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Abstract. The study of the atmospheric boundary layer flow over two-dimensional low-slope hills finds numerous applications in 
engineering and meteorology, such as the sitting of wind turbines, the estimation of wind loads on transmission towers and antennas 
and the development of computational programs to solve the atmospheric dynamics, called models. In this paper, a magnitude order 
analysis is applied to the momentum equations governing the airflow on the atmospheric boundary layer over low-slope hills. The 
method used is known as Prandtl’s boundary layer simplifications, because it was originally used by Prandtl in 1904 to solve the flow 
over a flat plate. As a result of the analysis, simplified equations similar to Prandtl’s are obtained. To the authors’ knowledge, those 
equations are new in the context of atmospheric boundary layer studies. They cannot be solved analytically, but they still 
represent a great simplification to the complete equations of motion and, therefore, may be useful in numerical weather 
prediction schemes. 

 
Keywords: Atmospheric boundary layer, Prandtl´s boundary layer simplifications, micrometeorology.  

 
 
1. Introduction 
 

Topography is known to affect the Atmospheric Boundary Layer (ABL) flow in a number of ways. The most well 
known are the drag enhancement and the mean velocity speed-up. Also very important, however, are the modifications 
observed on the turbulence structure and, consequently, on the vertical diffusion of heat, momentum and scalar 
concentration. A simplified version of the general problem of airflow over complex terrain is the airflow over hills. It has 
been the subject of intense studies by engineers, meteorologists and environmentalists through the last decades. Studying 
the equations that govern the ABL flow over hills is the aim of the present paper. 

The most important engineering application for the knowledge of airflow modifications induced by topography is 
probably the sitting of wind turbines in regions of enhanced wind speed, i.e., the top of the hills. Also very important is the 
estimation of wind loads on structures such as towers and antennas, which are preferably located on hilltops for obvious 
reasons. Other structures as chimneys and buildings are also often located on hilltops and constitute another important 
application. The modified wind pattern is also important information in the quantification of pollutant dispersal generated 
by industries located on hilly areas.  

To meteorologists, the main application of flow over hills studies is in the development of computer programs to solve 
the atmospheric dynamics, called models. These models depend critically on the assumed velocity profile for the 
Atmospheric Boundary Layer. An equations describing the velocity distribution near the surface over flat terrain (the 
Logarithmic Law) has been widely used as a lower boundary condition during the integration of the governing equations in 
these models, in spite of the fact it is assumedly not valid for hilly terrain. The reason is that it is necessary to avoid the 
integration to be carried out all the way down to the surface, where strong velocity gradients would require a rather fine 
computational mesh. This application suggests that it is of great interest to have an expression for the velocity distribution in 
the airflow over hills, as recently proposed by Pellegrini and Bodstein (submitted). It also suggests that in case such an 
expression is not available, it would be useful to have simplified governing equations that could represent the wind flow 
near the surface. Other meteorological applications for such a relation are the direct modeling of u  and the development of 
high-order turbulence closure schemes. Finnigan (1992) and Taylor and Lee (1984) list a number of other relevant 
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meteorological and engineering applications to them in the engineering and atmospheric science. It is interesting to observe 
that, irrespective to the area, they could help improve our knowledge of the atmospheric flow over complex terrain. 

Several descriptions of the flow over hills and complex terrain are available on the literature. An important part of this 
study was started with the seminal paper by Jackson and Hunt (1975) in which the flow field was divided into two sub-
layers, each with different flow dynamics, using asymptotic expansion techniques. The validity of their analysis was then 
extended to three dimensions by Mason and Sykes (1979). Sykes (1980) also made other important contributions to the area 
showing (among other things) that it was necessary to include a third layer in order to consistently impose the surface 
boundary condition. Another contribution was given by Newley (1985), in the form of a detailed discussion on the various 
height scales of the problem. He also numerically modelled the problem and compared his results very favourably with field 
data (also on Belcher et al., 1993). Two years latter, Zeman and Jensen (1987) solved the turbulence equations in streamline 
co-ordinates, establishing the role of each term and pointing out the importance of curvature effects.  

