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Abstract. A numerical investigation of the manner in which the trailing-edge boundary condition is implemented is carried
out using a Thin-Layer Navier-Stokes code. The Reynolds-averaged equations are solved with a Baldwing-Lomax turbulence
model. The unsteady flow simulations were run for a pitch-plunge as well as for a pure-plunge motion. The solutions showed
that the trailing-edge boundary condition is not influential for steady-state computations or for oscillations with no dynamic
stall. On the other hand, for situations involving dynamic stall, the fine details of the flow field differed quite significantly
although the averaged parameters along the cycle were approximately the same.
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1. Introduction

Boundary conditions represent a crucial issue when implementing a solver for both steady and unsteady flow problems.
The trailing-edge (TE) boundary condition is no exception, specially for the unsteady case. The boundary condition at
the cut of a computational grid can be done implicitly or explicitly. When doing it explicitly, some alternatives exist
in the way of implementing the trailing-edge boundary condition. The way of implementing the boundary condition at
the trailing-edge of an airfoil can be influential on the characteristics of unsteady flows around this airfoil. This work is
carried out to study this influence on the lift and drag coefficient histories of an oscillating NACA 0012 airfoil. Two types
of trailing-edge boundary conditions are investigated.

A pitch/plunge combination is imposed to the airfoil with a reduced frequency of 1.0 and half amplitudes of 10 degrees
and one chord for the pitch and plunge motions, respectively. The airfoil oscillates around the mid-chord point and the
phase angle between the two motions is 90 degrees. The phenomenon of dynamic stall is also an important aspect of
unsteady flows. The ability to simulate correctly this phenomenon is a highly desirable feature of a Computational Fluid
Dynamics (CFD) solver. Therefore, the influence of the trailing-edge boundary condition implementation on the dynamic
stall characteristics is a special concern. Also important is the dynamic-stall boundary for a particular profile. The validity
of the NACA 0012 dynamic-stall boundary for the NACA 0014 is investigated in the present work.

The results obtained with the two types of boundary conditions show that they can be influential on the characteristics
of unsteady flows over the airfoil depending on the parameter being investigated. If one is interested in quantities that
represent an average along the cycle, the TE boundary condition is apparently not influential. On the other hand, the
fine details of the flow-field, as the development of the dynamic stall, are strongly affected by the type of TE boundary
condition.

2. Theoretical Background

2.1. Governing Equations

The solution for the problem of an unsteady, compressible, and viscous flow of a Newtonian fluid is obtained by
solving the Navier-Stokes (N-S) equations. In order to facilitate the numerical solution of the N-S equations, the thin
layer approximation is frequently invoked. The Thin-Layer Reynolds-Averaged Navier-Stokes equations are presented in
matrix, non-dimensional, and curvilinear coordinate form in Eq. (1):

∂τ Q̂+ ∂ξF̂ + ∂ζĜ = Re−1∂ζ Ŝ (1)

whereQ = (ρ, ρu, ρw, e)T is the dependent variable and represents a vector which components are the flow state
variables, andQ̂ = J−1Q. The Jacobian of the coordinate transformation from the system(x, z, t) to (ξ, ζ, τ) is
J = (xξzζ − xζ − zξ)−1.
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The reference values for non-dimensionalization are the chord lengthc, the free stream densityρ∞, the free stream
speed-of-sounda∞, the timec/a∞, and the specific energyρ∞a2

∞.
The inviscid and viscous fluxes are given by:

F̂ =
1
J


ρU

ρuU + ξxp
ρwU + ξzp

(e+ p)U − ξtp

 Ĝ =
1
J


ρW

ρuW + ζxp
ρwW + ζzp

(e+ p)W − ζtp

 Ŝ =
1
J


0

µm1uζ + (µ/3)m2ζx
µm1wζ + (µ/3)m2ζz
µm1m3 + (µ/3)m2m4

 (2)

where:

m1 = ζ2
x + ζ2

z

m2 = ζxuζ + ζzwζ
m3 = ∂ζ(u2 + w2)/2 + [(γ − 1)Pr]−1∂ζ(a2)
m4 = ζxu+ ζzw

(3)

The termsξx, ξz, ξt, ζx, ζz, andζt are the metrics of the coordinate transformation.U andW are the contravariant
velocity components given by:

U = ξt + ξxu+ ξzw
W = ζt + ζxu+ ζzw

(4)

Pressure is related to the other variables through the equation of state for an ideal gas:

p = (γ − 1)
[
e− ρ(u2 + w2)/2

]
(5)

2.2. Numerical Technique

The Thin-Layer Navier-Stokes (TLNS) equations are discretized using an alternate direction implicit (ADI), third-
order accurate in space, second-order accurate in time, finite-volume scheme, which can be represented by:[

