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Abstract. The objective of this work is the numerical simulation of the shock wave-boundary layer interaction that appears in the 
transonic regime for the laminar flow in a NACA 0012 airfoil. The compressible Navier-Stokes equations are numerically solved 
using a finite volume discretization in combination with the skew-symmetric form of Ducros’ fourth-order numerical scheme. 
Results are obtained for angles of attack ranging from 0 to 9 degrees and for a Reynolds number of 10,000. For low angles of 
attack, the visualization shows the acoustics waves generated by a mild separation of the boundary layers along the upper and 
lower surface and the subsequent von Kármán’s  vortex street.  As the angle of attack increases, the acoustic waves turn into shock 
waves and a strong separation of the boundary layer is induced, generating a more complex vortex wake. The results also show a 
strong variation in the resultant unsteady aerodynamic coefficients.  For low angles of attack, the unsteady normal force coefficient 
is characterized by a characteristic amplitude and frequency. As the angle of attack increases to a limit of 7 degrees, a strong shock 
wave-boundary layer interaction appears producing an increment of the amplitude of the normal force coefficient in conjunction 
with a reduction of the characteristic frequency. For 9 degrees of angle of attack, the unsteady normal force coefficient shows a 
departure, characterized by more than one characteristic frequency.      
 
Keywords. NACA 0012 airfoil, transonic buffet, laminar flow, compressible flow. 

 
1. Introduction 
 

This work is aimed at the numerical simulation of the strong shock-boundary layer interaction that arises in the 
transonic flow over NACA 0012 airfoil in laminar regime over a range of angles of attack. This kind of interaction is 
the cornerstone of the transonic-buffet phenomenon, of keen interest in the aerospace sciences. Due to the complex 
nature of the shock-boundary layer interaction, not every numerical method is able to tackle this type of problems. Only 
shock-capturing schemes can obtain meaningful results. One drawback of this type of methods is the tendency to over 
dissipate in regions that are not shock waves, such as high shear-stress regions, resulting in the dumping of the 
phenomenon. In this work, a new type of sensor, proposed by Ducros et al. (1999) is used for appropriately trigging the 
artificial dissipation in order to minimize this problem. 

The effect of the Mach number over the laminar transonic flow over a NACA 0012 airfoil was studied by Bouhadji 
and Braza (2003). The focus of that work was the analysis of the resulting organized modes from the boundary layer-
acoustic wave and boundary layer-shock wave interaction. To perform that analysis, the angle of attack was fixed to 0 
degrees and the numerical simulation was carried out with a Mach number ranging from 0.20 to 0.98. Acoustic waves 
gave place to shock waves as the Mach number increased. In order to complement that effort, in the present work, the 
Mach number is fixed to 0.80 and the simulation is carried out for angles of attack ranging from 0 to 9 degrees. This is 
done in order to determine the angle of attack where the acoustic waves, associated to low angles of attack for a Mach 
number of 0.80, gave place to shock waves, associated with higher angles of attack at the same Mach number.   

From the methodological point of view, the numerical simulation of vortex-shock interactions has been the focus of 
many recent works. Yee et al. (1999) proposed a family of low-dissipative and high-orders shock-capturing methods 
using characteristic-based filters to minimize the numerical dissipation of the overall scheme. This methodology was 
successfully applied to the simulation of the vortex pairing in a time-developing laminar mixing layer, the shock-wave 
impingement on a spatially evolving laminar mixing layer and a compressible turbulent channel flow. The former two 
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problems were also solved by Yee et al. (2000) using an entropy-splitting approach. This approach was also used by 
Sandham et al. (2002) in the numerical simulation of the compressible channel flow. The idea of a skew-symmetric 
splitting was presented by Yee and Sjogreen (2001) and used to simulate the complex two-dimensional 
shock/boundary-layer interaction in the laminar problem proposed by Daru and Tenaud (2001). All the above works 
used a finite-difference discretization. Ducros et al. (2000) proposed a family of high-order fluxes for conservative 
skew-symmetric-like schemes using structured meshes that can be used by a finite-difference or a finite-volume 
discretization. In this work, Ducros’ fourth-order skew-symmetric scheme for a finite-volume discretization in 
conjunction with a third-order Runge-Kutta time-marching method is used. The resulting numerical scheme is fourth-
order accurate in space and third-order accurate in time. 
 
2. Mathematical Model 
 

The nondimensional form of the compressible Navier-Stokes equations can be written as: 
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All the variables are in nondimensional form and have their usual meaning, i.e., ix is the i-direction spatial 

coordinate, t  is the temporal coordinate, ρ is the density, iu is the  i-direction component of the velocity vector, p is 
the thermodynamic pressure, T  is the temperature, e  is the internal specific energy, µ  is the viscosity, vc  is the 
specific heat at constant volume, ijτ  is the viscous stress tensor, Te  is the total specific energy and 

ixq is i-direction of 
the heat-flow density vector. The nondimensional form for all the variables is defined using the following procedure: 
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where *

∞U  is the velocity magnitude of the undisturbed flow, *L  is the characteristic length of the problem, the 
superscript * represents dimensional variables and the subscript ∞ stands for undisturbed-flow properties.  