The linear analyses initiated by Jackson and Hunt (1975) was further revised by Hunt et al. (1988a) and the result was 
the division of the flow field into four regions. The study of Hunt et al. (1988b) extended the results to stably stratified flow. 
The division proposed in these two papers has deeply influenced the understanding of the flow structure we have to the 
present days. Belcher (1990) refined the analysis even further, proposing a smooth match between the inner and outer 
regions.  

An excellent review of the available studies on airflow over complex terrain is presented in Wood (2000), where 
numerical and observational studies are also included.  

In this paper, an order of magnitude analysis is applied to the momentum equations governing the airflow on the 
atmospheric boundary layer over low-slope hills. The method used is known as Prandtl’s boundary layer simplifications, 
because it was originally used by Prandtl (1904) to solve the flow over a flat plate. Following Finnigan (1983), the 
momentum equations are written in streamline coordinates. As a result of the analysis, simplified equations similar to 
Prandtl’s are obtained. To the authors’ knowledge, those equations are new in the context of atmospheric boundary layer 
studies. They cannot be solved analytically, but they still represent a great simplification to the complete equations of 
motion and, therefore, may be useful in numerical weather prediction schemes. The numerical implementation of the 
proposed set of equations in a neutrally stratified atmospheric model is currently under way. Some characteristics of the 
equations are analysed to conclude the paper. The proposed formulation is not complete due to the fact that no simplified 
energy equation and turbulence closure are present in this work. 

 
2. Definition of the problem and governing equations 

 
At the onset of the present analysis, it is important to realise that studies of airflow over hills should be considered as 

stepping-stones to the real problem that is airflow over complex terrain. It lies decades in the future the day when all the 
complexities of the real flow will be treated by a single theory. At the moment, the real problem is simplified in one of two 
ways: the terrain is considered as a succession of hills with a certain degree of symmetry (a sinusoidal wave, for example) 
or the hills are considered isolated and treated separately. The present study proceeds in the latter way. 

The airflow around a hill is determined by its shape as well as by its height and length. In a great part of the works 
found in the literature, the former aspect is not considered. The reason is that any attempt to do so generally exceeds the sate 
of the art. Therefore, the shape of the hill is only indirectly acknowledged through the rate between its height and length. 
The present work purposes to take the real shape if the hill into consideration using streamline coordinates.  

In the following study, a hill is defined following Kaimal and Finnigan (1994), as a topographical feature with 
characteristic length (to be defined below) less than 10 km. Greater features are considered mountains. The definition of low 
slope hill is a little bit unusual. For our purposes, a slope is considered low when no separation occurs. The definition is 
formulated this way because, as discussed in section 3, the present results do not apply to the separated region. According to 
Kaimal and Finnigan (1994), available data suggests that a critical downwind hill slope angle for separation is about 10o in 
neutral atmosphere. This leads to hill heights of order of 1 km (according to our definition of hill) and occurs in wind flows 
over very rough two-dimensional ridges.  

Under non-neutral conditions, the influence of the static stability of the atmosphere on the mean flow must be 
quantified. This can be done by a number of non-dimensional parameters, the most usual being the Grashof and Froude 
numbers (the latter only making sense if the atmosphere is stably stratified). In this work, static stability is considered 
through the Grashof number in section 3, where limits for the applicability of the proposed expressions are obtained. As for 
the critical downwind hill slope angle for separation in non-neutral atmosphere, the researched literature provides no 
suggested value. Therefore, the interaction between critical angle for separation and static stability is not studied here. 
However, the equations derived in this work are valid for wind flows over hills subject to the Grashof number restrictions 
derived in section 3 as long as separation does no occur, i.e., as long as the slope is kept low. 
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2.1. Definition of the problem 
 

