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Abstract. The premixed gas combustion within an inert porous media allows the gas temperature inside the porous matrix to achieve 
temperatures higher than the adiabatic flame temperature based on the gas inlet condition. This is called superadiabatic 
combustion. This work analyses numerically the excess enthalpy in laminar free flames and in flames within porous media in order 
to estimate the amount of excess temperature originated by the presence of the porous matrix and the factors that affect it. The 
analysis is based on the excess enthalpy function previously defined in the literature, applied to the non-dimensional volume-
averaged equations for the combustion within an inert porous medium. A two-medium treatment is used to model the non-
equilibrium between the gas and the solid phases. The excess temperature is shown to be a function of the gas Lewis number, the 
ratio of the solid- and the gas-phasic effective conductivities and the porosity of the medium. By directly comparing the two-medium 
results with the results obtained for a laminar free flame, the effect of each of these variables is assessed.  
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1. Introduction 
 

The thermal non-equilibrium characteristic of the premixed gas combustion within an inert porous media results in 
enhanced combustion which can be used to augment the local heat generation or to burn fuel lean mixtures. This non-
equilibrium is basically a result of the large ratio between the solid thermal conductivity and the gas thermal 
conductivity, which can be several orders of magnitude larger than one, and of the finite interfacial heat transfer 
between the phases. This effect is also noted in the increase of the laminar flame speed when compared to free flames. 
This behavior has been known for a long time (Hardesty and Weimberg, 1974) and has found several applications in 
engineering, where the thermal and chemical non-equilibrium comes to the advantage of the design engineer (Oliveira 
and Kaviany, 2001). 

The usual explanation for the excess temperature is based on the enhanced heat transfer by conduction through the 
solid compared to the gas phase. The intramedium radiation between the solid particles can also play an important role 
in the heat transfer between the hot and the cold regions of the flame. This larger energy transfer through the solid 
matrix cause a substantial preheating of the gas phase, i.e., a heat recirculation (Howell et al., 1996). The heat 
recirculation adds to the energy released by combustion resulting in local temperatures in excess of the adiabatic flame 
temperature for the gas phase, which is called superadiabatic combustion (Echigo et al., 1991). This high temperature in 
the reaction region increases the reaction rate and allows for combustion of low heat content gas mixtures whose 
stoichiometric ratio lies under the flammability limit in laminar free flames. 

For gas Lewis numbers different from one, the laminar premixed free flames also present either an excess enthalpy 
or a defect enthalpy when compared to the unity Lewis number flames. The excess enthalpy, however, may not lead to 
excess temperatures. Our goal in this work is to analyze the energy concentration in the reaction zone of premixed 
stationary flames within inert porous media comparing it to the free flame premixed combustion in order to clarify the 
conditions necessary to achieve excess temperatures. It will be seen that the heat recirculation effect is a consequence of 
the combined effect of the modified Lewis number, the thermal conductivity ratio between the phases and the porosity 
of the solid matrix. 

In the following, the excess temperature for both laminar free flames and flames within a porous medium are 
discussed based on the literature on experimental and theoretical work.  
 
2. The Excess Temperature 
 

The energy concentration in the flame zone in premixed combustion, also known as excess enthalpy premixed 
combustion, has been investigated by several authors as a way of enhancing combustion to augment the local amount of 
heat generated or to allow for the combustion of low grade fuels (Hardesty and Weinberg, 1974; Howell et al., 1996; 
Babkin et al., 2003; and others). Babkin et al. (2003) show that excess enthalpy flames can exist in various systems and 
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combustion regimes. The total enthalpy is defined here as in the usual way in premixed flame theory (William, 1985). 
Their work lists various mechanisms that lead to energy concentration in the combustion front or, for example, mass 
diffusion in cellular flames for Le < 1, heat recuperation from the products in regenerative burners, dilution of reactants 
with exhaust gases in tunneling burners, heat recirculation through a solid matrix in porous burners, etc.. 

