculate m. His analysis appears to fit in the cases where
surface tension forces can be neglected in view of viscous forces (Ca >> 1).

Regarding the displacement of viscoelastic liquids, Ro and Homsy, 1995 presented a theoretical study about
the effect of elasticity on the meniscus shape and on film thickness for the flow induced by a long air bubble
steadily displacing a polymeric liquid confined by two parallel plates, i.e. Hele-Shaw flow. The authors sought
asymptotic solutions by perturbation expansions to solve the problem, and the assumptions were that the
displaced viscoelastic liquid wets the wall and that both capillary number and local Weissenberg number were
small. The Oldroyd-B constitutive equation was used to model the viscoelastic liquid and the authors stressed
that the transition region between the advancing meniscus and the entrained film is where the liquid rheology
has its greatest effect. A detailed analysis of their work allows concluding that the main mechanisms in this
flow are the resistance to stream-wise strain, tending to lower the film thickness, and the buildup of shear
stress, tending to raise the film thickness. According to their analysis, in the limit of small Ca and We, as the
liquid becomes more viscoelastic, the film thickness decreases, implying that the stream-wise resistance is the
dominant mechanism at this range.

Huzyak and Koelling, 1997 performed experimental investigations of penetration of a long bubble through
a viscoelastic liquid in a capillary tube. The main goal was to identify the effects of liquid elasticity on the
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thickness of the liquid film attached to the wall. Experiments were performed with four test liquids including
two Newtonian and two Boger liquids (highly elastic liquids showing constant shear viscosities). The authors
obtained results for the fractional coverage m, as a function of capillary number and Deborah number, De.
Deborah number, like Weissenberg number, measures the deviation of elastic fluids from Newtonian behavior.

The authors concluded that for small Deborah number, De < 1, both viscoelastic liquids exhibit a fractional
coverage identical to that of a Newtonian liquid at an equivalent capillary number. Nevertheless, depending on
ones estimate of the experimental accuracy, fluid thickness at this De range presents a slight thinning of the
film. The fractional coverage for both viscoelastic liquids begins to increase relative to the Newtonian result at
De ≈ 1. Fractional coverage continues to increase with Deborah number for all De ≥ 1. At De ≈ 5 fractional
coverage is 30% greater than the Newtonian liquid result. They also found that the fractional coverage depend
on the tube diameter for the viscoelastic liquids.

Another important study dealing with viscoelastic free surface flows was recently presented by A. G. Lee and
Khomami, 2002. They applied a finite element formulation to study the effect of viscoelasticity on free surface
flows, analyzing both a Hele-Shaw flow and the slot coating of viscoelastic liquids. The viscoelastic liquids were
modeled by means of three distinct differential constitutive equations: the Oldroyd-B, FENE-CR and FENE-P
models. The calculation showed the formation of an elastic stress boundary layer in the region adjacent to the
interface, and the polymeric stresses associated to this boundary layer are found to be responsible for changing
the meniscus shape in order to increase the thickness of the liquid attached to the solid plates.

The goal of this work is to analyze the effect of the viscoelastic character of the displaced liquid on the free
surface shape and on the film thickness attached to the capillary wall, by solving the momentum and continuity
equations coupled with the Oldroyd-B, FENE-P and FENE-CR models to describe the mechanical behavior of
the flowing liquid.

2. Mathematical Formulation

2.1. Governing equations

The two-dimensional, steady free surface flow of the displaced liquid in a capillary tube is described by the
conservation of mass and momentum equations:

∇ · u = 0 (3)

0 = −∇p +∇ · τττττ (4)

where u is the velocity vector, p is the pressure and τττττ is the extra-stress tensor. It is clear from Eq.(4) that
inertial effects are neglected in our model. The governing equations are solved by considering a coordinate
system attached to the bubble tip.

2.2. Constitutive equations

The viscoelastic liquid is assumed to be a dilute solution of a high molecular weight polymer. The solvent
is taken to be a Newtonian fluid with viscosity ηs.

The extra-stress tensor of the polymer solution can be written as the sum of a contribution from the
Newtonian solvent and from the polymer,

τττττ = τττττs + τττττp = ηsγ̇̇γ̇γ̇γ̇γ + τττττp. (5)

Here, ηs is the solvent viscosity and γ̇̇γ̇γ̇γ̇γ = ∇u+∇uT is the rate of deformation tensor.
We idealize the polymer molecule as an elastic dumbbell, that is, two beads connected by a spring. The

beads represent molecular segments of several monomers and the spring describes the entropic effects to which
the end-to-end vector of the polymer is subject. There are many kinds of elastic dumbbell models depending
on the choice of the spring force law.

