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Abstract.. Analytical and numerical comparisons are established between the extended and classical versions of the lifting-line 
theory in terms of aerodynamic performance parameters for an inviscid and incompressible flow over a finite wing with straight 
planform. Although classical lifting-line theory forms the foundation for preliminary aerodynamic design and also provides clear 
understanding of the wing theory, this paper shows that simulations of finite wings using the extended lifting-line theory can be 
carried out with relatively larger accuracy and without loss of the advantages provided by the classical lifting-line theory. The 
extended lifting-line theory also allows more flexibility in terms of the wing configurations that can be analyzed, including lower 
aspect ratios, swept lines and drifts, without increasing computational effort. In order to build the extended model the wing is 
divided into straight wing elements, each modeled by a horseshoe vortex with control points located at the three-quarter-chord line 
and with the bound vortex located at the one-quarter-chord line. Circulation distribution is then obtained for the control points by 
solving a set of linear algebraic equations based on an integral equation which expresses a statement of the no-penetration 
boundary condition applied to the local mean camber lines, spread spanwise. The circulation distribution, lift and induced drag 
coefficients and pitching  moment coefficient are the aerodynamic parameters used for the comparison.  
 
Keywords:  classical lifting-line theory, extended lifting-line theory, aerodynamic parameters, aerodynamic performance. 

 
1. Introduction 
 

It is very well known that Prandtl´s classical and extended lifting line theories form the foundation for aerodynamic 
design since they provide the conceptual basis for understanding finite wing theory and flight principles. Although 
lifting surface theory is still used to perform calculations with high accuracy, one must recognize that both lifting-line 
theories can be used for rapid estimation of finite wing performance parameters as well as spanwise load distribution of 
straight planform wings. Both lifting-line theories are formulated in terms of easy-handling integral equations. Many 
methods are available to deal with the classical lifting-line equation, which can be found in the books by Bisplinghoff et 
all. (1955), Robinson and Laurmann (1956), Thwaites (1960) and Schlichting and Truckenbrodt (1979). The most 
popular schemes for solving such equation are the collocation methods, which consist of assuming a finite sine series 
for the circulation distribution, and the Fourier series coefficients are determined by requiring the fundamental equation 
of Prandtl´s lifting-line theory to be identically satisfied at a number of spanwise locations from tip to tip.  According to 
Rasmussen (1999) the major difficulty with the collocation methods is the lack of uniqueness and the arbitrary nature of 
the solution, since a given set of collocation points may describe more than one wing. Even so, if certain precautions are 
taken, like clustering the collocation points in such way that sudden changes are captured and enough terms and stations 
are assumed in order to presumably ensure adequate convergence, the scheme yields good results. Besides these 
arguments, the straightforwardness of this scheme entitles it to be used in the present comparative analysis. 
 Regarding the method for solving the equation of the extended lifting-line theory, a swept filament vortex is placed 
along the one-quarter-chord line and the induced velocity field, comprising self-induction and external induction, is then 
calculated at the three-quarter-chord line with the support of analytical tools such as Biot Savart Law and Helmholtz´s 
Vortex Theorems. The wing is divided into straight wing elements, each of them modeled by a horseshoe vortex with 
control points located at the three-quarter-chord line and with the middle point of the bound vortex located on the one-
quarter-chord line, without loss of generality. The basic concept is to compute the strengths of each of the bound 
vortices required to keep the flow tangent to the wing surface at a set of control points. Extended lifting-line theory, also 
known as Weissinger Theory, differs from the classical lifting-line theory in several aspects, and it can be conceived as 
a simple panel method (a vortex lattice method with only one chordwise panel), as opposed to a corrected strip theory 
method, as the classical model is. The extended model works well with swept wings and, according to Glauert (1959), 
converges to the correct solution in both the high ad low aspect ratio limits. Another feature that causes the extended 
model to differ from the classical one is the fact that the non-uniqueness of the solution is dealt with using the Pistoles´s 
Theorem and Multropp´s methodl (Schlichting and Truckenbrodt, 1979), which allow the three-quarter-chord points of 
local stations to be assigned as the control points. As a consequence, the solution convergence depends essentially on 
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the size of the spanwise grid. These introductory ideas point out the advantage and limitations of each model and the 
numerical simulations shown below will highlight these differences. 

