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Abstract. The aim of this work is the thermal characterization of phase change material (PCM). The thermophysical properties are 
identified simultaneously by using Levenberg-Marquardt’s method. Simulated transient measurements of the temperature at the 
extremities of the PCM are used to solve the parameter estimation problem. The preliminary results present a relative error lower 
than 1% with respect to the exact values of the required parameters.  
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1. Introduction  
 

The advance of computer technology has contributed to the development of powerful numerical programs to 
simulate the processes of solidification and fusion for a wide range of phase change materials (PCMs). However, the 
optimum performance of these programs depends on the accurate knowledge of the products’ thermal properties. 

In this paper, we present one of the steps concerning the development of an experimental set-up that allows the 
simultaneous thermal characterization of an industrial product undergoing phase change, i.e., solidification and fusion. 
The thermophysical properties considered are thermal conductivities and heat capacities for liquid and solid states, the 
phase change temperature and the latent heat. These properties are determined by using the Levenberg-Marquardt’s 
method (Beck and Arnold, 1977, Orlande and Ozisik, 2000). This technique, which is an improvement of the Gauss’s 
method, is widely employed in parameter estimation problems.  

Here, the experimental set-up is numerically simulated, in order to obtain the transient measurements of temperature 
and heat flux at the limits of the sample. These values are introduced as boundary conditions in the direct model. By 
applying this model the phase change phenomenon is simulated. The Levenberg-Marquardt’s method use the direct 
model to identify the thermophysical properties of the PCM.  

 
2. Experimental set-up modeling  
 

The experimental set-up has been designed and realized. It’s principle is schematized in Fig. (1). It has a cylindrical 
geometry that ensure heat transfer only in the axial direction y. Initially, the PCM is in the liquid phase, and is placed 
between two metallic blocks (1 and 2), forming a cavity of thickness L, and it is laterally locked up by a thermal 
insulated cell. The temperatures at the limits of the two blocks are controlled by heat exchangers (third kind boundary 
conditions). The assembly is vertical and the Too1 temperature is always smaller than Too2, in order to avoid natural 
convection in the sample. A system of vertical guides allows the displacement of block-2 according to the density 
variation of the sample. Block-1 remains fixed at the base of the device.  

We assume that the PCM is homogeneous and opaque. Heat transfer in the two metallic blocks and in the sample is 
described by the transient heat conduction equations. Between the metallic blocks and the sample, the thermal contact is 
assumed to be perfect. The phase change phenomenon in the sample is modelled using an enthalpy formulation 
proposed by Voller and Cross (1981). The moving boundary problem is given as follows:  
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T(y,0) = T(y)  in  0 < y < y3(t)                                                                                                                                      (8) 
 

where ρ1, ρ(T), and ρ2  are the densities of the block-1, the sample and the block-2. The thermal conductivities of the 
block-1, the PCM and the block-2 are given by λ1, λ(T) et λ2 respectively.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Experimental set-up 

 
For the two metallic blocks, the thermophysical properties are supposed perfectly known and constant with respect 

to the temperature variation. The enthalpy, H, relation to temperature, T, for the blocks is given as: 
 

1( ) [ ]refH refH T Cp T T H= − +  in 0 < y < y1, for  t ≥ 0                                                                                                (9) 
 

2( ) [ ]refH refH T Cp T T H= − +  in y2(t) < y < y3(t), for  t ≥ 0                                                                                     (10) 
   

where Cp1 and Cp2 are the specifics heats of the block-1 and block-2. Href is a reference enthalpy which corresponds to 
an reference temperature, TrefH  (here Href = 0 when TrefH = 223.15 K).  For the PCM, Chiu and Caldwell (1996) 
proposed a general enthalpy formulation (a mixed enthalpy) given by: 

 
( ) (1 ) (1 )s lH T gCp dT g Cp dT g H= + − + − ∆∫ ∫   in y1 < y < y2(t), for  t ≥ 0                                                        (11) 
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where Cps and Cpl are the specifics heats in the solid and liquid phases respectively. Here, they are assumed to be 
constants with respect to the temperature variation. The phase change latent heat is indicated by ∆H. The solid fraction, 
g, is a variable which depends on a number of factors, including the temperature and the material composition. Here, for 
simplicity, g is a linear function that depends only the temperature variation, such as: 
 

-( ) fT Tg T T=
∆

  with 0b gb 1                                                                                                                                   (12) 
 
where Tf is the phase change temperature and ∆T is the temperature variation during the phase change.  

