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Abstract. It is shown how standard iterative methods for solving linear and nonlinear equations can be approached from the
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1. Introduction

At the risk of oversimplification, it can be said that the design of a successful numerical algorithm usually involves the
choice of some parameters in such a way that a suitable measure of some residue or error decreases to a reasonably small
value as fast as possible. Although this is the case with most numerical algorithms, they are usually analyzed on a case by
case basis: there is no general framework to guide the beginner, or even the expert, in the choice of these parameters. At a
more fundamental level, one can even say that the very choice of strategy that results in the introduction of the parameters
to be chosen is not usually discussed.

Control theory, once again oversimplifying considerably, is concerned with the problem of regulation. In the six
decades or so of development of mathematical control theory, several approaches have been developed to the systematic
introduction and choice of feedback control parameters in the regulation problem. The object of this paper is to show
that one of these approaches—the control Liapunov function approach—can be used in a simple and systematic manner
to motivate and derive several iterative methods by viewing them as dynamical systems with feedback control. In the
context of iterative methods, truncation, roundoff and approximations play the role of disturbances, the effects of which
should be minimized by good numerical algorithms.

Related approaches have been put forward in the literature. Continuous algorithms have been investigated in the
Russian literature (Gavurin, 1958; Alber, 1971; Tsypkin, 1971) as well as the Western literature (Boggs and Dennis, Jr.,
1976; Smale, 1976; Hirsch and Smale, 1979) and the references therein. More recently, Chu, 1988 has developed a
systematic approach to the continuous realization of several iterative processes in numerical linear algebra. A control
approach to iterative methods is mentioned in Krasnosel’skii et al., 1989, but not developed as in this paper. As far
as using Liapunov methods in the analysis of iterative methods is concerned, contributions have been made both in the
Russian literature (Evtushenko and Zhadan, 1975; Venets and Rybashov, 1977) as well as the Western literature (Hurt,
1967; Ortega, 1973). Thus the novelty of this paper is that both control and Liapunov approaches are combined to give a
unified treatment of some basic linear and nonlinear iterative methods in numerical analysis.

2. Preliminaries

This section gives a whirlwind introduction to some basic concepts and terminology in stability and control theory in
order to make this paper self-contained.

Stability of dynamical systems
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Consider the system of autonomous or time-invariant differential equations

ẋ = f(x(t)), x ∈ R
n, (1)

where the dot represents differentiation with respect to the variable t, thought of as time. The initial condition is,
without loss of generality, specified at t = 0 as x(0) = x0. The system (1) is called a continuous dynamical system and its
solution referred to as a trajectory. Trajectories display different qualitative behavior: transients decay to zero as t tends
to infinity and steady states remain after transients have decayed. Constant solutions, i.e., those for which, for all t > 0,
x(t) = x∗, satisfy ẋ(t) = f(x∗) = 0 and are distinguished from other types of steady states by the name equilibrium.
The other important types of steady states, periodic and chaotic, will not concern us here.

The equilibrium x∗ is called stable if for all ε > 0, there exists δ > 0 such that ‖x−x0‖ < δ implies that ‖x(t)−x∗‖ <
ε for all t > 0. It is called locally asymptotically stable if it is stable and if there exists δ > 0 such that ‖x − x0‖ < δ
implies that limt→∞ x(t) = x∗. If δ can be chosen arbitrarily large, the stability is said to be global. In fact, all these
stability notions should, more accurately, be qualified with the word Liapunov, but, for brevity, we will drop this qualifier
whenever possible.

Assuming that f is differentiable in a neighborhood of x∗ and denoting its derivative with respect to x as Df (x), we
can write

f(x(t)) = f(x∗ + x(t) − x∗) = f(x∗) + Df (x
∗)(x(t) − x∗) + o(x(t) − x∗), (2)

where o(x(t) − x∗)) denotes the fact that lim‖x‖→0[(x(t) − x∗)/‖x‖] = 0. Defining e(t) := x(t) − x∗, i.e., changing
coordinates so that the equilibrium x∗ occurs at the origin:

ė(t) = Df (x
∗)e(t) + o(e(t)). (3)

If all the eigenvalues of the Jacobian matrix Df (x
∗) have strictly negative real parts, then the equilibrium point (0 for (3)

and x∗ for (1)) is locally asymptotically stable, so that if ‖x0 − x∗‖ < δ, then limt→∞ x(t) = x∗. The system

ė(t) = Df (x
∗)e(t) (4)

is referred to as the linearization of (1) about the equilibrium point x∗.
Definitions that are analogous can be made for discrete dynamical systems and we will not repeat them here, referring

the reader to Hurt, 1967; Ortega, 1973; Boggs, 1976 for details. Instead, we will state the main Liapunov stability theorem
that we will need for the discrete-time case. A nonautonomous or time-varying discrete dynamical system is defined by
the recurrence

xk+1 = fk(xk), (5)

where, for each k in N, fk : D → R
n is continuously differentiable in a neighborhood of the origin, and D ⊂ R

n.

Liapunov stability theorem for nonautonomous discrete-time system

Theorem 2.1 Let x∗ = 0 be an equilibrium of (5). Then the zero solution of (5), x(k) ≡ x∗ = 0, ∀k, is globally
asymptotically stable if there exists a scalar-valued function, V (xk, k), called a Liapunov function, defined on an open
set D and continuous in xk , such that

1. V (0, k) = 0, for all k ≥ k0;

2. V (xk, k) > 0 for all xk 6= 0 in D and for all k ≥ k0.

3. ∆V (xk , k) := V (xk+1, k + 1) − V (xk , k) < 0, ∀xk ∈ D\0, ∀k ≥ k0;

4. 0 < W (‖xk‖) < V (xk) for all k ≥ k0, where W (τ) is a positive continuous function defined on R, satisfying
W (0) = 0 and as τ → ∞, W (τ) → ∞ monotonically.

Remark: The choice of the equilibrium at 0 is merely a matter of convenience and the same definitions could be made for
an equilibrium at x = x∗. In this case, we will say, for brevity, that V is a Liapunov function at x∗.