I + hξ(∇ξÂ+
i,k + ∆ξÂ

−
i,k)p

]
∆Q̂∗i,k = −r̂pi,k[

I + hζ(∇ζB̂+
i,k + ∆ζB̂

−
i,k −Re−1δζM̂i,k)p

]
(Q̂p+1

i,k − Q̂
p
i,k) = ∆Q̂∗i,k

(6)

where:

r̂pi,k = (Q̂pi,k − Q̂ni,k) + hξ(F̂i+1/2,k − F̂i−1/2,k)p

+hζ(Ĝi,k+1/2 − Ĝi,k−1/2)p −Re−1hζ(Ŝi,k+1/2 − Ŝi,k−1/2)p
(7)

The variablesÂ, B̂, andM̂ are the flux Jacobian matrices and are defined asÂ = ∂F̂ /∂Q̂, B̂ = ∂Ĝ/∂Q̂, andM̂ =
∂Ŝ/∂Q̂, respectively. A flux splitting (Steger and Warming, 1981) is applied to matricesÂ andB̂, whereÂ = Â+ + Â−

andB̂ = B̂+ + B̂−.
Theh quantities are defined ashξ = ∆τ/∆ξ andhζ = ∆τ/∆ζ. ∇, ∆, andδ are the forward, backward, and central

difference operators, respectively.
The variablesF̂i+1/2,k, Ĝi,k+1/2, andŜi,k+1/2 are numerical fluxes. The superscript(.)n denotes the physical time

step and the superscript(.)p is related to Newton sub-iterations within each physical time step, which are used to improve
time accuracy. These sub-iterations minimize the linearization and factorization errors and help drive the left-hand side of
Eq. (6) to zero.

Inviscid numerical fluxes,̂Fi+1/2,k andĜi,k+1/2, are evaluated by means of the Osher’s third-order accurate, upwind-
biased scheme (Chakravarthy and Osher, 1983). Linearization of the left-hand side of Eq. (6) is performed by evaluating
the flux Jacobian matrices,̂A and B̂, with the Steger and Warming flux-vector splitting (Steger and Warming, 1981).
The viscous numerical flux̂Si,k+1/2 is computed with second-order central differences. Furthermore, a Total Variation
Diminishing (TVD) flux limiter (Rai and Chakravarthy, 1986) is applied to minimize numerical oscillations at shocks
developed at transonic speeds.

2.3. Boundary Conditions

For inviscid flow solutions, the viscous terms on the RHS of Eq. (1) are set to zero, and the flow-tangency boundary
condition is used at the surface of the airfoil. For Navier-Stokes solutions, the no-slip condition is applied. Density and
pressure are extrapolated to the surface for both Euler and Navier-Stokes solutions.

Inflow and outflow boundary conditions are imposed at the farfield boundaries. For the inflow boundary, flow proper-
ties such as pressure, temperature, and velocity are specified while the density is extrapolated from the neighbor interior
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Figure 1: Schematic of a C-grid near the trailing edge

points. Pressure is specified for the outflow boundary condition and all other properties are extrapolated from the interior.
Extrapolations in both cases are performed by using Riemann invariants.

For unsteady motions, the flow-tangency and no-slip conditions are modified to include the local motion of the air-
foil, which also contributes to the pressure on the surface. Therefore, the momentum equation normal to the surface (ζ
direction) is solved to predict the pressure for a viscous flow more accurately

∂ζp|wall = − 1
∇2ζ

[
ρ∂t

{
ẋ|wall
ẏ|wall

}
· ∇ζ + ∂ζρ|wall∇ξ · ∇ζ

]
(8)

whereẋ|wall and ẏ|wall are the components of the airfoil velocity. Furthermore,∇ξ · ∇ζ = 0 when assuming that the
grid is orthogonal at the surface. If the airfoil is stationary, the normal pressure gradient vanishes in agreement with
boundary-layer theory.

2.3.1. Trailing Edge Boundary Condition

The trailing edge (TE) boundary condition is a crucial issue in both steady-state and unsteady computations. A
schematic of a C-grid near the trailing edge is shown in Fig. 1. The cut is the region of the computational domain
corresponding to points for which(1 ≤ i ≤ il, k = 1) and(iu ≤ i ≤ imax, k = 1). These points are coincident in the
physical domain. The trailing edge point in the physical domain corresponds to the points(i = il) and(i = iu) in the
computational domain. The points along the cut, including the trailing edge, are shown separated in Fig. 1 just for clarity.