Consider an isolated two-dimensional low-sloped vegetated hill in the middle of an otherwise flat vegetated terrain of 
constant or slowly varying surface properties. Suppose a period of the day where the flow can be considered statistically 
stationary. Figure 1 illustrates the idealised flow. The vertical coordinate, z, is defined as the height above the local terrain, 
and the horizontal coordinate is x. The main geometrical parameters of the hill are its height, h, its surface curvature radius, 

, and its horizontal length scale, LhR h. The curvature radius is defined as usually in Calculus, as 
2 3/ 2 2 2( ) ) | |dh dx d h dx

hR <

(1+ . It can be physically interpreted as the radius of a circle tangent to a given curve with the same 
local rate of variation of its direction along the curve. Figure 1 shows the local radius of curvature of the hilltop (HT). This 
definition implies that  at the HT. The length scale L0 h is defined as the horizontal distance from the HT to the half-
height point. The location upwind of the hilltop where the velocity profile is not perturbed by the presence of the hill is 
called the reference site (RS).  

The vertical profile of the mean horizontal wind at RS, 0 ( )u z , is considered to be essentially logarithmic and is given 
by the well-known logarithmic law. Over the hill, the mean velocity is given by  

 
 0( , ) ( ) ( , ),u x z u z u x z= + ∆  (1) 
 
where the speed-up u∆  is caused by topographic and surface property variations. The speed-up is positive at HT because 
the flow is accelerated to satisfy the continuity equation, and is negative somewhere at the upwind slope because of hill 
curvature effects. Dividing the speed-up by the RS velocity, the relative speed-up, S∆ , is obtained: 

 

0 0

( , ) ( , )( , ) 1
( , ) ( , )

u x z u x zS x z
u x z u x z
∆

∆ = = − . 

 

u0(z)+∆u(x,z)

u0(z) 
z

u0(z) 

hh/2 Lh

Streamline

Rh 

 
Fig.1 – Idealised flow over a low-slope hill 

 
Over the last decades many works have been focused on determining the vertical profiles of u∆  and ∆ , and also on 

calculating the maximum value of ∆  and the height where the maximum of 
S

S u∆  occurs. Except for Lemelin et al. (1988), 
most of the results are valid only for the HT, although it has been recognised that results applicable for the upwind and 
downwind slopes would be exceedingly valuable. 
 
2.2. Governing equations for the ABL 

 
There has been some agreement upon the fact that a curvilinear coordinate system is convenient to treat the ABL 

equations. Finnigan (1983) recommends the use of streamline coordinates and describes its advantages in the study of flow 
over hills. Following Finnigan (1983), the time-averaged governing equations for 2D, stationary flow in streamline 
coordinates under the Boussinesq approximation, can be written as 
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2 2 2 2

0 0

1 ' ' ' ' ' ' '2 x x
a a

u p u u w u w u w Tg V
L x x z L R Tρ

∂ ∂ ∂ − ∆
= − − − + + − +

∂ ∂ ∂
 (3) 

and 

 
2 2 2 2

0 0

1 ' ' ' ' ' ' '2 z z
a

u p w u w u w u w Tg V
R z z x R L Tρ

∂ ∂ ∂ − ∆
= − − − + + − +

∂ ∂ ∂
, (4) 

 
where the characteristic lengths, La and R, given by 
 

 1 1

a

u
L u x

∂
=

∂
 (5) 

and 

 1 1 u
R u z

∂= Ω+

∂ 

 (6) 

and the viscous terms by 
 

 
2 2

2 2 2

2 1
x

a

u u u u uV
L x R zx z R

ν
 ∂ ∂ ∂ ∂

= + − − − ∂ ∂∂ ∂ 
  (7) 

 

 
2 1

z
a a

u u u uV
x z L x x R RL

ν
 ∂ ∂ ∂  = − + + +  ∂ ∂ ∂ ∂   

  (8) 