Elements of feedback control terminology
The bare minimum of control terminology is introduced below in order to make this paper self-contained. One branch

of control theory, called state space control, is concerned with the study of dynamical systems of the form (see Figure 1)

x+ = Fx + Gu

y = Hx + Ju
(6)
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Figure 1: State space representation of a dynamical system, thought of as a transformation between the input u and the output y. The
vector x is called the state. The quadruple {F,G,H, J} will denote this dynamical system and serves as the building block for the
standard feedback control system depicted in Figure 2.
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Figure 2: A standard feedback control system, denoted as S(P, C). The plant, object of the control, will represent the problem to be
solved, while the controller is a representation of the algorithm designed to solve it. Note that the plant and controller will, in general,
be dynamical systems of the type (6), represented in Figure 1, i.e., P = {Fp,Gp,Hp,Jp}, C = {Fc,Gc, Hc,Jc}. The semicircle
labelled state in the plant box indicates that the plant state vector is available for feedback.

and their feedback interconnections in order to achieve some basic properties, such as stability of the interconnected
system, often referred to as a closed loop system, specially when in the form of Figure 2. Note that x+ can represent
either dx/dt or x(k +1). In the former case, the variable t is thought of as time, (6) is said to be a continuous time system
and the central block in Figure 1 represents an integrator; in the latter case, k is a discrete time variable, the system is said
to be a discrete time system and the central block represents a delay of one unit.

If the dynamical system is linear, the transformations {F,G,H,J} are all linear and representable by matrices: F

is called the system matrix, G the input matrix, H the output matrix and J the feedforward matrix. If one or more
of F, G, H, J is nonlinear, the dynamical system is nonlinear, and the nonlinear transformations will be denoted by
the corresponding lower case boldface letters. If the transformations vary as a function of time, this is denoted by the
appropriate subscript t or k.

If the matrices F,G,H and J are constant, the system is called time invariant (or autonomous or stationary); otherwise
the system is called time varying (or nonautonomous or nonstationary). In the latter case, the matrices are subscripted:
with k in the discrete time case, and with t in the continuous time case. Finally, if the matrices F,G, and H are zero,
the system is said to be static or memoryless; otherwise, it is called dynamic. Thus the quadruple {F,G,H,J} is used
as a convenient shorthand for (6). Finally, the word decoupled is used to indicate that a certain matrix is diagonal. For
instance, a controller described by the quadruple {0,0,0, I} would be called static and decoupled. The term multivariable
is sometimes used to denote the fact that some matrix is not diagonal.

A standard feedback control system consists of the interconnection of two systems of the type (6) in the configuration
shown in Figure 2. One or both of the feedback loops may be present.

In closing, we mention, extremely briefly, some of the main problems that control theory deals with in the context
of the system S(P , C) of Fig. 2. The problem of regulation is that of designing a controller C such that the output of
the system always returns to the value of the reference input, usually considered constant, in the face of nonzero initial
conditions, or given some classes of input and output disturbances. The closely related problem of asymptotic tracking
is that of choosing a controller that makes the output follow or track a class of time-varying inputs asymptotically. The
problem of stabilization is that of choosing a controller so that a possibly unstable plant (i.e., one for which, in the absence
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of any control (= in open loop), a bounded input can lead to an unbounded output) leads to a stable configuration S(P , C).
Another type of stabilization problem has to do with the notion of Liapunov stability discussed above. Here one basic
problem is to choose the plant input as a linear function of the plant state so that the resulting system with this state
feedback is stable. Succinctly, given x+ = Ax+Bu, we set u = Kx, so that the resulting system is x+ = (A+BK)x,
and the question then is, can K be chosen so that the eigenvalues of A+BK can be ‘placed’ within stability regions in the
complex plane. The answer is yes, provided that the matrices A,B satisfy a certain rank condition, which, surprisingly,
is equivalent to the property of being able to choose a control that takes the system (6) from an arbitrary initial state to an
arbitrary final state—the latter property is called controllability. Some additional details on the concepts mentioned above
are given in the sections where they are used below, but the interested reader without a control background is referred to
Sontag, 1998 for a mathematically sophisticated introduction or to Kailath, 1980; Delchamps, 1988; Callier and Desoer,
1991; Terrell, 1999 for more elementary approaches.

3. Iterative methods as dynamical systems with feedback control – general nonlinear case

Standard iterative methods for solving nonlinear equations can be approached from the point of view of control. In
order to motivate the study of general iterative methods as discrete dynamical systems with control, we start out with a
discussion of how one might arrive at a continuous-time dynamical system1 that finds the zeros of a given nonlinear vector
function f : R

n → R
n. In other words, the problem is to find a vector x ∈ R

n such that

f(x) = 0. (7)

For a general nonlinear function f , several solutions will, in general, exist. For the moment, we will content ourselves
with attempting to find at least one, when it exists. Let x, r ∈ R

n such that

r = −f(x). (8)

The variable r is, in fact, the familiar residue of numerical analysis, since its norm can be interpreted as a measure of how
far the current guess x is from a zero of f(·), i.e., r := 0 − f(x). The other names that it goes by are error or deviation.
Note that if f = Ax−b, then zeroing the residue r := b−Ax corresponds to solving the classical linear system Ax = b.

In order to introduce control concepts, the first step is to observe that, if the residue r is thought of as a time-dependent
variable that is to be driven to zero, then the variable x is correspondingly driven to a solution of (7). The second step is
to assume that this will be done using a suitably defined control variable u, acting directly on the variable x. In control
terms, this is written as the following simple nonlinear dynamical system (Fig. 3).

dx

dt
= u, state equation (9)

y = f(x), output equation. (10)

Furthermore, from (8) and (10) the output y is the negative of the residue r:

y = −r. (11)

The problem of finding a zero of f(·) can now be formulated in control terms as follows. Find a control u that will drive
the output (= −residue) to zero and, consequently, the state variable x to the desired solution. In other words, this is a
regulation problem, where the output must be regulated to a reference signal, which in this case is zero: a glance at Figure
3 will make this description clear. From the point of view of control, a natural idea is to feedback the output variable y in
order to drive it to zero. In other words, a feedback law of the following type is being chosen:

u = −K(x)y = K(x)r. (12)

Thus the closed loop system has the form (see Figure 3)

dx

dt
= K(x)r. (13)

The problem of choosing the feedback gain K(x) is solved using a control Liapunov function, and it is convenient to carry
out the design in terms of the residual vector r. In order to do this, it must be assumed that a local change of coordinates is
possible from the variable x to the variable r. Since r = −f(x), by the inverse function theorem, if it is assumed that the
Jacobian of f(·) is invertible, then f itself is locally invertible, i.e., the desired change of coordinates exists. Accordingly,
taking the time derivative of (8) leads to the following equation

dr

dt
= −

∂f(x)

∂x

dx

dt
= −Df (x)ẋ, (14)

1Other terms that have been, or are, in fashion, are analog circuits or analog computers, or, more recently, neural networks.
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Figure 3: A continuous realization of a general iterative method represented as a feedback control system. The plant, object of the
control, represents the problem to be solved, while the controller is a representation of the algorithm designed to solve it. As quadruples,
P = {0, I, f ,0}, and C = {0, 0,0,K(x)}. This standard feedback control system configuration is denoted as S(P, C) for arbitrary
choices of P, C.

where Df (x) denotes the Jacobian matrix of f at x and ẋ denotes the time derivative of x. Substituting (13) in (14) leads
to the following equation.

dr

dt
= −Df (x)K(x)r. (15)

Note that the right hand side of (15) depends on both x and r. Under the assumption that f is locally invertible in the
neighborhood of the desired solution, (15) can be written in terms of the variable r alone. This implies that, whatever the
choice of the matrix K, convergence results based on (15) are local, unless f is globally invertible.