Next, we summarize the expressions for the three chosen models: Oldroyd-B, FENE-P and FENE-CR
(details can be found in R. B. Bird and Hassager, 1987a and R. B. Bird and Hassager, 1987b).

2.2.1. Elastic dumbbell models

The models used to describe the evolution of the polymeric stress were:

• Oldroyd-B model

τττττp + λHτττττp(1) = ηpγ̇̇γ̇γ̇γ̇γ. (6)
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• FENE-P model

Zτττττp + λHτττττp(1) − λH

[
τττττp +

(
ηp

λH

)
I
]

D

Dt
(lnZ) = ηpγ̇̇γ̇γ̇γ̇γ, (7)

where

Z = 1 +
3
b

[
1 +

(
λH

3ηp

)
tr τττττp

]
. (8)

• FENE-CR model

Zτττττp + λHτττττp(1) − λHτττττp
D

Dt
(lnZ) = Zηpγ̇̇γ̇γ̇γ̇γ, (9)

where

Z =
1 + (λH/bηp)tr τττττp

1− (3/b)
. (10)

The Oldroyd-B model is a Hookean dumbbell model, i.e., the tension in the spring is proportional to the
bead separation. Here, λH is the time constant for the Hookean dumbbells, ηp is the polymer contribution to the
shear viscosity and the subscrit (1) denotes the upper-convected differentiation operator. The Oldroyd-B model
gives steady-state shear flow material functions that are independent of the shear rate and also a steady-state
elongational viscosity that goes to infinity at a finite elongation rate; this unlikely behavior results because the
linear spring model allows infinite extension.

The linear (Hookean) spring force is realistic only for small deformations from equilibrium and puts no
limit to the extent to which the dumbbell can be stretched. An approach which corrects this unphysical
behavior and seems to play important role in non-linear rheological phenomena is the idea of finite extensibility.
Dumbbell models with finite extensible non-linear elastic (FENE) spring forces are widely used in numerical
flow calculations.

The FENE-P model is a non-Hookean dumbbell model, i.e., the tension in the spring is a non-linear function
of the bead separation. Here, λH is the same time constant defined for Hookean dumbbells and ηp is the polymer
contribution to the shear viscosity. b is a dimensionless parameter which measures the finite extensibility. Note
that as b approaches infinity, the Oldroyd-B model is recovered. The steady-state shear flow material functions
in the FENE-P model are a function of the shear rate. Then, the FENE-P model is a better choice for
computations of shear-thinning viscoelastic liquids.

The FENE-CR model is also a non-Hookean dumbbell model. Its parameters are the same as in the FENE-P
model, and it also recovers the Oldroyd-B model as b approaches infinity. The main difference is that this model
was designed to eliminate the shear rate dependence of the steady state viscosity, becoming, then, a suitable
model to describe Boger fluids.

2.3. Boundary conditions

The boundary conditions applied on the free surface are:

• Kinematic condition

n · u = 0; (11)

• Force balance

n · (τττττ − pI) =
σ

Rm
n. (12)

Additional boundary conditions are stated below:

• Non-slip condition on the tube wall

u = Uex; (13)
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• Symmetry condition at the centerline

n · u = 0, t ·T · n = 0; (14)

• Fully developed flow with pressure free at the outflow

n · ∇u = 0; (15)

• Fully developed flow with pressure imposed at the inflow

n · ∇u = 0, p = P0. (16)

In these equations, n and t are the unit vectors normal and tangent to the domain boundary, respectively. T
is the total stress tensor, ex is the unit vector in the axial direction, U is the velocity at the tube wall, P0 is
the imposed pressure at the inflow, σ is the surface tension and Rm is the local mean radius of curvature of the
interface.

3. Solution Method

A finite element method is applied to study this viscoelastic free surface flow. The formulation implemented
is the DEVSS-G/SUPG formulation proposed by Guenette and Fortin, 1995 and Brooks and Hughes, 1982.