Even in free laminar flat flames it is possible to observe a certain degree of excess enthalpy. This occurs when the 
thermal diffusivity of the gas mixture αg exceeds the mass diffusivity D, i.e., when the molecular Lewis number is 
greater than unit. Wichman and Vance (1997), studying flame annihilation, have discussed the excess enthalpy in free 
flat flames. They calculated an excess enthalpy function H, both analytically using a thin flame asymptotic and 
numerically, and have showed the effect of the Lewis number on the H distribution along the flame, on the maximum 
value of H and its location. They showed that the excess enthalpy increases with the increase of the Lewis number. 
However, there is no indication when this excess enthalpy would produce temperatures above the adiabatic temperature.  

The combustion in porous media has been widely investigated in the last two decades (for example, see the reviews 
by Echigo, 1991, Howell et al., 1996 and Oliveira e Kaviany, 2001) as a way of producing and stabilizing an excess 
enthalpy flame. These works have shown theoretically and experimentally that the non-equilibrium between the phases 
in the reaction region can lead the gas temperature to a superadiabatic condition, i.e., the local gas temperature in the 
flame zone may exceed the adiabatic flame temperature for the inlet free stream conditions. The amount of this excess 
temperature varies with the geometric (including the size) and thermo physical properties of the medium (mainly, its 
thermal conductivity and optical thickness), the fuel and equivalence ratio, the gas velocity and the strength of the heat 
loss, both volumetrically and at the inlet and outlet ends. The experimental measurement of the excess temperature is 
always subjected to all the errors inherent to the temperature measurement in gas phase flames (mainly radiation and 
catalytic reaction) increase by the difficulties in realizing this measurement within a confined medium with tortuous, at 
most, millimeter sized, pores. Usually, the temperature probes come into contact with the solid phase, and the measured 
temperature is in fact some sort of gas-solid averaged temperature. Some strategies to minimize these measurement 
errors have been used by Mittal et al. (1997) and Min and Shin (1991). The theoretical prediction has relied in the use of 
volume-averaged models, coupled either with simple or detailed chemical kinetics, including the use either of a 
diffusive approximation or the solution of the RTE equation for the intra-medium thermal radiation, solved for an 
infinite of finite length porous media, usually subjected to radiation boundary conditions at both ends. One-dimensional 
or axi-symmetric two-dimensional analysis, usually with no other form of volumetric heat generation or loss, have been 
performed.  

Sahraoui and Kaviany (1994) solved the one-medium model (i.e., a model that assumes local thermal equilibrium 
between the solid and the gas phases - Tg=Ts=T), the two-medium model (which allow for surface heat transfer between 
the phases) - both are volume-averaged models - and the pointwise local conservation equations (i.e., the differential 
conservation equations applied to the gas channel and the solid phase particles) for a periodic medium composed of 
square particles assuming gas phase and effective Lewis number equal to unit and assuming an infinitely long medium. 
The solid-gas heat transfer coefficient was obtained from the pointwise solution, averaged on the particle surface, and 
used in the two-medium model. A one-step global chemical kinetic mechanism was used, with the parameters chosen to 
match measured values of flame speed for methane-air flames. For λs/λg = 100, equivalence ratio Φ=1 and a porosity 
ε=0.9, they obtained local excess temperatures of 252 K solving the pointwise local equations and 43 K solving the 
two-medium model. The one-medium model, although not intrinsically able to predict superadiabatic temperatures, 
predicted the flame thickness and flame velocity fairly well. We could argue that, as a parallel to a free flame, the one-
medium model should be able to predict excess enthalpies, if the authors had allowed for larger Lewis numbers. For the 
two-medium and the pointwise model an increase in the medium conductivity for the solid phase increases the axial 
heat conductivity and causes an augmentation of the excess temperature.  

Boshoff-Mostert and Viljoen (1996) solved a one-dimensional, two medium model neglecting the mass diffusion 
(Le → ∞) using an asymptotic expansion method for a finite porous medium with zero heat losses at both ends. The 
porous medium is divided into three regions, a preheating, a reaction and a post-reaction region, the high activation 
energy asymptotic is used and the solution provides the flame location and the maximum temperature as a function of 
the steady-state laminar flame speed. They show that the excess temperature increases with the increase in flame speed 
and the increase is steeper for lower Φ. The maximum temperature in the reaction region approaches the adiabatic 
flame temperature for low speeds. There are two stable flame positions, one near the inlet and another near the outlet. 
For each Φ there is a lower and an upper limit for the flame speed and the stability range increases as Φ increases.  