 
In the preceding set of equations, x represents the direction parallel to the streamlines and u  and  the mean and 

turbulent velocities in the x direction, respectively. The direction normal to the streamlines is represented by z, and the 
corresponding turbulent velocity by . The thermodynamic mean pressure is denoted by 

'u

'w p  and the mean temperature by 
T . Symbols T  and 0 0ρ  represent the reference temperature and density of the environment, respectively, considered 
hydrostatic with the air assumed to be an ideal gas. The difference between the mean temperature and the environmental 
temperature is denoted by T∆ . The components of gravity in the x and z directions are denoted by gx and gz, respectively, 
and the dynamic viscosity by ν.  

In Eqs. (3) and (4), La can be interpreted as a length scale for the acceleration term in the x direction, whereas R can be 
interpreted as the local curvature radius of the streamlines in 2D flows. In Equation (6), Ω represents the mean component 
of vorticity in the direction normal to the plane of the flow. As Finnigan (1983) points out, Ω is an invariant of the 
transformation and therefore is written in the same way in both the streamline and the Cartesian coordinate systems. 
Finnigan et al. (1990) observes that ‘both La and R are signed quantities, being positive if their local centres of curvature lie 
in the positive z and x directions, respectively’. For real hills, this means that R < 0 in the vicinity of the HT and R > 0 in the 
remaining parts of both slopes. It is interesting to notice that R and La are also properties of the velocity field. This is one of 
the most interesting differences between the streamline coordinates and more conventional systems as the terrain following 
coordinates: the geometric properties of the former are determined by the flow itself and not externally imposed.  

In the set of Eqns. (3)−(8), the mass conservation equation is not included because it is automatically satisfied by the 
transformation. Finnigan (1992) shows that it must be substituted by the geometrical identity 

 

 2

1 1 1

a ax L z R L R
 ∂ ∂  + = +   ∂ ∂   

2

1  (9) 

 
A final interesting detail to be noticed on equations on Eqs. (3) and (4) is the fact that the simplification of the mean 

advection terms comes at the expense of extra turbulence terms. In fact, in both equations the advection terms were reduced 
from two to one, which represents advection along a streamline. At the same time although, turbulence terms as 2 ' 'u w R  
were added to the right hand side of these equations as a consequence of the distorted coordinate system. 
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3. Magnitude order analysis 
 

In this section we wish to derive the ABL analogue of Prandtl’s (1904) boundary layer expressions valid for flat plates. 
Therefore, we begin with an overview of the method to be used. In its modern version (Schetz, 1993, for example) Prandtl’s 
method consists in, first, making the governing equations of the problem non-dimensional. This must be done in such a way 
that every term of the equations is turned into a combination of order one variables multiplied by a non-dimensional 
parameter. Depending on the nature of the problem, important phenomena may occur very close to the boundaries of the 
flow, so that regions where the non-dimensional normal coordinate is nearly zero must be investigated. The next step 
therefore is to ‘stretch’ the non-dimensional normal coordinate through a variable transformation. This is achieved dividing 
the normal (non-dimensional) coordinate by a (non-dimensional) small parameter obtained during the preceding step. In 
Prandtl’s (1904) work, the procedure was used to mathematically magnify the thin region of the flow field where friction 
forces are important. At this point, all terms of the equations are a combination of order one variables and non-dimensional 
terms and it is easy, therefore, to compare them and to eventually neglect the lowest order ones. After this simplification, 
the resulting equations can be transformed back to dimensional form and solved, if they are simple enough. Evidently, the 
choice of the parameters used to render the equations non-dimensional and to stretch the vertical coordinate is crucial in the 
method.  