3.1. Free surface parametrization

The relevant differential equations are posed in an unknown domain; the position of the liquid free surface is
part of the solution. A simple way of solving this type of problem is to use a Picard iteration, i.e. solve the flow
and the domain position separately. This procedure is not very efficient and in most cases the iteration does not
converge. To compute a free boundary problem in a more efficient way, the set of differential equations posed in
the unknown physical domain has to be transformed to an equivalent set defined in a known reference domain,
usually called computational domain. This transformation is made by a mapping x = x(ξξξξξ) that connects the two
domains. The inverse of the mapping that minimizes the functional is governed by elliptic differential equations
identical to those encountered in diffusion transport with variable diffusion coefficients. The coordinates of the
reference domain satisfy

∇ · (D · ∇ξξξξξ) = 0, (17)

where D is the diffusion coefficient tensor and ξξξξξ are the coordinates of the reference domain.
Boundary conditions are needed to solve these second-order partial differential equations. Along solid walls

and synthetic inlet and outlet planes, the boundary is located by imposing a relation between the physical
coordinates x and r from the equation that describes the shape of the boundary, and stretching functions
are used to distribute the points along the boundaries. The free boundary (gas-liquid interface) is located
by imposing the kinematic condition (Eq.(11)). The discrete versions of the mapping equations are generally
referred to as mesh generation equations.

3.2. Interpolation functions

The unknown fields are written as a linear combination of polynomial basis functions. Thus, the velocity
vector u, pressure p, nodal position vector x, interpolated velocity gradient tensor g and polymeric stress tensor
τττττp are approximated by, respectively:

u =
9∑

j=1

(Ujφj), p =
3∑

j=1

(Pjχj),x =
9∑

j=1

(Xjφj),g =
4∑

j=1

(Gjψj), τττττp =
4∑

j=1

(Ipjψj).

(18)

Here, Uj , Pj , Xj , Gj , Ipj are the basis functions coefficients, and represent the unknowns of the discretized
problem. The basis functions φj(ξ, η) are biquadratic, χj(ξ, η) are linear discontinuous and ψj(ξ, η) are bilinear.
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3.3. Weak formulation of the governing equations in the reference domain

The conservation of mass, conservation of linear momentum, interpolated velocity gradient and mesh gen-
eration equations are solved using the Galerkin method. For their hyperbolic nature, all three differential
constitutive equations are solved using the Petrov-Galerkin streamline upwinding method (SUPG). The weak
forms of the governing equations are, in tensor notation:

• Conservation of mass

Rc =
∫

Ω

(∇ · u)χJdΩ (19)

• Conservation of linear momentum

Rm =
∫

Ω

tr(T · ∇w)JdΩ−
∫

Γ

(n ·T) ·wJdΓ (20)

• Interpolated velocity gradient

Rg =
∫

Ω

(g−∇u+
∇ · u
tr I

I) : ψψψψψJdΩ (21)

• Mesh generation

RX = −
∫

Ω

(∇w : D · ∇ξξξξξ)JdΩ +
∫

Γ

(n ·D · ∇ξξξξξ) ·wdΓ (22)

• Oldroyd-B model

Rτττττ p =
∫

Ω

(τττττp + λHτττττp(1) − ηpγ̇̇γ̇γ̇γ̇γ) : ϕϕϕϕϕJdΩ (23)

• FENE-P model

Rτττττ p =
∫

Ω

{
Zτττττp + λHτττττp(1) − λH

[
τττττp +

(
ηp

λH

)
I
]

D

Dt
(lnZ)− ηpγ̇̇γ̇γ̇γ̇γ

}
: ϕϕϕϕϕJdΩ (24)

• FENE-CR model

Rτττττ p =
∫

Ω

{
Zτττττp + λHτττττp(1) − λHτττττp

D

Dt
(lnZ)− Zηpγ̇̇γ̇γ̇γ̇γ

}
: ϕϕϕϕϕJdΩ (25)

Here, Ω and Γ denote the reference domain and its boundary, respectively. J is the Jacobian of the mapping
between the physical and reference domain, χ is the scalar weighting function for the conservation of mass
equation, w is the vector weighting function for the conservation of momentum and mesh generation equations,
ψψψψψ is the tensor weighting function for the interpolated velocity gradient, ϕϕϕϕϕ is the tensor weighting function for
the constitutive equations and I is the unit tensor.