Some choices of K(x) that ensure convergence are clear by inspection; however, a specific control Liapunov function
V (r) will be used to justify these choices. Let

V (r) := ‖r‖2
2 = rT r. (16)

Then the time derivative of V along the trajectories of (15), denoted V̇ , is given by

V̇ = −rT ([Df (x)K(x)]T + Df (x)K(x))r. (17)

In order for the system to be asymptotically stable, it is necessary to choose K(x) in such a way that V̇ becomes negative
definite. Since it has been assumed that the Jacobian is invertible in some neighborhood of the initial condition x0, two
choices suggest themselves immediately. Let

K(x) = αD−1

f
(x), (18)

where α is a positive scalar. Then

V̇ = −2αrT r, (19)

which is clearly a negative definite function.
Another choice of K(x) is as follows. Let

K(x) = αDT
f
(x). (20)

For this choice

V̇ = −2αrT Df (x)DT
f
(x)r, (21)

which is negative definite by the hypothesis: Df (x) invertible implies that the symmetric matrix Df (x)DT
f
(x) is, in fact,

positive definite.
The first choice leads to the closed-loop equation given by

dx

dt
= −αD−1

f
(x)f(x), (22)

which is recognizable as a continuous realization of the familiar discrete Newton iteration studied further below. The
second choice, (20), is a continuous realization of a version of the Fridman algorithm (Fridman, 1961; Maruster, 2001;
Ortega and Rheinboldt, 1970; Dennis, Jr. and Schnabel, 1996). For brevity, in what follows, we will also use the term
continuous algorithm. Note that, for the choice (18) of K, (15) can be solved explicitly to yield r(t) = e−αtr0, showing
that the continuous Newton algorithm (22) has the pleasant property that the residue goes exponentially to zero, with the
rate determined by α.
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We may summarize the developments above as follows. The problem of finding a zero of a function is mapped into
the problem of making the trajectories of an associated dynamical system converge locally to the desired zero. This
dynamical system is also referred to as a continuous algorithm and, more specifically, each choice of a specific matrix,
called the stabilizing feedback matrix K(x), corresponds to a different continuous algorithm. The constant solution (equal
to the desired zero for all time) of the system is locally asymptotically stable, i.e., all trajectories that start from initial
conditions sufficiently close to the desired zero converge to it asymptotically. In the particular case of the continuous
Newton algorithm (22), the convergence is actually exponential.

In this development, the feedback gain matrix K(·) was chosen as a function of x alone, but the derivation should
convince the reader that it is possible to allow dependence on other variables such as time t, provided that V̇ is guaranteed
to be negative definite. Examples of this will be given below.

After this short motivation in terms of continuous algorithms, we now turn to discrete or iterative algorithms, main-
taining our feedback control point of view. Starting afresh and taking equation (8) as the starting point, a Taylor expansion
of r around x, keeping only the first order term, can be written as follows:

r(x + ∆x) = r(x) −Df (x)∆x, (23)

where Df is the Jacobian of f as before. Some notation is needed.

xk := x

∆xk := ∆x

xk+1 := x + ∆x = xk + ∆xk =: xk + uk

uk := ∆xk

rk := r(x) = r(xk) = −f(xk) (24)

rk+1 := r(x + ∆x) = r(xk+1)

Df ,k := Df (xk)

Kk := K(x) = K(xk)

yk := y(x) = f(xk).

In terms of these variables, the following discrete dynamical system is obtained from (23):

rk+1 = rk −Df ,kuk, (25)

where −rk is the output and uk := ∆xk is the increment that is being controlled, in analogy with the continuous-time
case. The control law is a feedback law as in (12), i.e.,

uk = −Kkyk = Kkrk . (26)

Substituting this feedback control law in (25) yields the following analog of (15), although it should be remembered that
(25) is actually a first order approximation.

rk+1 = (I −Df ,kKk)rk. (27)

Rewriting (27) as rk+1 − rk = −Df ,kKkrk, i.e., ∆rk = −Df ,kKkrk, and observing from (23) that ∆rk = −Df ,k∆xk,
it follows that −Df ,k∆xk = −Df ,kKkrk . Since the Jacobian Df ,k is assumed invertible for all k, this can be written as
the discrete-time analog of (13) as follows:

xk+1 = xk + Kkrk , (28)

or, yet again, from (24), as:

xk+1 = xk −Kkf(xk). (29)

Remarks: Notice that, in the discrete-time case, the basic feedback system structure of Fig. 3 has been maintained, and
the standard discrete algorithm (28), corresponds to a discretization of (13), using the forward Euler method with stepsize
equal to unity. Thus the discretization of (22), using the forward Euler method, results in the standard discrete Newton
iterative method. This raises the question of applying different approximation methods to the left hand side of (22) in order
to get corresponding discrete iterative methods that belong to the class of Newton methods, but have different convergence
properties. Deeper discussion of this point will take us too far afield, so we will refer the reader to Brezinski, 2001 and
earlier papers (Boggs, 1971; Boggs and Dennis, Jr., 1976; Incerti et al., 1979) for details. Essentially, Brezinski, 2001
shows that: (i) the Euler method applied to (13) is ‘optimal’ in the sense that explicit r-stage Runge–Kutta methods of
order strictly greater than one cannot have a superlinear order of convergence; and (ii) suitable choice of a variable step
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size results in most of the known and popular methods. We will follow this line of reasoning, adopting the unifying view
of the step size as a control input.

The problem, as before, is to choose the feedback gain matrix Kk in such a way as to make (locally) all trajectories of
(29) converge to the desired zero, x∗, and, in addition, meet other convergence criteria, such as rate of convergence. Once
again, a control Liapunov function is used to do this, based on an analysis of (27).