To perform the analysis described above, the notation proposed by Tennekes and Lumley (1972) is adopted. If the error 
involved is less than 30%, the symbol  is used. Coarser approximations are represented by ∼. This symbol is also used 
whenever two or more terms of an equation are compared. After the dominating terms have been established, the simpler 
notation = is used in the resulting equation, bearing in mind that the error can be made as small as necessary in some 
appropriate asymptotic limit. Whenever M is much greater (at least one order of magnitude larger) than N, the notation 

≅

M N>>  is used. 
To begin the analysis, Eqs. (3) and (4) are made non-dimensional by the following variable transformations: hX x L≡ , 

hZ z L= , gU u U= , 2
0( )gP p Uρ=  e ad

g h
U LΩ = Ω , where Lh is considered the horizontal length of the hill and Ug is 

the geostrophic wind speed. Although ABL problems usually do not consider Coriolis force effects, the geostrophic velocity 
is used because it represents an upper limit of the ABL velocity in most situations. The turbulence terms in Eqs. (3) and (4) 
can be made non-dimensional by the friction velocity, u . Dropping, for simplicity, the overbars representing the time 
average, the result is 

*

 

 
2 2 2 2

2
*

' ' ' ' ' ' '2 Gr ad
R x R xad ad ad

a a

U P U U W U W U W V
X X ZL L R

ε
 ∂ ∂ ∂ −

= − − + − − − +∂ ∂ ∂ 
2ε ε  (10) 

and 

 
2 2 2 2

2
*

' ' ' ' ' ' '2 Gr ad
R z R zad ad ad

a

U P W U W U W U W V
Z Z XR R L

ε
 ∂ ∂ ∂ −

= − − + − − − +∂ ∂ ∂ 
2ε ε , (11) 

where  

 *
*

g

u
U

ε =  (12) 

and 

 1
ReRε =  (13) 

 
are the small parameters. They are indeed small, since * gu U<<  and  in the ABL. In Eqs. (12) and (13), Re 1>>

Re g hU L ν=  is the Reynolds number and 3 2
0Gr ( ) ( )x x hg L Tν= ∆ T  and 3 2

0( ) ( )z z hGr g L Tν= ∆ T  are the Grashof 

numbers in the x and z directions, respectively. The variables and  are defined as expected as ad
aL adR

 

 1 1
ad

a

U
U ZL

∂
=

∂
 (14) 

and 
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 1 1 ad
ad

U
U ZR

∂= Ω +

∂ 

. (15) 

 
Finally, the non-dimensional viscous terms are 
 

 
2 2

2 2 2

2 1ad
x ad ad ad

a

U U U U UV
X ZX Z L R R

 ∂ ∂ ∂ ∂
= + − − − ∂ ∂∂ ∂ 

  (16) 

and 

 
2 1ad

z ad ad ad ad
a a

U U U UV
X Z X XL R R

 ∂ ∂ ∂  = − + + +  ∂ ∂ ∂ ∂   L  . (17) 

 
The preceding equations could be simplified just considering that the atmospheric flow has typically very large 

Reynolds numbers. This would allow the viscous and turbulent terms to be neglected in Eqs. (10) and (11). Nevertheless, 
this simplification would come at a high price. As the viscous terms are neglected, the order of the partial differential 
equations falls from two to one, meaning that the no-slip boundary condition can no longer be satisfied. The result obtained 
with this kind of consideration is seldom useful in ABL studies. Furthermore, the transformation proposed to render z non-
dimensional does not guarantee that 1Z , complicating the order of magnitude comparisons to come. 

Both problems mentioned above were recognised by Prandtl in his original analysis. To avoid them, the author 
proposed the following transformation of the vertical coordinate: 

 

 *

h

Z zZ
Lε ε

= = , (18) 

 
where ε  is a small parameter to be specified.  