For a PCM, in some cases, the density and thermal conductivity are strongly dependent of the temperature. Here, the 
variation of the density is considered known. From experimental and bibliographical observations (Bonacina and 
Comini, 1974, Woinet, 1997), we adopted linear functions to represent the thermal conductivity variation. This choice 
has the objective to reduce the number of parameters to be estimated. They are given as follows : 

 
i. for the solid phase, g = 1 (indice s) : 
 

( ) [ ]s s ref refT T T λλ α λ= − +                                                                                                                                       (13) 
 
ii. for the mushy region, 0<g<1 (indice m) :  
 

( ) ( ) [1 ]m s fT T T gλ λ λ= − ∆ + − ∆                                                                                                                              (14) 
 
iii. for the liquid phase, g = 0 (indice l) : 
 

( ) ( ) [ ]l m f l fT T T Tλ λ α= + −                                                                                                                                     (15) 
 
where αl  and αs  are the slopes of the thermal conductivity for liquid and solid phases. ∆λ is the jump of the thermal 
conductivity when the phase change occur. The variable λref is a reference thermal conductivity which corresponds to an 
reference temperature Trefλ. Figure (2) resumes the equations above.   

 
 
 
 
 
 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 
 
 

(b) 
Figure 2. (a) PCM thermal conductivity - temperature relationship. (b) PCM Enthalpy- temperature relationship. 

 
The experimental set-up described in this paragraph is modeled to provide the simulated transient measurements of 

the temperatures and heat fluxes at the limits of the sample: T1(t), ϕ"1(t), T2(t) and ϕ"2(t), Fig. (1). These simulated data 
will be introduced as boundary conditions in the direct model, paragraph (3). 

 
2.1. Validation of the experimental set-up model      

 
The numerical solution of the model is calculated using MATLAB software. A finite difference scheme (Voller and 

Cross,1981, Ozisik, 1993) is used to discretize the differential equations of heat conduction of the PCM and the two 
metallic blocks, Eq. 1-8.  

The total volume variation of the PCM is taken into account by modifying the grid size according to the variation of 
the density. An implicit formulation of the Runge-Kutta’s method (Hosea and Shampine, 1996), available in MATLAB, 
is used to solve the matrix system. The numerical results in solidification are validated by comparing the temperature 
fields obtained by the approximate Neumann’s analytical solution (Ozisik, 1993) and the numerical solution under the 
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same conditions as the analytical solution. The thermal properties used for the simulations are taken from n-
Hexadecane. Figure (3) shows the temperature-time variations for two points inside of the PCM (these points are taken 
from the bottom side of the sample). The maximum relative errors found between the numerical and analytical results 
are smaller than 0.1%. 

 
 
 
 

  
   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Numerical validation 
 
3. Direct model 
 

For the direct model only the heat transfers in the product is considered. Here, the assumptions adopted for the 
PCM are the same as those used in paragraph (2). Figure (4) presents this model. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. Direct model 
 
In Fig. (4), we can notice that the outputs of the direct model, T1c(t) and T2c(t), are determined in two steps. Initially, 

T1c(t) is evaluated from the boundary conditions ϕ"1(t) et T2(t), Fig. (4.a). Afterwards, T2c(t) is calculated from the 
inputs T1(t) and ϕ"2(t), Fig. (4.b). These boundary conditions are genereted by the numerical simulations of the 
experimental set-up, paragraph (2).  The system of equations below describes the direct model.  
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  at y= L1+L(t), for t > 0, Fig. (4.b)                                                                           (18.b) 

 
T(y,0) = T(y)  in  L1 < y < L1+L(t)                                                                                                                             (19) 
 
For the system of equations above, Eq. 16-19, the same thermophysical properties-temperature relationship used in 

paragraph (2) are applied here. Its numerical solution is similarly as those described in paragraph (2.1).   
 

4. Parameter estimation 
 

The parameter estimation problem is solved by minimizing the least-squares norm with respect to the unknown 
parameters. The objective function, S(P, t), is written in matrix form as:  

 
S(P,t) = [Y(t) - T(P,t)]T.[Y(t) – T(P,t)]                                                                                                                      (20) 
 

where P is the vector that contains the parameters to be estimated (the thermophysical properties of the PCM); Y is the 
matrix of the measured data, Eq. (22), at time t; and T is the matrix of the calculated data, Eq. (23), which is a function 
of P and t. The superscript T denotes the transposed. 
 