Thus it is now opportune to define the concept of a control Liapunov function (CLF), following Sontag, 1998, in order
to formalize what has been done so far as well as to provide a framework for later developments.

Definition 3.1 Consider the dynamical system

xk+1 = Φ(xk,uk), (30)

where x ∈ R
n, the control input u is a vector in R

ni and the function Φ : M× R
ni → R

n is smooth in both arguments
with f(0,0) = 0. Consider also a C1 proper function V : M−{0} → R

+, with V (0) = 0, which, for all xk ∈ M−{0},
satisfies

∆V := V (xk+1) − V (xk) = V (Φ(xk ,u(xk))) − V (xk) < 0, (31)

for suitable values of the control input u(xk) ∈ R
ni . Such a function V (·) is called a control Liapunov function for the

system (30).

In order to have the stabilizing control given in terms of state feedback, it is also desirable to compute, if possible, a
smooth function G(x) : M−{0} → R

ni (with G(0) = 0) such that

uk = −G(xk) (32)

globally asymptotically stabilizes the zero solution of (30), with a specified rate of convergence. In other words, the
control Liapunov function is used as a tool to find the appropriate stabilizing state feedback. For more on control Liapunov
functions, see Sontag, 1989; Amicucci et al., 1997.

The best way to understand this definition is to see it in action. We will show that we can arrive at the Newton iteration
and its variants by the analysis of the first order approximation (27), rather than the analysis of (29). Consider the system
(27) and let

V := rT
k Prk , (33)

where P is a symmetric positive definite matrix, be a candidate for a control Liapunov function. From (33) and (27) it
follows that

∆V := V (rk+1) − V (rk) (34)

= −2rT
k PDf ,kKkrk + rT

k KT
k DT

f ,kPDf ,kKkrk. (35)

In order that (27) be asymptotically stable, it is necessary to choose the feedback gain matrix Kk such that ∆V defined
in (34) becomes negative definite. Two solutions suggest themselves immediately, once again, under the assumption that
the Jacobian Df ,k be invertible. Let

Kk = αD−1

f ,k , (36)

where α is a scalar to be chosen. Substituting this choice in (35) yields

∆V = −(2α − α2)rT
k Prk, (37)

which shows that ∆V will be negative provided that

0 < α < 2. (38)

Having motivated the choice of the matrix Kk by analyzing the first order approximation (27), we now substitute this
choice in (29), and the resulting discrete iteration for x turns out to be

xk+1 = xk − αD−1
f ,kf(xk), (39)

which, for α = 1, is recognized as the classic Newton-Raphson iterative method to find the roots of f(x) = 0.

Remarks: From the expression (37) for ∆V , it is clear that the choice α = 1 is optimal, since it maximizes the decrease in
the norm of rk. Indeed, rewriting (37) as V (rk+1)−V (rk) = (α2 − 2α)V (rk), it appears that, for α = 1, V (rk+1) = 0,
implying that rk+1 = 0. This, of course, is only true for the residue r in (27), which is the first order approximation (23).
The real residue, corresponding to the nonlinear Newton iteration (39) is given by

rk+1 = −f(xk+1) = −f(xk −D−1
f ,kf(xk)),
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which is zero only to first order because

f(xk −D−1
f ,kf(xk)) = f(xk) −Df ,kD

−1
f ,kf(xk) + h.o.t = 0 + h.o.t.,

where h.o.t denotes higher order terms. Note also that the choice of the matrix P does not affect the analysis; any positive
definite matrix will do and, in particular, P = I (i.e., the 2-norm) is a convenient choice.

From the argument leading to the choice (36), it can be seen that if Kk is chosen as a sufficiently good approximation
of the inverse of the Jacobian, i.e., such that ∆V in (35) remains negative, then this ensures local asymptotic stability of
the zero solution of the linearization (27) and consequently of the desired equilibrium of (39). To be more specific, for the
scalar iteration

xk+1 = xk + ukf(xk) (40)

various well known choices of uk can be arrived at by analyzing the residual (linearized) iteration (scalar version of (27)
with Kk = ukI):

rk+1 = (1 − f ′(xk)uk)rk , [where f ′ := df/dx] (41)

using the control Liapunov function V (rk) = r2
k. Rather than repeat the analysis here, we give some of the results of

this analysis in Table 1. More details on the order of convergence and choices of uk for higher-order methods that work
when f ′ is not invertible (e.g., when f has a multiple zero), such as the Halley and Chebyshev methods, can be found in
Brezinski, 2001, where uk is regarded as a nonstationary step-size for an Euler method (and accordingly denoted as hk).

Using the same quadratic Liapunov function (33) and now assuming that the Jacobian Df ,k is limited in norm, in
addition to being invertible, another solution is possible, this time with α as a function of k, denoted αk. Let

Kk := αkD
T
f ,k, (42)

Then

∆Vk := −rT
k

(

2αkPDf ,kD
T
f ,k − α2

kDf ,kD
T
f ,kPDf ,kD

T
f ,k

)

rk (43)

Calculating ∂∆Vk

∂αk

and setting it to zero yields:

αk :=
rT

k PDf ,kD
T
f ,krk

rT
k Df ,kD

T
f ,kPDf ,kD

T
f ,krk

(44)

as the choice of αk which, substituted into (43) yields

∆Vk = −
(rT

k PDf ,kD
T
f ,krk)2

rT
k Df ,kD

T
f ,kPDf ,kD

T
f ,krk

< 0. (45)

It is easy to check that the first three conditions of theorem 2.1 are satisfied for V chosen as in (33), the fourth condition
is satisfied by taking

W (‖rk‖) = [λmin(P) − ε]‖rk‖
2,

for small ε > 0.
The resulting algorithm is given by

xk+1 = xk − αkD
T
f ,kf(xk), (46)

where αk is defined as in (44) and an initial condition is specified.
We now show how to obtain another method under an additional assumption, namely that the Jacobian is bounded in

norm by M , i.e.,

∀k, ‖Df ,k‖ < M. (47)

Table 1: Showing the choices of control uk in (40) that lead to the common variants of the Newton method for scalar
iterations.