 
2. Mathematical Formulation and Numerical Approach for the Classical Model 
 
       The fundamental equation of Prandtl´s Lifting Line Theory is given by the following integro-differential equation 
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where α is the geometric angle of attack with respect to the zero lift line, αL=0 is the angle of zero lift, U∞ is the 
freestream velocity, c is the local chord, Γ is the circulation distribution, ±s is the wing semi-span (s = b/2), yo and y are 
the spanwise stations. Equation (1) states that the angle of attack is equal to the sum of the effective angle of attack, 
which is the angle actually seen by the local airfoil, and the induced angle of attack (last term). In terms of the following 
dimensionless variables 
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the fundamental equation can be written as 
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 The dimensionless form given by Eq.(3) is used to establish the analogy with the formulation of the extended 
model described below. Let us consider the transformation θcossy −= , where θ is the transforming coordinate in the 

spanwise direction. In terms of θ, the elliptical circulation distribution is written as θθ sen)( oΓ−=Γ , ��������� 	 o  is the 
circulation at the wing root.  This suggests that a finite Fourier sine series is a suitable expression for the general 
circulation distribution.  Hence, for the general case, the following expression is assumed  
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 Note that Eq. (4) satisfies the Kutta condition at the wing tips, which states that the upper and lower pressure fields 
must be equal at wing tips and, therefore, the circulation must be zero there. The substitution of Eq. (4) into Eq. (1), as 
described by Anderson (1991), yields 
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Equation (5) is evaluated at a given spanwise station 
 o , where b, c( 
 o) and αL=0  are known quantities, and the only 

unknowns are the An’s. If Eq. (5) is written for N different spanwise stations a system of N independent algebraic 
equations is obtained for the An’s which satisfy the fundamental equation of finite-wing theory. This is the most 
straightforward scheme for solving the lifting-line equation, as described by Anderson (1991) and Rasmussen (1999). 
This solution is essentially a collocation method, whose main consequence is that, if sudden changes or any meaningful 
information in wing characteristics are to be captured, the points must be properly clustered. From Karamchetti (1966), 
it can also be seen that Eq. (4) results from the formulation for the flow in the Trefftz Plane (a plane far downstream 
from the wing) by using the method of the complex variable, so that the flow is solved in terms of a pair of analytic 
complex functions, that is, the complex potential and the associated complex velocity. Therefore, it is advisable 
conceiving Eq. (4) as the result of a classical method rather than a hint suggested by the coordinate transformation.   
 
3. Mathematical Formulation and Numerical Approach for the Extended Model 
 

The extended Lifting-Line Theory, or Weissinger Theory, can be conceived as a simple panel method, that is, a 
vortex lattice method with only one chordwise panel. However, it is not a corrected strip theory method, as the Classical 
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Lifting-Line Theory is. The extended model works for swept back or forwarded one-quarter-chord line wings, and also 
for wings with drift with respect to the freestream. This model converges to the correct solution in both the high and 
low aspect ratio limits. Essentially, the method is based on a discrete skewed horseshoe vortices, each of them 
consisting of a bound vortex and two trailing vortices extending to the infinite and a starting vortex located far 
downstream, so that this arrangement automatically satisfies the Helmontz requirement that no vortex line ends in the 
flow.  

The basic concept is to compute the strengths Γ1, Γ2,….ΓN, of each bound vortices in order to keep the flow tangent 
to the wing surface at a set of control points. The arrangement comprising the relevant geometric features is depicted in 
Fig. (1), where the pair (ξ,η), ξ = x/s denotes the dimensionless coordinate system and Γ1, Γ2,….ΓN denote the strengths 
of the bound vortices placed along the one-quarter chord line.   

 
                                                    -1                                                                              1    η 
                                                                                                                                               

 
                                                                     Γ2                                      
                                                          Γ1                                                                 ΓN 
                      
 
                                                                    

      ξ 
 
 
 
 

 
Figure 1. Discrete skewed horseshoe vortices on a finite wing for the extended model. 