In both these models a diffusive approximation for the intramedium thermal radiation was used. Chen et al. (1987) 
studied the effect of radiation on the structure of premixed flames within a highly porous inert media solving the RTE 
equation. They solved a one medium model neglecting scattering and heat loss by radiation in both ends of the burner. 
They fixed the flame location inside the porous medium and even assuming thermal equilibrium between the phases 
(the one-medium model) they were able to detect a superadiabatic temperature. We could argue that this occurred only 
because the solution attempted to satisfy the energy balance wherever the flame location was fixed. Nonetheless, they 
showed that the intramedium radiation increases the radiation output and the flow preheating.  

Hsu and Matthews (1993) solved a two-medium model for a finite porous media with radiation exchange in both 
ends of the burner and using a multi-step chemistry. Their results showed that the multi-step chemistry reduces the 
excess temperature when compared to a global, single-step reaction mechanism. They explain this by the dissociation of 
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combustion species, which reduce the flame temperature. Nonetheless, the excess temperature, although smaller, 
remained in their calculations. Zhou and Pereira 1998, solving a similar problem without heat loss, reached the same 
results and argued that the multi-step mechanism spread the energy release over a broader flame front rather than a 
narrow flame front predicted by the global reaction, thus reducing the amount of excess temperature. 

In this work, we first write the one-dimensional conservation equations for energy and chemical species using a 
two-medium model based on Sahraoui and Kaviany (1994). The equations are scalled using appropriate 
nondimensional parameters and the magnitude of each parameter for the premixed flame in porous media used in the 
applications is discussed. Then, we theoretically discuss the excess enthalpy in free and stationary laminar flames 
within an inert porous media and analyze the necessary conditions for the existence of superadiabatic temperatures.  
 
3. Analysis 
 
3.1. Free Flame Combustion 
 

A one-dimensional model for the conservation of energy and species is presented below. The mass conservation 
implies that ρnun is constant for the one-dimensional flow with ρn and un being respectively the gas density and the gas 
velocity far upstream from the flame. For a steady state, stationary flame, the laminar flame speed SL is equal to un. The 
specific heat cp, the thermal conductivity and the product ρD (density times mass diffusivity) are assumed uniform 
along the flame. As the pressure across the flame front is approximately uniform the momentum equation is neglected. 
A single-step, first-order in the fuel concentration and zeroth-order in the oxidant concentration, Arrhenius reaction rate 
is adopted. The equations are: 

2
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where Q is the heat of reaction, Ti is the ignition temperature that is equal to ∆Ea/Rg with ∆Ea being the activation 
energy and Rg the universal gas constant. A first order, single step reaction, although not accurate, allows for a simple 
analysis and will be used here. 

Defining the nondimensional fuel mass fraction, temperature and spatial coordinate as  
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The nondimensional equations transformed to the spatial coordinate ζ are (Williams, 1985): 
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where Da is the Damköhler number, W is nondimensional reaction rate, α is the enthalpy ratio and β is the Zeldovich 
number. The parameters Le, β and α are constants that depend upon the initial conditions and the constant properties 
assumed in the model. The Damköhler number is assumed to be independent of θg (Williams, 1985). 