Choice of uk Name of method
−1/f ′(xk) Newton

−(xk − xk−1)/[f(xk) − f(xk−1)] Secant
f(xk)/[f(xk + f(xk)) − f(xk)] Steffensen
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This technical assumption guarantees that the fourth condition of theorem 2.1 is satisfied, even if a time varying Lia-
punov function is chosen. Specifically, since the matrix Df ,kD

T
f ,k is being assumed invertible, it follows that Pk =

(Df ,kD
T
f ,k)−1 is a valid choice in order to define the Liapunov function Vk = rT

k Pkrk . If this is done, the iterative
method obtained from (46) is the Fridman method (Fridman, 1961; Ortega and Rheinboldt, 1970; Maruster, 2001):

xk+1 = xk −
f(xk)T f(xk)

f(xk)T Df ,kD
T
f ,kf(xk)

DT
f ,kf(xk). (48)

The control formulation can also suggest new algorithms. Suppose, for instance, that the controller {0,0,0,Kk} is
replaced by {0,0,0,KkP}, where P is the positive definite matrix that defines the Liapunov function. The reason for
this choice will become clear right away. Then, another choice of αk is possible (Silveira, 1980):

αk :=
rT

k PDf ,kD
T
f ,kPrk

1 + rT
k PDf ,kD

T
f ,kPDf ,kD

T
f ,kPrk

. (49)

Substituting this time-varying feedback gain into (43) yields, after some algebra,

∆Vk := −αkr
T
k PDf ,kD

T
f ,kPrk − α2

k < 0. (50)

It is now clear that the introduction of P in the controller results in a negative definite first term in the expression for ∆Vk.
Arguments similar to those just made above allow the conclusion that ∆Vk is negative definite. The resulting algorithm
is given by

xk+1 = xk − αkD
T
f ,kPrk, (51)

where αk is defined as in (49) and an initial condition is specified.

Connection between CLFs of a continuous algorithm and its discrete version
Consider the ODE

ẋ = −G(x), x(0) = x0 (52)

as well as

xk+1 = xk − tkG(xk), x0 given, (53)

where G : D ⊂ R
n → R

n is continuous and D is an open convex subset of R
n.

Remarks: (i) Euler’s method applied to (52) with a variable step size tk yields (53); (ii) Since all iterative methods can
be expressed in the form (53), (52) can be considered as the prototype continuous analog of (53), also referred to as a
continuous algorithm; (iii) it is often easier to work with (52) to obtain qualitative information on its behavior and then
to use this to analyze the iterative method (53). Also, as Alber, 1971 pointed out “theorems concerning the convergence
of these (continuous) methods and theorems concerning the existence of solutions of equations and of minimum points of
functionals are formulated under weaker assumptions than is the case for the analogous discrete processes."

Boggs, 1976 observed that it is sometimes difficult to find an appropriate Liapunov function, but that it is often easier
to find a Liapunov function for the continuous counterpart (52) and then use the same function for (53). His result and its
simple proof are reproduced below.

Theorem 3.2 (Boggs, 1976) Let V be a Liapunov function for (52) at x∗. Assume that ∂V
∂x

is Lipschitz continuous with

constant K on D. Suppose that there is a constant c independent of x such that ∂V
∂x

T
G(x) ≥ c‖G(x)‖2. Then there are

constants t and t such that V is a Liapunov function for (53) at x∗ for tk ∈ [t, t]. Furthermore, t < 2c/K.

Proof. It only needs to be shown that (31) is satisfied for (52). Observe that

∆V = V (xk − tkG(xk)) − V (xk)

= {V (xk − tkG(xk)) − V (xk) + tk
∂V
∂x

T
(xk)G(xk)}

+[V (xk) − tk
∂V
∂x

T
(xk)G(xk)] − V (xk).

By the Lipschitz condition and by Ortega and Rheinboldt, 1970, 15,Thm.3,2.12, the term in braces is bounded by
(1/2)Kt2k‖G(xk)‖2. Therefore,

∆V ≤ −tk
∂V
∂x

T
G(xk) + (1/2)Kt2k‖G(xk)‖2

≤ [−tkc + (1/2)Kt2k]‖G(xk)‖2,

which is strictly less than zero if tkc > (1/2)Kt2k. Choose t < 2c/K and t such that 0 < t < t < 2c/K; and therefore,
for t ∈ [t, t] the result follows.

9



Proceedings of the ENCIT 2004, ABCM, Rio de Janeiro – RJ, Brazil – Paper CIT04-IL16

−−

+

+

PSfrag replacements

xk
xk+1

AC I

rk

I

Axk = ykb

Plant PController
residue output

Delay

Figure 4: A general linear iterative method to solve the linear system of equations Ax = b represented in standard feedback control
configuration. The plant is always P = {I, I,A,0}, whereas different choices of the controller C lead to different iterative methods.

Remarks: For the case of steepest descent, G(x) = ∇f(x) and ∂V
∂x

T
G(x) = ‖G(x)‖2, so that c = 1, and the steplengths

are restricted to the interval [t, 2/K].
Clearly, the steplength can be identified with the control input and theorem 3.2 is then seen as a result giving sufficient

conditions under which a CLF for the continuous time system (52) works for its discrete counterpart (53). Note that the
control or stepsize (tk) is restricted to lie in a bounded interval—a situation which is quite common in control as well.
Boggs, 1976 uses theorem 3.2 to analyze the Ben-Israel iteration for nonlinear least squares problems—thus his analysis
may be viewed as another application of the CLF approach.

We make brief mention of another connection between continuous algorithms, numerical methods for ODEs and fixed
point iterations. A fixed point iteration can be regarded as the discrete dynamical system

xk+1 = f(xk), k = 0, 1, . . . ,x0 given. (54)

Now consider the related system

xk+1 = xk + h(f(xk) − xk) = (1 − h)xk + hf(xk), (55)

which can be regarded as an overrelaxed version of (54) with relaxation parameter h (usually h ∈ (0, 1]). On the other
hand, rewriting (55) as

xk+1 − xk

h
= f(xk) − xk, (56)

it can be viewed as the Euler method applied to the ODE

ẋ(t) = f(x(t)) − x(t). (57)

This ODE has been studied in Borkar and Soumyanath, 1997 where it is shown that nonexpansivity of f is sufficient to
ensure that all trajectories of (57) converge to the set of fixed points of f , which is assumed closed and nonempty. Other
connections are discussed in Brezinski, 2001. Note that, once again, (57) provides an example of a continuous algorithm
that requires less stringent conditions for convergence than its discrete counterpart (see Borkar and Soumyanath, 1997 for
further discussion of this point).

Finally, it should be mentioned that the Liapunov technique is extremely powerful and can be used, among other
things, to determine basins of convergence, as well as to analyze the effects of roundoff errors. This has been done mainly
in Hurt, 1967 as well as in Boggs, 1976 to which we refer the reader.