 
 The kinematical no-penetration boundary condition applied to the local mean camber line of a given wing section 
is shown in Fig. (2), where αg is the geometrical angle of attack, dz/dx is the mean camber line slope, and α is the angle 
of attack with respect to the zero lift line. Actually, α is an incidence angle that varies along the chordwise direction and 
it can be related to the geometrical angles. 

 
                                                              z                               

                                 α = αg –arctan(dz/dx)        
                                                             α 

   0    αg                     3/4c                c                 x  
                                                                                                                                                                           
                                                                      U∞                    mean camber line    
                                                                                                 zero lift line  

 
Figure 2. Geometric scheme of a local wing section at a given spanwise station. 

 
3.1. Mathematical formulation 
 

Unlike the simplicity of the Classical Lifting-Line Theory, derived in detail by Anderson (1991) with an interesting 
historical perspective, the Extended Lifting-Line Theory requires a little effort to gather essential concepts and formulae 
that lead to the assemblage of a concise mathematical model. The model is based on the assumptions that the flow over 
a finite wing is incompressible and irrotational, the approximations of thin local wing sections (thin airfoil theory) is 
valid, the angle of attack is small, and the aspect ratio is sufficiently high with respect to the chordwise direction, that is, 
c/zmax >>1, where zmax is the maximum value of the camber. 

The velocity field U is given by 
 
U =U∞∞ + w                                                                                                                                                                   (6) 
 

where U∞∞ is the free stream velocity and w is the induced field due to the vortex system shown in Fig. (1). Boldface 
format indicates vector quantities. The use the approximations above allow the no-penetration boundary condition, U . 
n = 0, to be transferred from the wing surface to the “camber” surface, where n is the outward unit vector on the mean 
camber line. By taking the above approximations into account, the linearized boundary condition can be written as 

one-quarter chord line 

three-quarter chord line 
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A remarkable feature to be pointed out is that the incidence angle varies along the chordwise direction and this 

leads to the need for a criterion to define an adequate chordwise station to calculate the induced field w(x,z). In this 
respect, Pistolese ´s theorem, based on the results from the thin airfoil theory, gives a powerful contribution, since it 
states that the calculation performed at the ¾ c point makes the incidence angle equal to the angle of attack with respect 
to the zero lift-line, that is, α = αg –αL=0. As a result, the induced velocity field w(x,z) due to the horseshoe vortex 
system distributed along the one-quarter chord line is calculated at the points located on the three-quarter chord line 
(control points). This is the reason for the extended model being known as the three-quarter-chord line method.              

In the present context, the induced velocity field w(x,z) at a given point located on the three quarter chord line arise 
from the contributions of the trailing vortex system. It can be calculated by applying the Bio-Savart Law to each of the 
semi-infinite vortex filaments, computing the induced velocity due to the legs that bounds the point (self-induction or 
downwash component) and the induced velocity due to the external legs (external induction or upwash component). The 
additional assumptions for the extended model are: the circulation per unit length is constant along each horseshoe 
vortex and the control point is placed, without loss of generality, at the midpoint of the horseshoe vortex. This 
arrangement is shown in Fig. (3), where yhe pair (xp,y) denotes the control point coordinates, (xc,y’) denotes the bound 
vortex coordinates (left leg), ε = dy is the grid step; ξp = xp/s, ξc = xc/s, η’ = y’/ s and η = y/s are the dimensionless 
coordinates used in the Weissinger method.     

 
 
 
 
 

 
 

     
 
           
 
                                                               
                                            (a) Self-induction contribution–downwash component; 
 
 
 
 
 
 
 
 
 
 
 
 
                                            (b) External induction contribution – upwash component; 
 

Figure 3. Horseshoe vortex contributions to induced velocity at the three-quarter-chord point. 
 