3.4. Solution of the problem via Newton iterations

The resulting nonlinear system of equations is solved by the Newton’s method:

J · δc = −R(c), (26)

ck+1 = ck + δc. (27)

J is the Jacobian matrix containing the derivatives of all equations with respect to all unknowns, c is the
solution vector containing all the unknowns of the problem, δc is the increment in the solution vector, R is a
vector of weighted residuals and k indicates the present iteration.
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4. RESULTS

4.1. Newtonian results

Before presenting the analysis of the displacement of viscoelastic liquids in capillary tubes, some classical
results for Newtonian liquids are presented in order to test the solution procedure, provide basic information
on the subject and gain insight for more complex analysis later.

Figure (2) shows the dependence of the liquid film thickness deposited at the tube wall on the capillary
number. Simulations cover a capillary number range of 0.01 ≤ Ca ≤ 10. Besides theoretical predictions
obtained in the present work, we reproduce the experimental data obtained by Taylor, 1961. The agreement
between both results is excellent. The result obtained by Cox, 1962, which suggests a constant value of 0.6 to
the fractional coverage for capillary number above 10, is also confirmed. The experimental results obtained by
Taylor, as well as the theoretical predictions of the present work, show that for a given viscosity and a given
surface tension the film thickness deposited at the wall is controlled by the velocity of the interface. Therefore,
processes whose objective is to obtain a thin film thickness must be performed at low flow rates.

0,1

0,2

0,3

0,4

0,5

0,6

0,01 0,1 1 10

G.I. Taylor

Present work

m

Ca

Figure 2: Newtonian liquid film thickness as a function of Ca.

4.2. Viscoelastic Effect

When polymer additives are incorporated to the Newtonian liquid the force balance in the different regions of
the flow changes. The elastic character of the polymer molecules is displayed by the appearance of elastic stresses
at regions of high flow straining, mainly close to the free surface. To reach a new equilibrium configuration, the
free surface curvature is changed and, consequently, the amount of liquid attached to the capillary wall is also
changed.

In order to study solely the viscoelastic effects on film thickness, we follow Huzyak and Koelling, 1997
suggestion of plotting a reduced fractional coverage against Weissenberg numbers. Reduced fractional coverage
is defined as the ratio between the liquid film thickness obtained with a viscoelastic liquid (m) to that obtained
with a Newtonian liquid at the same capillary number (mN ). Figure (3) shows the theoretical predictions for
an Oldroyd-B liquid of reduced fractional coverage plotted against Weissenberg number. The results are at
Ca = 0.1. Although the flow states shown are at a particular Ca and Oldroyd-B is the single model used,
computations in all capillary numbers analyzed with all models present qualitatively similar results.

The results shown in Fig.(3) agree qualitatively with experimental data reported in the literature (Huzyak
and Koelling, 1997, for example). At small Weissenberg numbers, the viscoelastic behavior of the flowing liquid
causes a reduction of fluid film thickness with respect to the Newtonian case, and at large Weissenberg number,
the film thickness rises as the liquid becomes more elastic.

The effect of variation in the extensibility parameter b on the film thickness for a particular capillary number,
Ca = 0.1, is shown in Fig.(4). Comparisons are made for FENE-CR model in Fig.(4a) and FENE-P model
in Fig.(4b). We follow Herrchen and Ottinger, 1997 recommendation, who use extensibility parameter values
b = 20, 50, 100, arguing that 20 is at the lower physically meaningful limit and values larger than 100 cause
only minor modifications of the Hookean dumbbell (or Oldroyd-B) model. Oldroyd-B results are plotted in
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Figure 3: Oldroyd-B reduced fractional coverage m/mN as a function of We for Ca = 0.1.

both comparisons to establish the superior limit for molecule extensibility. Since convergence are compromised
with molecule extensibility, simulations for the infinitely extensible molecule based model, Oldroyd-B, could not
advance beyond We = 1.5.

For small Weissenberg numbers both models present a film thinning, related to the Newtonian case, for any
value of extensibility parameter, b. This result suggests that, at this level of elasticity, the adverse stretching
stress gradient that causes the film thinning, as shown by A. G. Lee and Khomami, 2002, imposes the same
effect on both shear-thinning liquids (FENE-P) and Boger liquids (FENE-CR).

Differences in model behavior appear at higher Weissenberg numbers. Predictions with the FENE-CR model
with flexible polymer molecules (b = 100) present a film thickening for increasing We, but reaches a plateau at
We ≥ 4.0. Predictions with semi-flexible polymer molecules (b = 50) also show film thickenning for increasing
We and also reaches a plateau at We ≥ 2.5. The rigid polymer molecule results (b = 20) follow a different
trend. Fluid film thickening at this level of We is related to the onset of a stress boundary layer over the free
surface, as concluded by A. G. Lee and Khomami, 2002, and the thickness plateau suggests that a maximum
value of the stretching polymeric stress tensor component over the free surface is reached.