Summing Equations (5) and (6) up we find: 

( ) 2g
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d y d y
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         ( 8 ) 

The overall energy balance cp(T-Tn) = Q(YF,n-YF) is nondimensionalized to give y + θg = 1, then, one can define a 
new variable H = y + θg - 1, called excess enthalpy function. This function accounts for the total enthalpy of the gas, 
including the thermal and chemical enthalpies. From the definition of H, Eq. (8) is rewritten as: 
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For a unit Lewis number, H is equal to zero anywhere in the flame. Equation 9 states that when Le ≠ 1, the second 
term in the right hand side becomes a positive or a negative source term depending on the sign for d2y/dζ2 and H is no 
longer conserved. Wichman and Vance (1997), using a thin flame asymptotic, showed that in an adiabatic laminar free 
flame with Le < 1 this equation would give a defect enthalpy (H < 0) and for Le > 1 it would give an excess enthalpy (H 
> 0). It is important to note that an excess enthalpy does not mean an excess temperature because the excess enthalpy 
can be originated by an excess fuel concentration in the preheating zone. Even when there is a local excess temperature, 
it may not be above the adiabatic flame temperature, depending on the local values of fuel concentration. 
 
3.2. Combustion in Porous Media 
 
Two Equations Model: 
 

A one-dimensional, two-medium model for the conservation of mass, gas phase energy, solid phase energy and 
species are written following Sahraoui and Kaviany (1994). The gas and solid radiation and the dispersion effects are 
neglected. For a highly porous (ε > 0.75), large pores (Dp > 0.1 mm) porous media, the pressure along the porous 
medium is approximately uniform, and the momentum equation becomes trivial. The thermal conductivities (λg for the 
gas and λs for the solid) and the mass diffusivity D are effective properties in the respective phase (i.e., include the pore 
channel variable area and tortuosity effects). The steady state, volume-averaged energy conservation equations 
(omitting for simplicity the volume-averaging notation) then become: 
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where ε is the porosity of the solid matrix, hv = Sgsh, is the volumetric convection coefficient, Sgs is the interfacial 
specific area between the solid and the gas phases (m2/m3), h = Nuλs,m/Dp is the local convection coefficient with, Nu, 
Dp and λs,m being respectively the averaged Nusselt number for a fully developed flow through a porous medium, the 
mean pore diameter of the solid matrix and the molecular thermal conductivity of the gas phase. The nondimensional 
equations are: 
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where the spatial coordinate is now based on the solid conductivity. The new nondimensional parameters appearing in 
the volume-averaged conservation equations are: 
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In these equations, Les is the Lewis number based on the solid conductivity, Γs is the ratio between the solid and 
gas conductivities and N is the interfacial heat transfer parameter. The parameter N is assumed to be independent of θg. 

As for the laminar free flame, the sum of Eqs. (12), (13) and (14) leads to: 
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Using the same excess enthalpy function H = y + θg - 1 (note that θs is not included into H) defined before we find: 
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When Γs = ε = 1 we recover a laminar free flame and when Le = 1 the enthalpy function is conserved. Otherwise, 

the equation for the enthalpy function H will have a positive or negative source term depending on the signs for the 
diffusion-like terms involving the nondimensional fuel fraction, gas and solid temperature distributions. The second 
term in the right hand side of the Eq. (17) - called here of source term T2 - is similar to the source/sink term of the 
Eq.(9), except that the Lewis number is now based on the thermal conductivity of the solid phase. This term accounts 
for the decrease of the mass diffusion thickness of the flame for a solid phase-based Lewis number Les larger than the 
unity, increasing the preheating of the nonreacted gas mixture. The third term - called source term T3 - accounts for the 
effect of the solid phase conduction on the gas phase nondimensional temperature distribution, due to the interfacial 
heat transfer. The interfacial heat transfer increase the width in the medium across which the gas phase temperature 
changes, when compared to the free flame. This effect can be understood as the effect that a variable volumetric heat 
source and loss would have in the gas phase temperature, even in the absence of any change in the medium thermal 
conductivity. The fourth term in the right hand side of the Eq. (17) - called source term T4 - accounts for the effect that 
the solid phase is immobile, and does not add to the advective energy flow. The overall result in the H distribution in 
the flame zone will depend on the relative magnitudes of these terms. 
 