Because a detailed derivation of the induced velocity can be found in Schilchting and Truckenbrodt (1979), only the 

main results obtained from Biot-Savart Law is presented here. The Induced velocity field w is split into the downwash 
wd and the upwash wu components as follows. The downwash wd component and upwash component wu at an arbitrary 
control point are respectively given  by 
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 The integration is performed with respect to y’ throu gh the interval –b/2 ≤ y’ ≤ b/2 where y must be excluded .The 
integral represents the contribution of the vortex system to the induced velocity at y’ = yp, where a singularity takes 
place. Substitution of Eq. (8) and Eq. (9) into Eq. (7) and the use of Pistolese’s theorem α = αg –arctan (dz/dx) at x = xp, 
yields the following integro-differential equation for the circulation distribution  Γ(y) 
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       Defining the function G(xp,y;y’) as  
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       Equation (10) can be rewritten as 
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        Due to the singularity at y’ = y the integration domain must be split into two intervals [−s, y−ε) ∪ (y+ε, s]. A first 
analogy can be established, in analytical terms, between the classical and extended models using the dimensionless 
form of Eq. (10) as follows 
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 After some algebraic manipulation the extended model equation becomes      
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For the sake of comparison, Eq. (3) is rewritten here 
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Comparing Eq. (15) and Eq. (17), some remarkable similarities can be pointed out. The first one arises from the 

first term on the right-hand side of both equations since they represent the Cauchy Integral Formula, with a singularity 
at η’ = η. Actually, the first term in Eq. (15) equals the induced angle of attack far downstream, and this result can also 
be shown by calculating Eq. (13) in the limit xp – xc >> max  y – y’  ≈ b = 2s or ξp – ξc >> 2. It should be emphasized 
that this is a mathematical analogy rather than a physical one, because the induced angle of attack is calculated far away 
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from the wing. The second similarity arises from the fact that the second term on the right-hand side of both equations 
possesses an exclusive dependence on the wing planform geometric characteristics. Indeed, the function K(ξp, η, η’), 
defined in Eq. (16), is regular at η’ = η and this can be shown with the aid of the L’ Hôspital’s rule. A third similarity is 
that no reference has been made to Kutta condition at the wing tips, which represents an additional boundary condition 
to be taken into account by the method used to solve the integro-differential equations. For the classical model the finite 
Fourier sine series given by Eq. (4) is assumed to be a solution, which satisfies the Kutta condition. Regarding the 
extended model, further development from Eq. (13) is required. No matter how refined the grid scheme is, any attempt 
to solve Eq. (15) for velocity circulation does not work out because Kutta condition has not been imposed yet. 

Further algebraic manipulations involving Eq.(13) and Eq.(15) provide other interesting insights. For example, an 
integration by parts involving the Cauchy integral in Eq. (15) furnishes meaningful information about the streamwise 
distribution of the downwash on the vortex sheet. Also, integration by parts involving the Cauchy integral in Eq. (13) 
yields a more suitable version for comparison purposes in terms of integro-differential equations, besides allowing the 
the Kutta condition to be satisfied. Starting with the first term in Eq. (15) : 
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where ∞
iα  denotes the angle of attack far downstream and wing

iα denotes the angle of attack at the wing station y’ = y. 
The Kutta condition has been accounted for through the condition Γ(s) = Γ(−s) = 0, and also Γ(y−ε) = Γ(y+ε) = Γ(y) 

when ε → 0, which are automatically satisfied.  It is clear from Eq. (19) that the induced angle wing
iα is the same as the 

induced angle of attack for the Classical Lifting-Line Theory, as shown in Eq. (1). This result represents a powerful 
contribution to Trefftz’s method.  The reader is warned not to get confused by the superscripted circulation Γ’ denoting 
first derivative with respect to y’ .          

 
Now, integrating the second term in Eq. (13) by parts gives 
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Further development of Eq. (20) must include the Kutta condition γ (−1) = γ (1) = 0 and F(ξp,η;η-ε*) = 