Results for flexible polymer molecule and rigid polymer molecule FENE-P solutions are qualitatively similar
to their FENE-CR correspondent. But instead of presenting a thickening behavior for increasing Weissenberg
numbers, FENE-P solution with semi-flexible polymer molecules maintains its constant thinner behavior related
to the Newtonian case.

Our simulation of flexible polymer molecule solutions agrees with experimental observations produced by
D. Bonn and Meunier, 1995, who observed large film thickening for flexible polymer solutions. On the other
hand, our observation of a thinner and thinner behavior for rigid polymer molecule solutions disagrees with
Bonn et al. observations, who detected a small film thickening even for more rigid polymer solutions. It is
important to mention that this comparison is only qualitative, because our case of study is the axisymmetric
counterpart of planar Bonn et al. case of study and the extensibility parameters in our simulations do not
represent accurately the molecule flexibilities of Bonn et al. experimental solutions.

4.2.1. Fitting experimental data

Huzyak and Koelling, 1997 performed experiments to investigate the penetration of a long bubble through
a viscoelastic liquid in a capillary tube. In their work, the results were presented for four test fluids with
rheological properties designed such that the effects of liquid elasticity could be isolated from shear thinning
phenomena (Boger fluids). In order to perform a comparison between their experimental data with our theo-
retical predictions, Fig.(5) shows the fractional coverage as a function of capillary number. The experimental
data corresponding to one of the viscoelastic liquids developed by Huzyak and Koelling (B-35) is compared
with our theoretical predictions. The rheological data for fluid B-35 in Huzyak and Koelling, 1997 was fitted
to a FENE-CR model, chosen for being suited to fit Boger fluid data. The relevant parameters turned to be
ηs + ηp = 2.90 Pa.s, b = 658 and λ = 0.28 s. Since a value of b above 100 implies only minor modifications on
the Hookean spring behavior, we should expect the present results to be very similar when obtained with an
Oldroyd-B model. Since Huzyak and Koelling sustain that fractional coverage values depend on tube radii, the
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(a)

(b)

Figure 4: Molecule extensibility parameter variation effects on film thickness. Results are for Ca = 0.1. (a)
FENE-CR model; (b) FENE-P model.

presented numerical simulations were performed at the same tube radius used for the B-35 fluid experiments,
i.e., R0 = 0.246 cm. Fractional coverage for the Newtonian fluid is included in this plot as a reference.

The agreement between Huzyak and Koelling experimental results and the theoretical predictions reported
here is good. Since the elasticity of Boger fluids should not be important at low shear rates, both experimental
e theoretical data are nearly the same as the Newtonian fluid data for Ca < 1. However, at capillary numbers
above 1 a significative deviation is noted from Newtonian behavior. The experimental results show a fractional
coverage of m = 0.663 (12% greater than the corresponding Newtonian result) at Ca = 5, while our theoretical
results predict a fractional coverage of m = 0.702 (17% greater than the corresponding Newtonian result) for
the same capillary number. Another important observation is that although the Newtonian results show an
asymptotic behavior tending to a value of m = 0.600 with increasing capillary numbers, both experimental and
theoretical viscoelastic data continue to increase with capillary number .

5. Final Remarks

A two dimensional viscoelastic flow near the gas-liquid interface of a long bubble displacing a liquid in a
capillary tube was presented. The presence of the free surface, that makes the domain of integration unknown
a priori, and the differential constitutive models needed to describe the behavior of dilute polymeric solutions
make the solution of the problem extremely complex. A fully coupled formulation was used and the differential
equations were solved by the Finite Element Method.

The results show that viscoelastic forces tend to decrease the amount of liquid left attached to the tube wall
for small values of Weissenberg numbers and to increase the fluid film thickness at high Weissenberg number, a
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Figure 5: Fractional coverage as a function of capillary number for Newtonian fluids, for the FENE-CR model
with ηs + ηp = 2.90, b = 658 and λ = 0.28 s and for fluid B-35 from (Huzyak and Koelling, 1997).

trend observed experimentally by other researchers. The results also show that for the non-linear spring model,
the film thickness on the wall reaches a maximum value, probably associated with the maximum normal stress
along the streamlines.
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