The idea behind Eq. (18) is that it is possible to choose an adequately small value to ε so as to mathematically ‘stretch’ 
the thin region next to the surface where the viscous terms cannot be neglected. To clarify how the method works, suppose 
as Jackson and Hunt (1975), Hunt et al. (1988b) and Kaimal and Finnigan (1994) do (for other purposes), the existence of a 
region where mean flow advection and cross-stream divergence of shearing stress balance each other in the ABL. Equation 
(11) with Eq. (14) substituted into it then yields 2

* ( ' 'X U W Zε )U U∂ ∂ ∼ ∂ ∂
2

*~Z
. Recalling that all variables, except possibly Z, 

must have magnitude order one, the previous relation suggests that ε . As hZ z L= , this implies that the balance 

between inertia and turbulence occurs in a region where )~ 22
* gh LLz =ε ( 2

*h Uu . Conversely, this shows that the existence 

of a region where advection and shearing stress balance could be accessed substituting a stretched variable * 2
*Z Z ε=  of 

order one on Eq. (11). Therefore, using Eq. (18) with 2
*~ε ε  and assuming that after the stretching 1~*Z , implies that 

2
*~Z ε . Substituting this conclusion in Eq. (12) readily yields 2

*X ε ( ' 'U W Z )U U∂ ∂ ∼ ∂ ∂  as before. From Eq. (18) and 

1~*Z , again it follows that Lz ε~ , meaning that advection and shearing stress balance in a region defined by 
)( 22

*
2
* gh UuL=~ hLz ε . 

Returning to the problem, Eq. (18) is substituted into Eqs. (10) and (11) and the viscous terms and  are written 
out. The result is 

adR

 

 

2 2 2 2
2

* * *

22 2
2

2 2 *2 2 * 2 *

' 1 ' ' ' ' 1 ' '2

1 2 1 1Gr

ad
ad ad

a a

ad ad
R x R ad

a

U P U U W U W U W U
X X UL Z L Z

U U U U U
XX Z L U Z U Z

ε ε
ε ε

ε ε ε ε
ε ε ε

 ∂ ∂ ∂ − ∂ = − − + − − Ω +  ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ ∂   − + + − − Ω + − Ω +    ∂∂ ∂ ∂ ∂     

 (19) 

and 
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2 2 2 2
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* * *

22 2
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ad ad
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X X UL Z L Z

U U U U U
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ε ε
ε ε

ε ε ε ε
ε ε ε

 ∂ ∂ ∂ − ∂ = − − + − − Ω +  ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ ∂   − + + − − Ω + − Ω +    ∂∂ ∂ ∂ ∂     

 (20) 

 
The analysis of the preceding equations may be simplified with a change in notation. The advective term on the left-

hand side of Eq. (19) may be denoted Ax. On the right-hand side, we denote the pressure term by Px, the turbulence terms 
(second and third) by Tx1 and Tx2, the curvature terms (fourth and fifth) by Cx1, and Cx2, the buoyancy term (sixth) by Bx and 
the viscous terms (the remaining) by Vx1, ... ,Vx5. Analogous definitions are used for Eq. (20). After this change in notation 
and after multiplying Eqs. (19) and (20) throughout by ε2 and ε, respectively, we obtain 
 
 ( ) ( )2 2 2 2 2 2 2 2 2

* 1 2 1 2 1 2 3 4x x x x x x R x R x x x x 5xA P T T C C B V V V Vε ε ε ε ε ε ε ε ε ε ε ε= − − + − − − + + − − +V  (21) 
and 
 ( ) ( )2 2

* 1 2 1 2 1 2 3 4z z z z z z R z R z z z zA P T T C C B V V V Vε ε ε εε ε= − − + − − − + − + + +  (22) 
 

Following Prandtl’s method, suppose now that there is a region where the largest viscous terms cannot be neglected in 
Eqn (21) in comparison with the advective term. This imposes that 2

Rε ε∼ . If we extend this idea to the largest turbulent 
terms, one further restriction is imposed, namely 2

*ε ε∼ . Substituting these two restrictions back into Eqns. (21) and (22) 
yields,  
 