The boundary condition at the cut of a C-grid can be done either explicitly or implicitly. In the present method, this
boundary condition is computed explicitly, after the flow tangency or the no-slip condition is applied to the surface of the
airfoil. The flow variables at the cut,k = 1, are calculated by averaging the upper and lower neighboring points fork = 2.
Some options exist when one must decide how to implement the explicit boundary condition at the trailing edge. Three
possibilities for this implementation exist:

• use the averaged value from points at(iu, 2) and(il, 2);

• treat the trailing edge as two different points (no averaging);

• use the averaged value from points at(iu, 1) and(il, 1).

The first option is the most obvious because it is just an extension of the boundary condition applied at the cut of the
C-grid. However, the first option is not the most suitable one because it does not enforce the no-slip or the flow-tangency
condition at the trailing edge. These boundary conditions are overwritten when computing the average of the off-surface
points (k = 2). In this work, the second alternative is called the “free TE boundary condition.” The no-slip or the flow-
tangency condition is applied to the TE. However, because the TE is treated as two different points in the computational
domain, a discontinuity may occur at the TE since the two points are the same in the physical domain. The last option,
called averaged TE, appears to be the most consistent one for the present work because, in terms of discretization of the
physical domain, the points of the cut corresponding to the TE are the same. Furthermore, it is guaranteed that the no-slip
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Figure 2: Grid around the NACA 0012 airfoil

condition or the flow-tangency condition is maintained at the TE since these conditions are applied fork = 1 before
averaging.

3. Results and Discussion

The influence of applying the free or the averaged TE is investigated. A single NACA 0012 airfoil oscillating in a
combined pitch and plunge motion is used to determine the difference in the solutions for both TE conditions. The reduced
frequency of the motion is defined asκ = ωc/U∞, whereω is the frequency,c corresponds to the chord of the airfoil, and
U∞ represents the free stream velocity. The reduced frequency is set toκ = 1.0 and the pitch and plunge half amplitudes
areα̂ = 10 degrees and̂h = 1.0, respectively. Pitch leads plunge byφ = 90 degrees. The pivot point for the pitch motion
is chosen to be the half chord orxp = 0.5. The free-stream Mach and Reynolds numbers areM∞ = 0.3 andRe∞ = 106,
respectively. The B-L turbulence model is applied for the fully turbulent computations. The C-grid is presented in Fig. 2
and its dimensions areimax = 281 andkmax = 81.

The non-dimensional equations of motion are given by:

h = ĥ sin(M∞κτ) α = α̂ sin(M∞κτ + φ) (9)

Steady-state computations are performed forα = 0 degrees, employing both the averaged and free TE boundary
conditions. The pressure distributions over the surface of the airfoil are presented in Fig. 3. The match is extremely good
for the two solutions. However, no conclusion is drawn from the steady-state case because the flow is symmetric, and this
might be the reason for the excellent match.

The motion parameters for the oscillation of the airfoil have been chosen because they force a relatively high induced
angle of attack, therefore, allowing dynamic stall to occur. The time history of the aerodynamic coefficients is presented
in Fig. 4 for both types of boundary conditions. Clearly, the solution is not periodic. For the same type of boundary
condition, the curve for the lift coefficients, for example, does not behave periodically.

The pressure distributions for various positions along the cycle are shown in Fig. 5. The left-hand side of this figure
corresponds to positions along the up stroke and the right-hand side to the down stroke. Although some pressure distri-
butions are not in close agreement for the two TE conditions, the development of the dynamic stall is not dramatically
different. In order to better clarify this point, entropy contours during the upstroke part of the motion of the airfoil are
shown in Fig. 6. The vortices generated during the motion are well captured. The left-hand side of Fig. 6 represents the
averaged TE boundary condition. The free TE boundary condition is represented on the right-hand side. Although the
vortices do not match perfectly for the two types of TE boundary condition, their sizes are comparable and the speed with
which they convect downstream is approximately the same. Note, also, that the flow is not periodic. This can be seen
in Fig. 7 in which the variation of the drag coefficient is shown against the lift coefficient. Clearly, the solution is not
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Figure 4: History of lift and drag coefficients for the pitch/plunge case
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periodic. However, it stays inside a confined area although it wanders from place to place in that area. This behavior is
represented in the Chaos Theory by the Torus Attractor (Castro, 2001). This attractor appears to be the same for both
types of TE boundary condition. Furthermore, a computation of the thrust coefficient and propulsive efficiency showed
that these parameters are virtually the same for both TE conditions (cT = 0.40 andη = 0.21). As a conclusion from this
case, the type of TE boundary condition is apparently not influential when one is interested in quantities that represent an
average along the cycle. On the other hand, the fine details of the flow-field, as the development of the dynamic stall, are
strongly affected by the type of boundary condition at the trailing edge.