F(ξp,η;η+ε*) → 2; γ (η-ε*) = γ (η+ε*) → γ (η) as ε* → 0. Finally,  the substitution of the result into Eq. (13) yields: 
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Again, the superscripted quantities F’ and γ’ denote first derivative with respect to η’. Equation (21) represents an 
important analytical result, since it embodies both the kinematical boundary condition and Kutta condition. An analogy 
can also be established between Eq. (21) and Eq. (17). The first terms in both equations represent the Cauchy Integral 
Formulae as described by Karamchetti (1966) and they are essentially related to induced effects (induced angle of attack 
and induced velocity field) and the second terms are exclusive functions of the wing planform geometric characteristics. 
From Eq. (22) it can be easily seen that the function K* is regular at η’ = η. It is clear from the developments presented 
so far, even in analytical terms, that extended model reveals features on the finite wing theory otherwise unable to be 
seen through the classical one. Indeed, if one tries to retrieve the past, turning back to the beginning of the last century 
(Anderson, 1991), it is possible to see, in the scope of the lifting-line theory, labeled as Lanchester-Prandtl theory, that 
the finite wing was simply conceived as a straight vortex filament with a circulation that varies as a function of the 
spanwise coordinate y. On the on hand, it represented a huge step in aeronautical sciences at that time. On the other 
hand, it was just a tiny step in a series of theories that led to a set of powerful analytical tools available today. For 
historical reasons, the extended model has been developed in a dimensionless form to meet the definitions from the 
Weissinger coordinate system. However, in the present context, the numerical scheme used to solve the problem is 
based on the dimensional form of Eq. (22), which reads 
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3.2. Numerical  formulation 

 
Equation (23) is discretised according to scheme shown in Fig. (4). 
 
 
 
 
 

 
 

 
 
 
                 
 
 
 
 
 

Figure 4. Numerical discretisation scheme for the extended model 
 
The circulation is assumed constant through each of the horseshoe vortices, and Γ0 = ΓN+1 = 0. As shown in Fig. (4), 

a control point is placed at the midpoint of each horseshoe vortex and a uniform grid is adopted. A high-order precision 
requires a large number of elemental rectangular wings (N → ∞), which means ε → 0. Since this proceedure is mostly 
concerned with the comparison between two mathematical models for a finite wing calculation, higher order 
approximations have not been considered. Actually, if the linear system of algebraic equations for the extended model is 
properly assembled, the numerical precision is not a concern. The space discretisation of the first term on the right-hand 
side of Eq. (23), according to geometrical scheme shown in Fig. (4), yields 

 
  1 ≤ i ≤ N  and   ≤ j ≤ N                                                                                                                                                            (26)   
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where ct is the tip chord, Λle, is the leading edge sweepback angle and Θ(i,j) is a matrix derived from the rearrangement 
of the difference scheme. This first discretisation is concerned with induced angle of attack at the ith-spanwise station.    

The space discretisation of the second term on right hand side of Eq. (23), according to geometrical scheme shown 
in Fig. (4), yields    
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where αef (i) denotes the “analogous” of the effective angle of attack at the ith-spanwise station. Now, the space 
discretisation of the left hand side of Eq. (23) yields 
 

 ))(),(()()( izix
dx
dz

ii pg −= αα                                                                                                                                    (37) 

 
where αg(i) is the geometric angle of attack quoted at ith-spanwise station of the discretised wing. For wings 
geometrically twisted, a linear twist model is usually assumed:     

)()( iyi rootg ϕαα +=                                                                                                                                        (38) 

where αroot is the geometric angle of attack at the wing root and ϕ is the twist per unit length along the spanwise 
direction (ϕ < 0 for washout distribution). A final consideration to get the circulation distribution is that the Weissinger 
theory provides the means for computing the distribution of lift on swept wings, but not the chordwise distribution of 
pressure. It is mostly for this reason that the Simple Sweep Theory must be embodied on the present formulation. The 
main idea behind sweeping the wing is to reduce the effects of compressibility. Although the compressibility is not a 
reason for concern in the present context, it cannot be denied that the component of the flow parallel to the wing is 
affected by the presence of the wing, so that the normal component is decoupled from the tangential component. As a 
result, the sections normal to leading edge can be considered as operating in the flow with lower velocity and dynamic 
pressure. From these considerations, the extended model incorporates a sweeping effect.  The solution for the 
circulation distribution is simply obtained by solving α(i) = αg(i) +αef(i), which yields the following system of linear 
algebraic equations.   
 