The viscous-stress tensor is given by 
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where ijS  is the nondimensional rate-of-strain tensor, ijδ is the Kronecker delta and the Reynolds number is defined as 
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The total energy is given by the sum of the internal and kinetic specific energy as 
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and the heat-flux density is 
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where γ  is the specific-heat ratio and the Mach and Prandtl numbers are respectively defined as 
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In this work, the Prandtl number is considered a constant with the value 72.0Pr = . For a thermally and calorically 

perfect gas, the nondimensional equation of state can be written as 
 

( ) ep ργ 1−=  (10) 
 
and 
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The nondimensional molecular viscosity is obtained using Sutherland’s formula 
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where *

1C  and *
2C  are dimensional constants. 

The boundary conditions at the wall of the two-dimensional base are a no-slip condition for the velocity field, an 
adiabatic wall for the temperature field and a null gradient in the normal direction at the wall for the pressure field. 
 
3. Numerical Method 
 

Since the geometry of interest is a two-dimensional base and the flow around it is laminar, the two-dimensional 
form of the Navier-Stokes is used. In order to numerically solve this equations using a finite volume approach, Eqs. (1), 
(2) and (3) are written in the following vector form (Anderson et al., 1983): 
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where the conservative-variables vector U, and the flux vectors E and F are given by 
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 Defining the flux tensor Π  as 
 

jFiE ⊗+⊗=Π , (15) 
 
where i  and j  are the unit vectors in the x and y-direction, Eq. (13) can be rewritten as 
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Integrating the above equation over the control volume V, and applying the divergence theorem to the right-hand 

side results 
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where S is the control surface that defines the control volume. Defining the volumetric mean of the vector U in the 
control volume V as 
 

dV
V V∫≡ UU 1

, (18) 

 
Eq. (17) is written as 
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where n  is the unit vector normal to the surface S. 
 For the volume ),( ji , the first-order approximation of the temporal derivative is given by 
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and the temporal approximation of Eq. (19) for a quadrilateral and two-dimensional control volume is 
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where 21+iS  is the common surface between volume ),( ji  and volume ),1( ji + . Defining the function of the flux of 
tensor Π  over the control surface S as 
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the spatial approximation of Eq. (21) is 
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where ( ) ji,UD  is an artificial dissipation. It is important to note that Eq. (23) is a spatial approximation of Eq. (21) 
because tensor Π  is considered constant over each of the four control surfaces that define the control volume. 
 In order to calculate ( ) ji,UF , the flux of tensor Π  through the control surfaces must be calculated. For the surface 

2/1+iS , this flux is given by 
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where the volumetric flux ( ) 2/1+iSq  is defined by 
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where u  is the velocity vector. 
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 It is important to note that the first terms in the right-hand side of Eq. (24) are the fluxes of mass, momentum and 
total energy through surface 2/1+iS  and the other terms represents the fonts of momentum variation and total energy. In 
order to evaluate all this terms, in this work, it is used the fourth-order skew-symmetric scheme proposed by Ducros et 
al. (2000) given by  
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since all calculated properties in the right-hand side of Eqs. (26) and (27) are volumetric means centered at the volume. 
The over bar indicates the volumetric mean defined by Eq. (19) and the under bar refers to the Favre mean, defined as  
 

ρ
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The scheme proposed by Eqs. (27) and (28) is a centered one, and therefore, an explicit artificial viscosity must be 

included in Eq. (24). In order to enhance the numerical method with shock-capturing capabilities and the ability to cope 
with steep gradient regions, this artificial dissipation uses the basic idea proposed by Jameson et al. (1981) given by  
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The first and second terms of Eq. (30) are a second-order and a fourth-order dissipation, respectively. The first term acts 
in the shock and the second term acts over steep gradient regions, like the viscous regions. The coefficients of Eq. (30) 
are given by 
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where the sensors iΨ  and iΦ  are 
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The sensor iΨ  is pressure-based and it is intended to detect the shock waves. The sensor iΦ  was proposed by 

Ducros et al. (1999), and its function is to inhibit sensor iΨ  in regions were the divergent is low, but the rotational of 
the velocity field is high, like a pure vortex wake. In regions where the divergent and the rotational are high, like the 
vortex-shock interaction, the inhibiting capacity of sensor iΦ  decreases. 

In order to advance Eq. (24) in time, a third-order Runge-Kutta is used as proposed by Shu (Yee, 1997). This yields 
to 
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As proposed in this work, the resulting numerical method is fourth-order accurate in space and third-order accurate 

in time. 
 
4. Results 
 

For all the cases studied in this work the Reynolds number is 10,000, and the characteristic length is the cord of the 
airfoil, *c . The Mach number is 0.80 and the angle of attack ranges from 0 to 9 degrees. A c-grid is used, where the 
airfoil surface is discretized by 920 control volumes. The smallest grid size is *4100.5 c−× , and it is located at the 
leading-edge surface. The grid extends *10c  in the upper and lower normal directions, and approximately *10c  in the 
upstream and downstream directions. The total number of control volumes for this grid is 324,000, resulting in a 
problem with 1,296,000 degrees of freedom. 