 From Fig. (2) we can show the values of P, so :   
 
P = [λref, αl, αs, ∆λ, Cps, Cpl, ∆H, ∆T, Tf ]                                                                                                                 (21) 
 
The measured data, Y, are obtained by numerical simulations of the experimental set-up, paragraph (2). These 

simulations provide the transient temperatures measurements on the interfaces of the metallic blocks/sample, as shown 
in Fig. (1). So: 

 
Y = [T1(t), T2(t)]                                                                                                                                                         (22) 
 
By the direct model, Fig. (4), we can obtain the values of T :   
 
T = [T1c(t), T2c(t)]                                                                                                                                                       (23) 
 
The Levenberg-Marquardt’s method (Beck and Arnold, 1977, Orlande and Ozisik, 2000) is used to optimize the 

values of the vector P so as to minimize S(P,t). The interactive algorithm is given by: 
 
Pk+1 = Pk + [(J(P)k)T.J(P)k + µk.Ωk]-1.(J(P)k)T.[Y – T(Pk)]                                                                                        (24) 
 

where the superscript k denotes the number of iterations, µ is a damping parameter and Ω is a diagonal matrix:   
 

Ωk = diag[(J(P)k)T.J(P)k]                                                                                                                                           (25) 
 

where J(P) the sensitivity matrix or Jacobian matrix:   
 
J(P) = [—P [T(P,t)]T]T                                                                                                                                                 (26) 

 
and its reduced form is: 
 

J*(P) = P. J(P)                                                                                                                                                          (27) 
 
The analysis of J*(P) is important (Raynaud, 1999, Orlande and Ozisik, 2000) because its columns reveal the 

sensitivity of the outputs variables of the direct model, T = [T1c(t), T2c(t)], with respect to each required property (λref, 
αl, αs, ∆λ, Cps, Cpl, ∆H, ∆T, Tf ).   
 
5. Sensitivity coefficient analysis    

 
We chose the paraffin PPW-20 as material-test whose the thermophysical properties are modeled according to the 

functions showed in paragraph (2) with the followings parameters: λref = 0.1412 W.m-1.K-1 (for Trefλ = 413.15 K),             
αl = -0.000193 W.m-1.K-2, αs = -0.000287 W.m-1.K-2, ∆λ = -0.0801 W.m-1.K-1, Cps = 2500 J.kg-1.K-1,                           
Cpl = 2670 J.kg-1.K-1, ∆H = 160000 J.kg-1, ∆T = 9 K et Tf = 329.15 K.  
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The experimental methodology is as followed: at the beginning, the temperature in the sample and the two metallic 
blocks, Fig. (1), is uniform and higher than the phase change temperature, Tf. The sample is then solidified by 
decreasing simultaneously the temperatures Tοο1(t) and Tοο2(t). After its total solidification, these temperatures are 
increased until the sample returns to the liquid phase. All this process is simulated by the model described in paragraph 
(2). During the simulation, transient temperatures, T1(t) and T2(t), and densities of the heat fluxes, ϕ"1(t) et ϕ"2(t), are 
calculated at the extremities of the PCM. These values are introduced as boundary conditions in the direct model, 
paragraph (3).     

The solution of the direct model, paragraph (3), allowed the numerical determination of the sensitivity matrix, Eq. 
(27). Each column of this matrix is plotted as shown in Fig. (5), (6) and (7). All of the curves present five important 
regions. Region I: the sample is in the liquid phase (liquid zone 1). Region II: the solid and liquid phases coexist            
( mushy zone 1). Region III: the sample is in the solid phase (solid zone). Region IV: the liquid and solid phases coexist 
(mushy zone 2). Region V: the sample returns to the liquid phase (liquid zone 2). 

 
 

 

 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Sensitivity coefficients at the bottom of the sample: y = L1 , Fig. (4) 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 
Figure 6.  Sensitivity coefficients at the top of the sample: y = L1 + L(t), Fig. (4) 
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Figure 7. Sensitivity coefficients of Tf(y=L1 )  (at the bottom of the PCM ) and Tf(y=L1+L(t)) (at the top of the PCM) 
 

In Fig. (5) and (6), we can notice that the parameters ∆λ and λref cannot be simultaneously estimated in region III 
because they are linearly dependent. However, ∆λ can be estimated from the temperature measurements in region III, 
and λref  from the times corresponding to the regions IV and V. 

The values of the sensitivity coefficients of the parameters ∆λ, ∆H, Tf, and ∆T vanish in the liquid zones 1 and 2. In 
fact, these properties characterize only the phase change of the product. 

There is no linear dependence among the parameters ∆H, Cpl, Cps. Moreover, the direct model has a good 
sensitivity to these parameters. We can easily estimate them in the regions where their sensitivity coefficients are more 
important, i.e., in the regions I, II and IV. 

The values of the sensitivity coefficients of the parameters αs and αl are not important. This is because the thermal 
conductivity of this PCM varies weakly in the solid and liquid phases. In fact, the values of these parameters represent 
only 2% of variation of the thermal conductivities (in a 50 K temperature range ) in the two phases. 

The Fig. (7) shows that the direct model has a strong sensitivity to the phase change temperature. In fact, Tf is the 
parameter which determines the moment when the phase change latent heat is released or absorbed. In spite of its 
important sensitivity, its estimation is delicate because an important error in its initial value (more then 7%) can 
generate a divergence in the program. Then, it is important to have a priori information of this parameter. 