One Equation Model: 
 

When the interfacial heat transfer parameter, responsible for the thermal contact between the continuous effective 
gas phase and the continuous effective solid phase, is sufficiently high, local thermal equilibrium between the phases 
may be safely assumed, i.e., θg.= θs = θ, and a one-medium model can be used. The energy equation for the one-medium 
model is obtained by adding up the energy equations for the gas (Eq. 10) and the solid (Eq. 11) phases and redefining 
the non-dimensional space coordinate by using the effective thermal conductivity in place of the effective phasic solid 
thermal conductivity. Thus, the one-medium model becomes: 
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where Γe = λe/λg is the effective thermal conductivity ratio, where the effective thermal conductivity is λe = ε λg + (1-ε) 
λs. Mathematically, the one medium model differs from the free flame because the effective Lewis number is much 
greater than 1 and the porosity also appears dividing the heat diffusion term. 
 
4. Results 
 

Initially, results for adiabatic laminar free flames are reproduced as a way of validating the numerical code and for 
comparison with the results for combustion in porous media.  
 
4.1. Laminar Free Flames 
 

Equations (5) and (6) were solved numerically for the methane-air system. The boundary conditions are θg = 0 and 
y = 1 for ζ → -∞ and θg = 1 and y = 0 for ζ → +∞, with θg and y being constant in both situations. Table 1 shows the 
thermodynamic and transport properties used and the correspondent nondimensional parameters. 
 
Table 1. Thermodynamic and transport properties for the gas phase and the correspondent nondimensional parameters. 

 
Gas Phase Properties 

Φ 1 - 
Tn 298 K 
Tr 2197 K 
Ea 141E3 J/mol 
A0 2.2E8 1/s 
Rg 8.314 J/mol-K 
un 0.65 m/s 
λg 0.082 W/m-K 
ρn 1.2127 kg/m3 
cp 1452 J/kg-K 
Q 50144 kJ/kg Fuel 
νF 1 - 
a 0 - 

Nondimensional Variables 
β 6.672  
α 0.8644  
Da 156.3  

 
The solution was obtained using a finite-volume method, with non-uniform, adapting grid and steps were taken to 

accelerate convergence to steady state. The flame speed (eigenvalue) was obtained from the overall mass balance. The 
algorithm was validated from the solution for a unit Lewis number and the experimental flame speeds for equivalence 
ratio of 1 and 0.5 for methane-air premixed combustion. 

The calculated nondimensional gas temperature, fuel fraction, excess enthalpy (divided by its maximum value) and 
source term for equivalence ratio of 1 and Le = 2 are shown in Fig.(1). The preheat region begins in ζ = 387 and the 
reaction region takes place in 393 < ζ < 396 (only a small region enclosing the flame is shown). The enthalpy function 
is everywhere positive (there is an excess enthalpy). 

This figure also presents the distribution of the source term of Eq.(9) along the flame, showing that it is a positive 
source term for 388 < ζ < 394, causing an augmentation of the excess enthalpy function H, and is a negative source 
term for 394 < ζ < 396, causing a decrease of the excess enthalpy. Since both in the upstream and in the post flame 
regions the enthalpy is conserved, as expected for an adiabatic flame, the source term is zero in both the inlet and post-
flame regions. Since the temperature and fuel fraction distributions are smooth and monotonic, the excess enthalpy is 
always positive and the areas under the positive and negative branches of the source term must add to zero. From 
Fig.(1) we note that even with excess enthalpy, the flame does not present superadiabatic temperatures. This is true also 
when Le >> 1, as it will be shown next. 

Figure (2) shows the solution for equivalence ratio of 1 and Le = 0.5. As expected, the species diffusion is larger 
than the heat diffusion, beginning in ζ = 220 while the preheat region begins in ζ = 226. The reaction region takes place 
in 231 < ζ < 234. In this case, the enthalpy function is everywhere negative (there is a defect enthalpy). The source term 
is first negative and then positive, making the excess enthalpy function H decrease to a negative minimum value and 
then return to zero.  
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Figure 1. Nondimensional fuel fraction, gas temperature, excess enthalpy (divided by its maximum value) and source 
term distributions for a free flame with Φ = 1 and Le = 2. The reaction rate is also shown as a thin dotted line. 
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Figure 2. Nondimensional fuel fraction, gas temperature, excess enthalpy (divided by its maximum value) and source 
term distributions for a free flame with Φ = 1 and Le = 0.5. The reaction rate is also shown as a thin dotted line. 