Figure 1 shows a region of the computational domain in conjunction with a magnified view showing the resolution 
of the computational grid at the trailing edge, that has the same order of resolution that one at the leading edge. The 
angle of attack is o9=α . 
 

 
 

Figure 1. Flow visualization for o9=α . The variable plotted is the nondimensional magnitude of the temperature 

gradient, ( ) ( )22 yTxTT ∂∂+∂∂=∇ . White corresponds to 0.0 and black to 3.0.  
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Figure 2. Flow visualization for o0=α  (left) and o1=α  (right). The variable plotted is the nondimensional magnitude 

of the temperature gradient, ( ) ( )22 yTxTT ∂∂+∂∂=∇ . White corresponds to 0.0 and black to 3.0. 
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Figure 3. Normal-force coefficient, ( )2***2 ∞∞= UNCN ρ , as a function of the nondimensional time, *** cUtt ∞= ,  

for o0=α  (continuous) and o1=α  (dashed). 
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Figure 4. Flow visualization for o3=α  (left) and o5=α  (right). The variable plotted is the nondimensional magnitude 

of the temperature gradient, ( ) ( )22 yTxTT ∂∂+∂∂=∇ . White corresponds to 0.0 and black to 3.0. 
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Figure 5. Normal-force coefficient, ( )2***2 ∞∞= UNCN ρ , as a function of the nondimensional time, *** cUtt ∞= ,  

for o3=α  (continuous) and o5=α  (dashed). 
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Figure 6. Flow visualization for o7=α  (left) and o9=α  (right). The variable plotted is the nondimensional magnitude 

of the temperature gradient, ( ) ( )22 yTxTT ∂∂+∂∂=∇ . White corresponds to 0.0 and black to 3.0. 
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Figure 7. Normal-force coefficient, ( )2***2 ∞∞= UNCN ρ , as a function of the nondimensional time, *** cUtt ∞= ,  

for o7=α  (continuous) and o9=α  (dashed). 
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For low angles of attack ( )ooo 3and1,0 , as shown in Fig. 2 and in the left part of Fig. 4, the visualization shows 
the acoustics waves generated by a mild separation of the boundary layers along the upper and lower surface and the 
subsequent von Kármán’s vortex street. As the angle of attack increases ( )ooo 9and7,5 , as shown in right part of Fig. 4 
and in Fig. 6, the acoustic waves turn into shock waves and a strong separation of the boundary layer is induced, 
generating a more complex vortex wake. Acoustic waves gave place to shock waves between oo 5and3 of angle of 
attack. Evidence of this is the appearance of the small lambda shocks in the upper and lower boundary layers presented 
in the right part of Fig. 4, corresponding to o5=α .  

The results also show a strong variation in the resultant unsteady aerodynamic coefficients. For the above 
mentioned low angles of attack, the unsteady normal-force coefficient is characterized by a characteristic amplitude and 
frequency, where the mean normal-force coefficient as a value that is very close to zero. For o5=α , there is a jump in 
the mean value of normal force coefficient, as can be seen in Fig. 5, where the continuous line ( )o3=α  as a mean 

normal-force coefficient close to -0.01 and the dashed line ( )o5=α  has a normal-force coefficient close to 0.10. The 
amplitude also a significant increase, from 0.02 to 0.04, approximately. These variations are associated with the 
appearance of the small lambda-shocks in the upper and lower boundary layer. 

The unsteady normal-force coefficient is similar in nature for  o5=α  (dashed line of Fig. 5) and o7=α  
(continuous line of Fig. 7). Variations are in the mean value and in the amplitude of the normal-force coefficient. For 

o9=α , another departure is observed, associated with the formation of a very strong shock in the upper surface, as can 
be seen in the right part of Fig. 6. The unsteady normal-force coefficient is characterized by more than one 
characteristic frequency with an significant increase of its amplitude, as can be seen in Fig. 6 (dashed line). 

 
5. Conclusions 
 

The numerical simulation of the interaction between acoustic and shock waves with boundary layers that 
characterizes the laminar transonic flow over a NACA 0012 airfoil was performed. The results show that the nature of 
the compressibility effects, determined by the angle of attack, has a profound impact in the unsteady aerodynamic 
characteristics of the phenomena. For low angles of attack, where acoustic waves are predominant, the unsteady 
normal-force coefficient has a mean value very close to zero, associated with small amplitudes. As the angle of attack 
increases, small lambda-shocks substitute the acoustic waves, and the mean value of the normal-force coefficient rises 
significantly, as well as its amplitude. When strong shock-waves take the place of the small lambda-shocks, there is 
another departure, and the unsteady normal-force coefficient is characterized by more than one characteristic frequency 
and significant increase in the amplitude.  
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