A case with no dynamic stall was also run to evaluate the TE boundary condition. A NACA 0014 airfoil oscillating
in pure plunge is computed. The reduced frequency of the motion isκ = 0.4 with a half amplitude of̂h = 0.4. The
free-stream Mach and Reynolds numbers areM = 0.3 andRe = 106, respectively. The flow is assumed fully turbulent
and the B-L turbulence model is used. The domain is discretized by a321× 91 C-grid shown in Fig. 8.

When steady-state computations are performed, they deliver the same solution for both types of TE boundary con-
dition. This is similar to the NACA 0012 airfoil case. Unsteady simulations are also computed for the two types of TE
boundary condition. The history of the unsteady lift and drag aerodynamic coefficients is presented in Fig. 9. The agree-
ment between the solutions for the two different boundary conditions is quite good. The thrust coefficient iscT = 0.041
and the propulsive efficiency isη = 0.73 for both cases. Therefore, in situations where there is no dynamic stall, the
difference of applying an averaged TE or a free TE boundary condition is negligible.

Although dynamic stall was computed somewhat differently for the two types of TE boundary condition, the effect on
the predicted thrust coefficient, the propulsive efficiency, and the convection speed of the dynamic vortices was minimal.
Therefore, the averaged TE boundary condition is used throughout the course of this work.

Another important computation with the averaged TE boundary condition was performed to assess the influence of
this boundary condition on the dynamic-stall boundary suggested by Tuncer (Tuncer et al., 1998). They computed the
unsteady flow over a NACA 0012 airfoil oscillating in pure plunge and varied the reduced frequency and the amplitude of
the motion to determine the onset of dynamic stall. Their computations, using a free TE boundary condition, showed that
the dynamic-stall boundary is given by the equation:

ĥκ = 0.35 (10)

Two computations withκ = 1.0 were performed for̂h = 0.3 and ĥ = 0.4. The first, corresponding tôhκ =
0.3, predicted no separation of the flow, in agreement with the dynamic stall boundary given by Eq. 10. The second,
corresponding tôhκ = 0.4, calculated a separated flow during the motion of the airfoil, confirming that the averaged TE
boundary condition also delivers the dynamic-stall boundary described by Eq. 10.

A second set of computations was performed for the averaged TE boundary condition but, this time, for the NACA 0014
airfoil. The objective was to determine the influence of the shape of the airfoil on the dynamic-stall boundary represented
by Eq. 10. The reduced frequency was kept equal toκ = 1.0 while the amplitude of the pure plunge motion,ĥ, was varied.
For ĥ = 0.4, no separation of the flow was predicted, suggesting that the dynamic-stall boundary might have changed for
the NACA 0014 airfoil. A computation witĥh = 0.5 showed that the flow was detached from the airfoil surface. These
computations are shown schematically in Fig. 10, along with the dynamic-stall boundary of Eq. 10. Therefore, clearly,
the shape of the airfoil has a significant influence on the onset of dynamic stall. For the NACA 0014, the dynamic-stall
boundary should be further investigated and it appears that it will be given by:

ĥκ ≥ 0.4 (11)

4. Concluding Remarks

A study of the trailing-edge boundary condition was carried out in the present work. A computational code based on
the Thin-Layer Navier-Stokes equations was used. Two types of TE boundary conditions were defined and investigated
for a NACA 0012 oscillating in both a pitch-plunge and a pure-plunge motions. Some simulations involving a NACA
0014 oscillating in pure plunge were also performed.

For the pitch-plunge motion, the pivot point was set to be the half chord, the reduced frequency toκ = 1.0, the half
amplitudes tôh = 1.0 andα = 10 degrees, and the phase angle toφ = 90 degrees. The parameter combination is
such that dynamic stall is forced. The two different types of TE boundary conditions, namely the free and the averaged
boundary conditions, delivered the same solution for a steady-state simulation. For the dynamic-stall case, the solutions
do not match perfectly, differing on the fine details of the flow. However, they stayed inside a confined area which appears
to be a Torus Attractor of the Chaos Theory. The averaged quantities along the cycle were not influenced by the TE
condition.

The pure-plunge computations with no dynamic stall showed that the different TE boundary conditions yielded virtu-
ally the same solution for a NACA 0014, reduced frequency ofκ = 0.4, and half amplitude of̂h = 0.4. Furthermore, the
difference between the averaged parameters was negligible.

The dynamic-stall boundary for the NACA 0014 was found to be different fromĥκ = 0.35 for the NACA 0012.
Consequently, the dynamic-stall boundary for the NACA 0014 should be further investigated.
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Figure 5: Comparison of pressure distributions for averaged and free TE
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Figure 8: Grid around the NACA 0014 airfoil
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