 
Figure 3 shows the variation of the maximum enthalpy function Hmax and the flame speed uF with the Lewis number 

for Φ = 1. Since the H function is conserved for a unit Lewis number, its value is zero when Le = 1. For Le < 1 the H 
function is always negative (defect enthalpy) and for Le > 1 it is always positive (excess enthalpy). The Lewis number 
also affects the flame speed, making it to decrease when there is defect enthalpy and to increase when there is excess 
enthalpy. This is due to the fact that with a wider thermal thickness more fuel is found inside the reaction region causing 
an augmentation of the reaction rate, consequently increasing the flame speed. 
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Figure 3. Variation of the maximum excess enthalpy Hmax and the flame velocity uF with the Lewis number for Φ = 1. 
 
4.2. Combustion in Porous Media 
 

Equations (12), (13) and (14) were solved numerically following the same solution method described for the free-
flame. The boundary conditions are θg = θs = 0 and y = 1 for ζ → -∞ and θg = θs = 1 and y = 0 for ζ → +∞, with θg , θs 
and y being constant in both situations. 

Table 2 shows the transport and geometric properties of the solid phase and the corresponding nondimensional 
parameters used. The mean pore diameter is modeled as Dp = (4ε/π)0,5/(39.37 PPI) and the specific area between the 
phases as Sgs = 66.69 PPI, where PPI stands for pore-per-inch. An approximate value for the volumetric heat transfer 
coefficient is used. The solid phase properties are taken for a Zirconia burner (Möβauer et al., 1999). Note that the 
relatively high value of the thermal conductivity ratio leads to a relatively high value of solid phase-based Lewis 
number. 
 
Table 2. Transport and geometric properties for the solid phase (Zirconia) and the nondimensional parameters used. The 
gas phase-based Lewis number is equal to unit. 
 

Solid Phase Properties 
λs 5 W/m-K 
ε 0.8 - 
PPI 10 ppi 
Sgs 667 m2/m3 
Lq 0.10 m 
Dp 2.56E-3 m 
hv 60E+3 W/m3K 

Nondimensional Variables 
Les 61  
Γs 61  
N 0.227  
ReD 9.884  

 
Figure (4) shows the nondimensional fuel fraction, gas and solid temperatures and excess enthalpy distributions for 

a premixed flame within a porous media with the equivalence ratio equal to unit. The nondimensional gas temperature 
presents a peak that is 10% higher than the adiabatic flame temperature (the gas temperature is 230K higher than the 
adiabatic flame temperature). The thermal flame thickness is wider than the fuel fraction thickness as a result of the 
large effective Lewis number. The enthalpy function presents an excess everywhere along the flame. 

Figure (5) presents the variation along the flame of the last three terms of Eq. (17), repeated below for easier 
reference. The dotted lines are the nondimensional gas temperature and fuel fraction distributions. Since the solid is 
more conducting than the gas phase, Les is larger than 1 and the prefactor (Les

-1-1) is a negative number. The term T2 
always cause an excess enthalpy in the flame region. Since the conductivity ratio Γs is greater than 1, the prefactor (Γs

-1-
1) is a negative number and, given the sign od d2θ/dζ2, the term T3 will cause a defect enthalpy. As the porosity is 
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always smaller than 1 the prefactor (ε-1 – 1) will always be positive and the term T4 will always cause an excess 
enthalpy. 
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Figure 4. Nondimensional gas and solid temperatures, fuel fraction profile and excess enthalpy distribution (divided by 
its maximum value) for a flame within a porous media with Φ = 1, Le = 1 and Les = 61. 
 