4. Iterative methods for linear systems as feedback control systems

This section specializes the discussion of the previous section, focussing on iterative methods to solve linear systems
of equations of the form

Ax = b, (58)

where A ∈ R
n×n, b ∈ R

n. First, assuming that A is nonsingular, equation (58) has a unique solution x∗ = A−1b ∈ R
n,

which it is desired to find, without explicitly inverting the matrix A. In applications where the matrix A is large and sparse
(roughly speaking, this means n > 104 with O(n) nonzero entries although, of course, the notion of ‘large’ depends on
the computer available for the solution of the system), it is well known that iterative methods based on intensive use of
matrix-vector products are much more efficient than direct methods such as Gaussian elimination, specially in parallel
computing environments.

10
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Following the discussion of the previous section, a general linear iterative method to solve (58) can be described by a
recurrence of the form (28), reproduced here for convenience:

xk+1 = xk + Krk, k = 0, 1, 2, . . . (59)

where K is a real n×n matrix and where the residue rk , in each iteration, with respect to the equation (58), is defined by:

rk = b−Axk . (60)

Exactly as in the previous section, it is possible to associate a discrete-time dynamical feedback system to the iterative
method (59), and in consequence equation (61) can be viewed as a closed loop dynamical system with a block diagram
representation depicted in Figure 4, where C = {0,0,0,K}. The observant reader will note that it is a discrete version of
Figure 3 in which the plant is linear.

Defining yk := Axk as the output vector of S(P , C), consider the constant vector b as the constant input to this
system. The vector rk represents the error between the input b and the output yk vectors. The numerical problem of
solving the linear system Ax = b is thus equivalent to the problem known in control terminology as the regulation
problem of forcing the output y to become asymptotically equal to the constant input b, by a suitable choice of controller.
When this is achieved, the state vector x reaches the desired solution of the linear system Ax = b.

Substituting the expression for rk into equation (59), the iterative equation is obtained in the so called output feedback
form, i.e.,

xk+1 = (I −KA)xk + Kb. (61)

Notice that this corresponds to the choice of a static controller C = {0,0,0,K} and the iterative method (61) corresponds
to this particular choice of controller C. We exemplify this here by the classical Jacobi iterative method, described by the
recurrence equation:

xk+1 = Hxk + D−1b, (62)

where H = D−1 (E + F) and the matrices D, E, and F are, respectively, strictly diagonal, lower and upper triangular
matrices obtained by splitting matrix A as A = −E + D − F.

Equating (61) and the classical Jacobi iterative equation (62), the relationship between the corresponding matrices is
given by:

H = (I −KA) ; K = D−1 (63)

Other examples are as follows. If K = (D −E)−1, then the recurrence (61) represents the Gauss-Seidel iterative method;

if K =
(

ω−1D−E
)−1

, then it represents the Successive Overrelaxation (SOR) method; and finally, if K = ωD−1, then
it represents the Extrapolated Jacobi method. This set of examples should make it clear that all these classical methods
correspond to the choice of a static controller C = {0,0,0,K} – the particular choice of K distinguishes one method
from another. The formulation of iterative methods for linear systems as feedback control systems presented here was
initiated in Schaerer and Kaszkurewicz, 2001, where shooting methods for ODEs are also analyzed from this perspective.
In order to complete the analysis, observe that, in all the cases considered above, the evolution of the residue rk is given
by the linear recurrence equation below, derived from (59) by multiplying both sides by A and subtracting each side from
the vector b.

rk+1 = (I −AK)rk. (64)

From (64) it is clear that convergence of the linear iterative method is ensured if the matrix S := (I −AK) has all
its eigenvalues within the unit disk (i.e., is Schur stable). Observe that (64) can be viewed as the dynamical system
{I,A,0,0} subject to state feedback with gain matrix K. Thus there exists a state feedback gain K that results in
arbitrary placement of the eigenvalues of the closed-loop matrix S = I−AK if and only if the pair {I,A} of the quadruple
{I,A,0,0} is controllable (which it clearly is). Actually, it is possible to state a slightly more general form of this lemma,
showing that the less stringent requirement of stabilizability also implies that the matrix A must be nonsingular.

Lemma 4.1 There exists a matrix K such that ρ(S) = ρ(I −AK) < 1 if and only if the matrix A is nonsingular.

Proof. (“if”): Choose K = A−1.

(“only if”): Note first that if A is singular, then, for all matrices K, the product AK is also singular, and, moreover,
rank AK ≤ rank A. Thus, it suffices to observe the following (contrapositive) statement: Given a singular matrix
Z ∈ R

n×n with rank Z = p, the matrix I − Z has n − p eigenvalues equal to 1, hence ρ(I − Z) ≥ 1. This is clearly true
because the eigenvalues of (I−Z) are those of −Z shifted to the right by 1. Since Z has n− p eigenvalues equal to zero,
this completes the proof.
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Remarks. Notice that the particular choice K = A−1 makes all the eigenvalues of matrix S equal to zero, implying that
the iterative scheme (64) will converge in one iteration. This is, of course, only a theoretical remark, since if the inverse
of matrix A were in fact available, it would be enough to compute A−1b in order to solve the linear system Ax = b and
unnecessary to resort to any iteration. In fact, the problem of solving a linear system Ax = b without inverting A can be
stated in control terms as that of ‘emulating’ A−1 without actually computing it, and this is exactly what iterative methods
do. Another remark is that the convergence in one iteration, or more generally in a finite number of iterations, is just a
question of making the iteration matrix in (64) nilpotent, with the index of nilpotency representing an upper bound on the
number of iterations required to zero the residue. This is clearly the problem of dead beat control, with the restriction that
it is not allowed to invert the matrix A.

Lemma 4.1 says that stabilizability of the pair {I,A} implies that the matrix A must be nonsingular. Another result of
this nature is that controllability of the pair {A,b} implies that the system Ax = b possesses a unique solution (de Souza
and Bhattacharyya, 1981). Actually, there are deeper connections here with Krylov subspaces which we will not dwell on
here, however see Ipsen and Meyer, 1998.