Proceedings of ENCIT 2004 -- ABCM, Rio de Janeiro, Brazil, Nov. 29 -- Dec. 03, 2004 
 

9  

 NjNiBA ijij ≤≤≤≤=Γ 1;1                                                                                                                   (39) 

 
∧

+
Θ

= ij
ij

ij KA ε
ε4






 −+Λ= ∞ )),((cos2 4/1 ipirooti zix

dx
dz

yUB ϕαπ                                                                 (40)   

 
where Λ1/4 is the sweepback angle of the one-quarter-chord line with respect to axis y. Since the system of linear 
equations expressed in Eq. (38) meets the diagonal dominance requirement, it can be solved by means of implicit 
methods, like Gauss elimination. Once the circulation distribution is available, the inviscid wing parameters can be 
obtained through the following equations:          
 

     )()(' yUyL Γ= ∞ρ   ; 
)(

)(2
)(

ycU
y

ycl
∞

Γ=  ;   ∫−∞
Γ=

s

s
L dyy

SU
C )(

2                                                                               (41) 

  

∫−∞
Γ=

s

s
iDi dyyy

SU
C )()('

2 α ;    ∫−

∗

∞
Γ−=

s

s
my dyyxy

cSU
C )()('

2                                                               (42)     

 
where L’ is the lift distribution (the superscript L’ indicates lift per unit length), cl is the local lift coefficient, CL is the 
wing lift coefficient, CDi is the wing induced drag coefficient, Cmy is the wing pitching moment coefficient with respect 
to a line parallel to the y-axis passing through the one-quarter-chord point at wing root, that is, x*(y) = x(y) – cr/4 (cr is 
the root chord), c(y) is the local chord, S is the wing planform area and c is an average of c(y). Unlike the classical 
model, the wing performance parameters such as the induced drag factor and the span efficiency factor, or Oswald’s 
efficiency factor, are unable to be properly expressed in analytical terms. Because the accuracy of these parameters is 
strongly sensitive to way the induced quantities are calculated, they are not entitled for numerical comparison.    
 
4. Results and discussions  

 
In this section the numerical results obtained with both models are compared to each other, and the accuracy of the 

numerical implementation is assessed by comparison with classical results. In all the following cases, λ = ct/cr is the 
taper ratio (tip chord / root chord), Λ is the aspect ratio (b2 / S), Λ1/4 is the sweepback angle measured from the one-
quarter-chord-line to the y-axis (spanwise direction), and ϕ is the spanwise twist distribution (degrees) and α is the 
angle of attack (degrees). The label “ Far field drag in Trefftz Plane” refers to an idealization of the flow due to the fact 
that the downwash induced by the wake does not have an exact position determined on the wing. A single bound vortex 
line is assumed and the induced quantities are computed there. But, the fact is that a real wing does not have a single 
bound vortex and the velocity field induced by the wake varies along the chord. In order to obtain more accurate 
solutions, the flow is formulated in a plane far downstream, the so called Trefftz Plane, in terms of complex potential 
velocity, and a relationship between the flow in the Trefftz plane and the circulation Γ(y) on the wing is then 
established. Such a connection is supported by the Helmboltz ´s vortex theorem. A detailed description of the Trefftz´s 
method can be found in Karamchetti (1966), and related issues are also treated by Smith (1995). 

The first comparison is addressed to the lift slope (radian –1) vs. aspect ratio as shown in Fig (5), from which it can 
be seen that the extended model yields lower values of lift, if compared to those yielded by the classical model. This is 
confirmed by Truckenbrodt (1979). A comparison is also made with results from the Trefftz Plane model as shown in 
Fig. (6), which reveals an excellent agreement.  

 
 

Figure 5. Lift Slope – Comparison between the classical and extended theories   
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Figure 6. Lift Slope – Comparison between the extended model and a Trefttz-Plane-based variant 
 

 The formulation in the Trefftz Plane is described in detail by Karamchetti (1966), and further related topics can 
also be found in Smith (1995). The comparative analysis is now shifted to spanwise dimensionless distribution of 
circulation (or local lift scaled by the factor ρU∞) as shown in Fig. (7), where lower values of lift yielded by extended 
model can be observed. Also comparatively lower values of vortex strenght (slope of the circulation distribution curve) 
for the extended model are noticeable, especially close to the wing tips.         

 

 
 

Figure 7. Spanwise Distribution of Circulation - Comparison Between the Classical and Extended Theories   
 

Figure (8) reveals that the values for the wing lift coefficient obtained from Weissinger’s model and those from the 
Trefttz Plane formulation (plotted against the spanwise twist ratio) are very close. Figure (8) also show that the values 
obtained from the extended theory is more conservative than the values form the classical theory.               