We note that the second (T2) and third (T3) terms dominate the source term, being the second (always in modulus) 
larger than the third. Also note that the difference between T2 and T3 is of the order of 0,1% of their absolute values. 
The fourth term (T4) has only a small effect in the regions far in the post-flame zone. Although not clear in Fig.(5), 
because of the clipping in the ζ axis to present the flame zone only, the positive and negative areas under the total 
source term distribution also add up to zero. The excess enthalpy is therefore, primarily a Γs effect both in T2 and T3. 
An increase in the gas Lewis number, would increase even more the effect of the T2 term. A reduction in the Lewis 
number would reduce the value of the T2 term when compared to the T3 term, leading, when smaller enough, to a 
defect enthalpy. 
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Figure 5. Variation of the three source terms T2, T3 and T4 and the total source term of Eq. (17) along the flame for a 
flame within a porous media with Φ = 1 and Les = 61. The distributions of y and θg are also shown as thin dotted lines. 
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Figure 6 shows the variation of the maximum enthalpy function Hmax and the flame speed uF with the Lewis 
number for Φ = 1. Hmax is always positive, varying from 1.13 to 2.10 when Les rises from 61 to 365. The flame speed 
increased from 0.65 m/s to 0.95 m/s in the same range of Les. 
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Figure 6. Variation of the maximum excess enthalpy Hmax and the flame velocity uF with the solid Lewis number Les for 
Φ = 1. 

 
4.3. Excess Temperature 

 
Figure 7 shows the variation of the excess enthalpy function with the nondimensional fuel concentration for 

laminar free flames with Le = 2 and 100 and for premixed flames within a porous medium with Les = 61 and 244. When 
the nondimensional fuel concentration is equal to unit, i.e., when no fuel has yet been consumed, all flames present an 
almost vertical excess enthalpy curve. This is due to the enhanced preheating of the gas flow caused by its low mass 
diffusivity (Le > 1). The cold reactants receive energy by conduction from the reaction region achieving an excess 
enthalpy before entering the flame region. For a laminar free flame, as the nondimensional fuel fraction decreases, the 
excess enthalpy increases and then decreases reaching zero when all fuel is consumed. The adiabatic limit for the excess 
enthalpy is also shown. This adiabatic limit is found when θg = θad = 1 is placed in the H equation giving H = y. For 
points that lie above this limit, i.e., an H function greater than y, the local nondimensional temperature reaches values 
above the adiabatic temperature. This region is identified in Fig.(7) as the superadiabatic region. As expected, laminar 
free flames never cross this limit even for very high Lewis numbers and consequently cannot reach temperatures over 
the adiabatic flame temperature. For flames within porous media, the adiabatic limit is crossed by the H function in y = 
0.13 for Les = 61 (typical of Zirconia burners) and in y = 0.19 for Les = 244 (typical of Silicon Carbide burners), 
meaning the existence of excess gas phase temperatures above the adiabatic temperature. The maximum gas 
temperature occurs when the H function sharply drops at y = 0. This corresponds to θg = 1.13 and 1.19 for Les = 61 and 
244 respectively. The H line is almost flat as a result of the sharp decrease in y when compared to θg and θs . 
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Figure 7. Variation of the excess enthalpy function H with the nondimensional fuel concentration y. 
 

Figure 8 shows the behavior of H as a function of y for three different values of Le and Γs = 61. As the gas phase-
based Lewis number decreases, a region of defect enthalpy appears as a result of the T3 term prevailing over the T2 
term. However at the end of the reaction region the temperature still reaches an excess value. In this region, the T2 term 
prevails again. Also, the lower Lewis number leads to higher maximum enthalpy in the flat region of the curve at y = 0, 
which results in higher superadiabatic flame temperatures. This seems to be caused by the combined effects of the high 
solid conductivity and finite interfacial heat transfer coefficient. We continue to work to better explain this effect and 
intend to report this in a next opportunity. 
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Figure 8. Effect of the gas phase-based Lewis number Le on the excess enthalpy function H for a porous media with Γs 
= 61. 

 
Figure 9 shows the variation of the superadiabatic flame temperature Tsup with the solid phase-based Lewis 

number. The temperature of the gas exceeds the adiabatic flame temperature for a methane/air flame with Φ = 1 (Tad = 
2197,5oC) in 240oC for Les = 61 (typical value for zirconia burners) and in 390oC for Les = 365 (typical value for 
metalic burners). For Γs = 61, the maximum temperature reached by the gas phase for Le = 0.5 was 2510oC and for Le = 
2 was 2466oC. 
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Figure 9. Variation of the superadiabatic temperature with the solid phase-based Lewis number Les. 