The next natural question is whether it is possible to do better with other choices of controller. We first consider the
case in which matrix K is no longer a constant and is, in fact, dependent on the state x or the iteration counter k. As in
the previous section, it is possible to derive a multitude of iterative methods of the type

xk+1 = xk + Kkrk (65)

that produce approximations of the solution x∗, the fixed point of (65), under the assumption that Kk 6= 0.
In particular, in many iterative methods, the matrix Kk is chosen as αkI, leading to

xk+1 = (I − αkA)xk + αkb, (66)

where αk is a scalar sequence and I is an identity matrix of appropriate dimension. One method differs from another
in the way in which the scalars αk are chosen; e.g., if the αks are precomputed (from arguments involving clustering of
eigenvalues of the iteration matrix), we get the class of Chebyshev type ‘semi-iterative’ methods; if the αk are computed
in terms of the current values of rk , the resulting class is referred to as adaptive Richardson, etc.). This is analyzed further
in the next subsection.

4.1. Control Liapunov functions and the design of minimal residual methods

Considering the matrix Kk in (65) given by Kk = αkI, it is convenient to rewrite (65) in terms of the residue rk as
follows.

rk+1 = rk − αkArk. (67)

In control jargon, now thinking of the parameter αk as a control uk, equation (67) describes a bilinear system. Since
the system is no longer linear or time-invariant, straightforward eigenvalue analysis is no longer applicable. A control
Liapunov function is used to design an asymptotically stabilizing state feedback control for (67) that drives rk to the origin
and thus solves the original problem (58).

Consider the control Liapunov function candidate V (rk) := 〈rk , rk〉 = rT
k rk. Then, from (67),

〈rk+1, rk+1〉 = 〈rk − αkArk , rk − αkArk〉 (68)

= 〈rk, rk〉 − 2αk〈rk ,Ark〉 + α2
k〈Ark,Ark〉, (69)

from which it follows that

∆V := V (rk+1) − V (rk) = −αk (2〈rk,Ark〉 − αk〈Ark ,Ark〉) . (70)

From this expression it is clear that the choice

αk =
〈rk,Ark〉

〈Ark,Ark〉
(71)

leads to

∆V = −
〈rk,Ark〉

2

〈Ark ,Ark〉
< 0, (72)

showing that the candidate control Liapunov function works and that (71) is the appropriate choice of feedback control.
Furthermore, ∆V is strictly negative unless 〈rk ,Ark〉 = 0. One way of saying that this possibility is excluded is to say
zero does not belong to the field of values of A (Greenbaum, 1997). In other words, the control Liapunov function proves
that the residual vector rk decreases monotonically to the zero vector.

12



Proceedings of the ENCIT 2004, ABCM, Rio de Janeiro – RJ, Brazil – Paper CIT04-IL16

PSfrag replacements

b rk

−

pk+1

Controller C

βkI − αkA

DelayDelay

βk

pk

αkI
xk+1

I

xk

A

Linear Plant P

Axk = yk

Figure 5: The conjugate gradient method represented as the standard plant P = {I, I,A,0} with dynamic nonstationary controller
C = {(βkI − αkA), I, αkI, 0} in the variables pk , xk.

Remarks: Note that the stabilizing feedback control αk is a nonlinear function of the state, which should not be too
surprising, since the system being stabilized is not linear, but bilinear. This choice is a special case of a number of
methods and is called Orthomin(1) (Greenbaum, 1997).

A small change in the candidate Liapunov function, together with the assumption that the matrix A is positive definite,
leads to another well known method. Since A is positive definite, A−1 exists and the following choice is legitimate

V (rk) := 〈rk ,A−1rk〉. (73)

Repeating the steps above, it is easy to arrive at

∆V = −αk

(

2〈Ark,A−1rk〉 − αk〈Ark ,A−1Ark〉
)

, (74)

from which it follows, in exact analogy to the development above, that

αk =
〈Ark,A−1rk〉

〈Ark,A−1Ark〉
=

〈rk, rk〉

〈rk,Ark〉
(75)

is the appropriate choice of feedback control that makes ∆V < 0 that, in fact, corresponds to Richardson’s iterative
method for symmetric matrices (Young, 1989; Varga, 2000; Saad and van der Vorst, 2000), sometimes also qualified with
the adjectives adaptive and parameter free, since the αks are calculated in feedback form. Another useful way to look at
this method is to observe that if the problem of solving the linear system is identified with that of minimizing the quadratic
form 〈x,Ax〉−2〈b,x〉 (which attains its minimum where Ax = b), then the negative gradient of this function at x = xk

is rk = b −Axk. Thus, this method is often called the steepest descent method.

4.2. The conjugate gradient method viewed as proportional-derivative control

In a survey of the top ten algorithms of the century, Krylov subspace methods have a prominent place (Dongarra
and Sullivan, 2000; van der Vorst, 2000). This section shows that the formal conjugate gradient method, one of the best
known Krylov subspace methods, is also easily arrived at from a control viewpoint. This has the merit of demystifying
the conjugate gradient method in addition to providing some insights as to why it has certain desirable properties, such as
speed and robustness in the face of roundoff errors.

The conjugate gradient method is conveniently viewed as an acceleration of the steepest descent method, which was
presented above as an example of the standard feedback control system S(P , C) with the controller {0,0,0, αk(rk)},
which is referred to as a proportional controller. The acceleration is achieved by using a discrete version of a classical
control strategy for faster ‘closed-loop’ response (i.e., acceleration of convergence to the solution): this strategy is known
as derivative action in the controller. The development of this approach is as follows.

Consider that a new method is to be derived from the steepest descent method by adding a new term that is proportional
to a discrete derivative of the state vector xk . In other words, the new increment ∆xk := xk+1−xk is a linear combination
of the steepest descent direction rk and the previous increment or discrete derivative of the state xk − xk−1. Putting in
scalar gains αk and γk, this can be expressed mathematically as follows.

xk+1 = xk + αk[rk + γk(xk − xk−1)]. (76)

This can be rewritten as

xk+1 = xk + αkpk, (77)
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where

pk = rk + γk(xk − xk−1) = rk + γkαk−1pk−1

= rk + βk−1pk−1

(78)

Combining these formulas leads to

xk+1 = xk + αkpk (79)

rk+1 = rk − αkApk (80)

pk+1 = rk+1 + βkpk (81)

which are the standard CG formulas analyzed below, now utilizing a control Liapunov approach.
The conjugate gradient method for the system (58) (i.e., Ax = b), with the additional assumption that A symmetric

and positive definite, can be written as follows (Saad, 1996, Algo.6.17,p.179).