 ( ) ( )3
1 2 1 2 1 2 3 4R x R x R R x R x R x R x R x R R x x R x x x5A P T T C C B V V V Vε ε ε ε ε ε ε ε ε ε ε= − − + − − − + + − − +V  (23) 

and 
 ( ) ( )5 / 2

1 2 1 2 1 2 3 4z z R z R z z R z R z R z z z zA P T T C C B V V V Vε ε ε ε ε= − − + − − − + − + + +  (24) 
 

We now have two restrictions over ε, namely 2
Rε ε∼  and *ε ε∼ , that cannot be satisfied at the same time. This fact 

points out that at least two regions must be defined to adequately describe the boundary layer: one where turbulent effects 
are important and another where viscous effects are important. Most analyses found in literature fail to acknowledge this 
fact, which is implicit in previous works of Pellegrini (2001) and Pellegrini and Bodstein (2002 and submitted). Even tough, 
the approximation proposed here is as useful as Prandtl’s (1904) simplification. 

Keeping only first order terms in Eqns. (23) and (24) results in 
 
 ( ) ( )2

2 2 2 4 5x x x x R x x x xA P T C B V V Vε= − − − − + − +  (25) 
and 
 5 / 2

z z R zA P ε= − − B  (26) 
 

Keeping the buoyancy terms in the preceding equations deserves some attention. Going back to Eq. (19), we see that 
3 2

0Gr ( ) ( )hx x xB g L Tν= = ∆ T . Consequently, xB  cannot be calculated in the scope of the present analysis because it 

depends on the vertical distribution of temperature, implicit in T∆ , which can only be calculated using the energy 
conservation equation, which depends on the static state of the atmosphere. On the lack of this information, xB  must be 
considered an external condition (or forcing, in the meteorological language) to the problem, which must then be known a 
priori if the question about keeping or not xB  in the simplified Eq. (19) is to be decided. As all terms in Eqs. (25) and (26) 
have order one, it is obvious that for the buoyancy term to be considered, one must have  

 
 2 1R xBε ∼  (27) 
and 

 5 / 2 1R zBε ∼ . (28) 
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It is also obvious that if 1~xR Bε  and 1~25
zR Bε , the buoyancy terms can be neglected. However, if 1~xR Bε  and 

1~25
zR Bε , these terms are the only remaining in Eqs. (25) and (26) and are said to dominate them. In such cases, as 

buoyancy forces are very strong, the atmosphere is evidently strongly diabatic and the Boussinesq approximation used to 
obtain Eqs. (3) and (4) fails as variations in ρ cannot be further neglected. Consequently, Eqs. (3) and (4) are no longer 
valid. The conservation of energy equation must also be considered in order to promote the necessary coupling between the 
velocity and temperature fields, case in which xB  ceases to be an external forcing. 

Equations (25) and (26), subjected to their respective constraints, can be returned to their dimensional form by 
substituting the definitions of the various terms and the non-dimensional variables, parameters and numbers back into them. 
The result is  

 

 
2 2

2
0 0

1 ' ' ' ' 12 x
a

u p u w u w T u u ug
L x z R T R zz R

ν
ρ 2

 ∂ ∂ ∆ ∂ ∂
= − − + − + − − ∂ ∂ ∂∂ 

 (29) 

and 

 
2

0 0

1
z

u p g
R zρ

T
T

∂ ∆
= − −

∂
, (30) 

 
valid for 2

*(hz L u U∼ )g . This single restriction corresponds to *ε ε∼ , which represents the larger limit established for z in 
the stretching process. It was chosen that way because otherwise the influence of the turbulent terms would be neglected. 
The restrictions to be fulfilled in order to keep the buoyancy terms are 
 
 2Gr Re 1x ∼  (31) 
for the x-momentum equation and  
 5/2Gr Re 1z ∼  (32) 
 
for the z-momentum equation with 3 2

0Gr ( ) ( )x x hg L Tν= ∆ T , 3 2
0Gr ( ) ( )z z hg L Tν= ∆ T  and Re g hU L ν= . If 1~Re2

xGr  

or 1~ReGr 25
z , the buoyancy terms can be neglected in their respective equations and if 1~Re2

xGr  or 

1~ReGr 25
z , the energy conservation equation must be taken into account. 