 
5. Conclusions 
 

The excess enthalpy in free flames and in flames within porous media is analyzed to access the amount of excess 
temperature above adiabatic temperature originated by the presence of the porous matrix and the factors that affect it. 
This analysis is based on the excess enthalpy function previously defined in the literature. The results show that: 

 
 For adiabatic laminar free flames, for Le > 1, the excess enthalpy function is always larger than 1, as 

expected, without, however, presenting gas temperatures above the adiabatic flame temperature. For Le < 
1, the excess enthalpy function is always smaller than 1. 

 For the combustion within a porous media, for Les > 1, there is excess enthalpy and a region of gas 
temperatures above the adiabatic temperature, i.e., there is a region of excess temperature. This region is 
identified in a plot of H against the nondimensional fuel fraction y.  

 In the source term for the H equation for the porous medium, the contribution of the last term (T4) is 
negligible in the flame zone. This term accounts for the effect that the solid phase is immobile. The 
behavior of H is controlled by the interplay between the T2 and T3 terms. The T2 term accounts for the 
decrease of the mass diffusion thickness of the flame when the solid phase-based Lewis number Les is 
larger than one. It depends on the gradients of the nondimensional mass fraction. The T3 term accounts for 
the effect of the solid phase conduction on the gas phase nondimensional temperature distribution, due to 
the interfacial heat transfer. It depends on the gradients of the nondimensional solid temperature. The 
excess enthalpy is, therefore, primarily a function of Γs. 

 The necessary condition for reaching gas temperatures above the adiabatic temperature is Les > 1 (the 
product of the gas Lewis number Le and the thermal conductivity ratio Γs being larger than 1) combined to 
a finite interfacial heat transfer coefficient. The first is responsible for the enhanced thermal diffusion 
when compared to the mass diffusion and the second is responsible for a volumetric heating of the gas 
phase then increasing the excess enthalpy.  

 
The analysis should be further extended to verify the role of Le in the maximum excess temperature. A parametric 

analysis of the effect of interfacial heat transfer and equivalence ratio should be performed to identify the behavior of 
the threshold points of the superadiabatic temperature zone. Finally, a closed form analytical solution based on 
assymptotic analysis is being developed to readily quantify the effect of the various parameters in the amount of excess 
tempeature. This will be reported in a next opportunity. 
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8. Nomenclature   
    
a temperature exponent in the reaction rate equation  ε solid matrix porosity  
A pre-exponential factor λ thermal conductivity 
cp specific heat νF fuel stoichiometric coefficient 
D mass diffusivity ρ density 
Da Damköhler number µ viscosity 
Dp mean pore diameter θ nondimensional normalized temperature 
Ea activation energy  θ = (Tg-Tn)/(Tr-Tn) 
h convection coefficient h = Sgs(Nuλg,m/Dp) Φ equivalence ratio 
H excess enthalpy function H = y + θ -1 Γs conductivity ratio Γs = λs/λg 
Le Lewis number Le = λ/ρDcp = αg/D   
Les modified Lewis number Les = LeΓs 
Lq lengh of the burner 
N heat transfer between the phases parameter 

 
ζ spatial coordinate  

x
n n p

s0

u c
dx

ρ
ζ =

λ∫  

Nu Nusselt number   
Q chemical heat release   
Rg universal gas constant  Subscripts 
ReD Reynolds number Re = ρuDp/µ   
Sgs specific area between the phases e effective 
T temperature  g gas phase 
u flow velocity i ignition 
W non dimensional reaction rate m molecular 
y reduced fuel mass fraction y = YF/YF,n max maximum 
YF fuel mass fraction n non-reacted 
  r reacted 
 Greek Symbols s solid phase 
    
α enthalpy ratio α = 1-Tn/Tr or thermal diffusivity   
β Zeldovich number β = α(Ea/RgTr)   
 