 
6. Results and discussion   

 
Thanks to the sensitivity coefficients analysis, paragraph (5), the Levenberg-Marquardt’s algorithm (Beck and 

Arnold, 1977, Orlande and Ozisik, 2000) was optimized. The identification iterative methodology that has been used is 
resumed in the following basic steps:  

Step 0. calculate S(Pi,t), Eq. (20), by using the initials values adopted to the vector Pi, Eq. (21).         
Step 1. estimates λrefi+1 by using Levenberg-Marquardt’s method with the temperature values, Eq. (22-23), 
corresponding the region V, see Fig. (5) and (6). 
Step 2. estimates Cpli+1 by using Levenberg-Marquardt’s method with temperature values, Eq. (22-23), 
corresponding the region I, see Fig. (5) and (6). 
Step 3. estimate αli+1, αsi+1, ∆λi+1, Cpsi+1, ∆Hi+1, ∆Ti+1 and Tfi+1 by using Levenberg-Marquardt’s method with 
temperature values, Eq. (22-23), corresponding the regions II, III and IV, see Fig. (5), (6) and (7). 
Step 4. repeat steps 1, 2 and 3 until satisfy the stop criteria below: 
 
N-1[S(Pi+1,t)]-1/2 < ε                                                                                                                                                  (28) 

 
where N is the number of measured data and i denotes the number of iterations of the identification methodology. ε is 
tolerance value (here, ε ≈ 2e-2). 

For the test-case presented in Tab. (1), we suppose that the parameters αl and αs are known. The other parameters 
are optimized by minimizing the objective function, S(P, t), using the Levenberg-Marquardt’s interactive procedure, Eq. 

Tf (y = L1) 
Tf (y = L1+L) 
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(24), and the iterative methodology described above. In spite of the initial values being distant 60% approximately of 
the real data, the maximal relative error is smaller than 0.5%.  

 
Table 1. Estimated parameters – slopes (αs and αl) are assumed to be known. 

 λref Cpl ∆H Cps ∆λ ∆T Tf 
 W.m-1.K-1 J.kg-1.K-1 J.kg-1 J.kg-1.K-1 W.m-1.K-1 K K 

Real data 
Initial values 

0.1412 
0.0847 

2670 
1602 

160000 
95000 

2500 
3000 

-0.0801 
-0.0481 

9.00 
7.00 

329.15 
323.15 

Iteration, i =1 0.1410 2719 174659 2657 -0.0777 19.19 338.22 
Iteration, i =3 0.1412 2669 162303 2502 -0.0802 9.86 329.63 
Iteration, i =5 
(estimated) 0.1412 2669 160155 2499 -0.801 9.04 329.17 

Relative error 
(%) 0.00 0.04 ≈ 0.00 ≈ 0.00 0.00 0.44 ≈ 0.01 

 
The second test-case, Tab. (2), takes into account all of the parameters suggested for the thermal characterization of 

the paraffin PPW-20. We can notice that the initial values for the required parameters are far from the real ones in 20% 
approximately. The Levenberg-Marquardt’s method presents a good convergence, from the third iteration of the 
iterative methodology, the average of the relative errors of all of the parameters is 0.1% approximately. 

 
Table 2. Estimated parameters – slopes (αs and αl) are identified.  

 
7. Conclusions  
 

The sensitivity coefficients analysis provided the essential informations for the optimization of the estimation 
algorithm. (i) We saw the regions where their variations were more important. (ii) We noticed the linear dependence 
between ∆λ and λref. (iii) We observed that a possible estimation of Tf can be done if we have a priori informations of 
this parameter. 

Initially, the estimations results (obtained with simulated transient measurements of the temperatures) were very 
satisfactory. Indeed,  the Levenberg-Marquardt’s method seems to provide accurate estimates for the thermophysical 
properties. However, the results presented in Tab. (1) and (2) consider that the simulated temperatures have not 
measurement errors. A complementary study, which take into account the measurement errors, is in progress. 
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 λref Cpl ∆H Cps ∆λ αl αs ∆T Tf 
 W.m-1.K-1 J.kg-1.K-1 J.kg-1 J.kg-1.K-1 W.m-1.K-1 W.m-1.K-2 W.m-1.K-2 K K 

Real data 
Initial values 

0.1412 
0.1694 

2670 
2136 

160000 
128000 

2500 
3000 

-0.0801 
-0.0641 

-0.000193 
-0.000150 

-0.000287 
-0.000137 

9.00 
7.00 

329.15 
323.15 

Iteration, i =1 0.1429 2720 158675 2522 -0.0788 -0.000195 -0.000197 10.75 330.05 
Iteration, i =3 
(estimated) 0.1412 2669 160340 2499 -0.0801 -0.000193 -0.000287 9.09 329.20 

Relative error 
(%) 0.00 0.04 0.21 0.04 0.00 0.00 0.00 1.00 0.02 