 
4. Conclusions 
 

In the present work, Prandtl’s method was used to simplify the ABL momentum equations for the airflow over low-
slope hills. To the authors’ knowledge, the resulting equations (Eqns. (29) and (30)) are new in the context of ABL studies. 
These equations cannot be solved analytically, but they still represent a great simplification to the original equations (Eqs. 
(3) and (4)). The simplified equations obtained here can be useful in making atmospheric mesoscale models give better 
results. Such kind of implementation is currently under way. The model chosen for the task was the Pennsylvania State 
University and NCAR model, the MM5. As the ability of the MM5 model to simulate microscale processes is somewhat 
limited, it is proposed that Eqns. (29) and (30) are used following Taylor (1998). In his work, Taylor suggests that site-
specific wind forecasts could be made using formulations like Eqns. (29) and (30) and the predictions from larger scale 
models as input in a kind of nesting. To implement this idea, it is necessary first to write a microscale model able to solve 
Eqns. (29) and (30). The present study constitutes, therefore, the first step of a work in progress.  

Also under way is a study to verify if the present simplified equations may be further simplified by asymptotic, 
perturbation or magnitude order methods. One possibility is to follow Pellegrini and Bodstein (2002, submitted) and use the 
Intermediate Variable Technique. If this idea proves mathematically coherent, the resulting equations may have analytical 
solution. 

Comparing Eq. (29) to Eq. (3), we see that turbulent terms containing 2'u  and 2'w  and two out of the original five 
viscous terms were neglected. If, on one hand, the viscous terms are known not to bring many problems for the numerical 
solution, the turbulence terms, on the other, generally do. The simplification proposed on Eq. (3) implicates that two less 
prognostic equations for the turbulent terms are necessary. This fact suggests that more elaborate turbulence models can be 
used in the solution of a particular problem with the same computational effort. The same is true about Eq. (4), where all 
turbulent terms were neglected. Observing it we see that it is simply Euler’s equation in a direction normal to the 
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streamlines – all viscous terms were also neglected. This simplification is likely to be at least as good as considering the 
atmosphere hydrostatic, an operational option most atmospheric models use. 

Some hypothesis were implicitly made during the deduction of Eqns. (29) and (30) and deserve some consideration. 
When the stretching process was used for the z direction only, it was assumed that no sudden changes in the dependent 
variables of the problem occurred in the x direction. This condition only holds if all external forcings vary slowly in the x 
direction. This is why the terrain conditions were supposed to be slowing varying at the onset of our analysis. For example, 
hills covered with grass but with forested patches left are not covered by the theory. Neither are hills with humps, 
depressions or buildings on the slopes.  

The x-direction stretching only is also the reason why just low slope hills were considered. As the slope increases, the 
mean velocity gradients on both slopes also increase getting eventually to the point were separation occurs. The steep mean 
velocity gradients in the x direction are likely to spoil the approximations made here even before separation is reached. The 
fact that high atmospheric instabilities also lead to steep mean velocity gradients, implicates that no such cases are 
adequately modelled by Eqns. (29) and (30) either.  

Another implicit hypothesis that make Eqns. (29) and (30) fail under strong instabilities and high slopes scenarios is 
the assumption that atmospheric eddies are relatively small and have comparable sizes in the x and z directions. This 
hypothesis was done when it was assumed that turbulence terms in Eqs. (3) and (4) could be made non-dimensional by the 
same friction velocity, u , which is much smaller that the geostrophic velocity, resulting that * *ε  is in fact a small parameter. 
For Rε  to be also a small parameter, the analysis implicitly supposed that the Reynolds number is high. This is generally the 
case in atmospheric flows except for very low wind speeds and very small hills (remember that Re is defined using the 
characteristic length of the hill). 
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