 
 

Figure 8. Wing lift coefficient – Comparison between the extended model and aTrefttz -Plane-based variant 
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The results presented in the preceding Figures are only concerned with symmetrical wing sections. However, wings 
with cambered sections can also be compared by means of the classical and extended models. Consider, for example, a 
finite wing with no aerodynamic twist and no geometric twist, having biconvex-parabolic-shaped sections described by 
the equation 

 

)1(2 XX
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Z −=     ;   
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z

Z =    ;   
c
x

X =                                                                                                        (43) 

 where h is maximum value of the camber function. From the thin airfoil theory (Karamchetti, 1966) and the 
Pistolesi´s Theorem, stated in Eq. (7), it is possible to show that. 
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 Since the lift slope of the airfoil is not affected by the camber, again, one concludes that the extended model yields 
lower values of lift coefficient, for any angle of attack in the range αL= 0  ≤  α  ≤  αmax, for a given aspect ratio, (see Fig. 
(5)), where the upper limit αmax is a parameter not predictable by the potential flow theory. In order to strengthen the 
accuracy of the numerical code implemented for the extended model, Fig (9) shows values of the induced drag 
coefficient resulting from both this model and Trefftz-Plane-based variant, for low and high aspect ratio limits, that 
agree very well.    

 
 

Figure 9. Wing induced drag coefficient, comparison between the extended model and  
a Trefftz-Plane-based variant. 

 
It is worth emphasizing that the results presented so far are at the frontier of Classical Lifting Line-Theory in 

predicting non-viscous parameters for unswept wings with straight planform (rectangular and trapezoidal), twisted and 
possibly with cambered sections, whose simulation is absolutely viable through the extended model. The analysis is 
now addressed to sweptback wings, unable to be predicted by the classical model.  The most suitable quantity entitled to 
strengthen the difference is the pitching moment that arises from the back shifting of the lifting-line. Figure. (10) shows 
the pitching moment coefficient Cmy measured about the root quarter chord point vs. the spanwise twist distribution. 

    

 
 

Figure 10.  Wing pitching moment coefficient vs. spanwise twist - Extended model and Trefftz-Plane-based variant 
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It can be seen that the tendency to pitch the wing is decreased by the twist effect, that is, the aerodynamic load is 

relieved from the midsection to tip. Since Cmy is not an induced quantity, it is clear from Fig. (10) that extremely well 
matched results from the extended model and the Trefftz-Plane-based variant were achieved for a sweeping back angle 
of 25o. Next, Fig. (11) shows the combined effect of sweeping and geometric twist on the pitching moment coefficient. 
Cmy. The effects of sweeping and twist oppose each other.  

 

 
 

Figure 11.  Wing pitching moment coefficient - combined effects of sweeping and twist by the extended model 
 
5. Concluding Remarks.  

 
A comparison between the Classical Lifting-Line Theory and the Extended Lifting Line Theory and its variants has 

been presented. This paper focused on the utilization, limitations, theoretical foundations and mostly, the extent of their 
applicability, ranging from the overlapping possibilities to the point where the extended model allows a step ahead. The 
results show that the extended model is a more powerful tool for preliminary wing design, allowing more aerodynamic 
parameters to be analyzed that the classical model. It is also made clear in this paper that, even though the present 
results are mainly concerned with low speed aerodynamics, some very meaningful insights are brought up in the field of 
high speed aerodynamics. An utterly convincing argument can be given when dealing with high speed airplane design. 
Sweeping wing is intended to reduce the compressibility effects, but, it is unavoidable to see that a twisted wing 
compensates for the tendency to nose down that results from the swept quarter-chord line. Such effects can be taken 
into account using the approach discussed in this paper. Finally, we strengthen that, among other contributions, the 
present work brings into evidence the parallelism between the analytical and numerical features of both theories, not 
easily found in the classical literature in such a clear way. Besides that, the innovative mathematical development 
performed in this work, from the extended model, allows for a term-by-term analogy that leads to a better 
comprehension of the relevant features and judgment of their potential as preliminary design tools.  
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