The Conjugate Gradient Algorithm
Compute r0 := b−Ax0, p0 := r0.
For k = 0, 1, . . . , until convergence
Do:
αk := 〈rk, rk〉/〈Apk,pk〉
xk+1 := xk + αkpk

rk+1 := rk − αkApk

βk := 〈rk+1, rk+1〉/〈rk, rk〉
pk+1 := rk+1 + βkpk

EndDo

From the control viewpoint taken here, one approach to understanding this algorithm is to think of the ‘parameters’ αk and
βk as scalar control inputs. The motivation for doing this is the observation that the systems to be controlled then belong
to the class of bilinear systems. More precisely, taking rk and pk as the state variables, the heart of the CG algorithm
above is the following pair of interconnected bilinear systems.

rk+1 = rk − αkApk (82)

pk+1 = rk+1 + βkpk (83)

The control objective is to choose the scalar controls αk, βk so as to drive the state vectors rk and pk to zero. The analysis
will be carried out in terms of the variables rk and pk. Provided that αk is not identically zero, it is easy to see that the
equilibrium solution of this system is the zero solution rk = pk = 0 for all k. Thus the objective is to show that the same
control Liapunov function approach that has been successfully applied to other iterative methods above can also be used
here to motivate the particular choice of αk and βk that result in stability of the zero solution. The analysis proceeds in
two stages. In the first stage, a choice of αk guided by a control Liapunov function is shown to result in a decrease of
a suitable norm of rk . In the second stage, a second control Liapunov function orients the choice of βk that results in a
decrease of a suitable norm of pk. The conclusion is that rk and pk both converge to zero, as required.

Since A is a real positive definite matrix, so is A−1 and both matrices define weighted 2-norms. The control Liapunov
method is used to choose the controls, using the A−1-norm for (82) and the A-norm for (83). Before proceeding, it should
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be pointed out that these choices are arbitrary, and that exactly the same control Liapunov argument with different choices
of norms lead to different methods.

Thus the first step is to calculate the A−1-norm of both sides of (82) in order to choose a control αk that will result in
the reduction of this norm of r to zero.

〈rk+1,A
−1rk+1〉 = 〈rk − αkApk,A−1(rk − αkApk)〉 (84)

= 〈rk,A−1rk〉 − 2αk〈rk,pk〉 + α2
k〈Apk,pk〉 (85)

This can be written as

∆Vr := 〈rk+1,A
−1rk+1〉 − 〈rk ,A−1rk〉 = −2αk〈rk ,pk〉 + α2

k〈Apk,pk〉. (86)

The (optimal) choice of αk is found from the calculation

∂∆V

∂αk

= −2〈rk,pk〉 + 2αk〈Apk,pk〉 (87)

so that ∂∆V
∂αk

= 0 when

αk =
〈rk,pk〉

〈Apk,pk〉
. (88)

This choice of αk is optimal in the sense that it makes ∆V as negative as possible. In other words, it makes the reduction
in the A−1-norm of r as large as possible

∆V = −
〈rk,pk〉

2

〈Apk ,pk〉
. (89)

This derivation of αk also gives a clue as to the robustness of the CG method, since the argument so far has not used
any information on the properties of the vectors pk (such as A-orthogonality). This indicates that, in a finite precision
implementation, even when properties such as A-orthogonality are lost, the choice of αk in (88) ensures that the A−1-
norm of r will decrease.

Proceeding with the analysis, consider the “pk-subsystem” subject to the control βk. The A-norm of both sides of
(83) is calculated in order to choose an appropriate control input βk.

〈pk+1,Apk+1〉 = 〈rk+1 + βkpk,A(rk+1 + βkpk)〉 (90)

= 〈rk+1,Ark+1〉 + 2βk〈pk,Ark+1〉 + β2
k〈pk,Apk〉. (91)

Using the same line of argument as above, calculate

∂‖pk+1‖
2
A

∂βk

= 2〈pk,Ark+1〉 + 2βk〈pk,Apk〉, (92)

so that

βk = −
〈pk,Ark+1〉

〈pk,Apk〉
(93)

is an optimal choice of control, resulting in

‖pk+1‖
2
A = ‖rk+1‖

2
A −

〈pk,Ark+1〉
2

〈pk,Apk〉
. (94)

Since the second term is negative (except at the solution pk = 0), this results in the inequality

‖pk+1‖A < ‖rk+1‖A. (95)

From (89) and the equivalence of norms, it can be concluded that rk+1 decreases in any induced norm (in particular in
the A-norm). Thus (95) implies that pk+1 decreases in A-norm, although not necessarily monotonically, concluding the
proof.

Remarks: Equations (88) and (93) are equivalent, when the orthogonality relations are valid (Greenbaum, 1997), to the
more commonly used but less obvious forms αk = 〈rk, rk〉/〈pk,Apk〉 and βk = 〈rk+1, rk+1〉/〈rk, rk〉.

The Orthomin(2) algorithm (Greenbaum, 1997) differs from the standard CG algorithm only in the choice of the
controls αk and βk. From the viewpoint adopted here, it can be said that the difference lies in the choice of the norms
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used for the control Liapunov functions for the r and p subsystems. More precisely, consider the algorithm (coupled
bilinear systems) below.

rk+1 = rk − αkApk (96)

pk+1 = rk+1 − βkpk (97)

Suppose that the 2-norm is used as the control Liapunov function for the r subsystem and the 2-norm of Ap (recall that
for the Orthomin(2) method it is not assumed that the matrix A is symmetric) is the control Liapunov function for the p

subsystem. A calculation that is strictly analogous to the one above for the CG method shows that this choice of norms
results in

αk =
〈rk,Apk〉

〈Apk,Apk〉
, βk =

〈Apk,Ark+1〉

〈Apk,Apk〉
, (98)

which is exactly the Orthomin(2) choice of αk and βk (see Greenbaum, 1997).
The CLF proof of the CG choices of αk, βk allows another observation that, to the authors’ knowledge, has not been

made in the literature. Consider the following variant of the CG algorithm.

rk+1 = rk − αkApk (99)

pk+1 = rk + βkpk (100)

In this version of CG, the second equation (in p) has been modified and does not make use of the iterate rk+1 computed
(sequentially) “before” it, but instead uses the iterate rk. In this sense, this version may be thought of as a Jacobi version of
the standard ‘Gauss-Seidel-like’ CG algorithm. The analysis of the standard CG algorithm made above may be repeated
almost verbatim, leading to the conclusion that the choices:

αk =
〈rk,pk〉

〈Apk,pk〉
, βk =

〈pk,Ark〉

〈pk ,Apk〉
(101)

(the only difference is in the numerator of βk) ensure that rk is a decreasing sequence in A-norm and, furthermore that
‖pk+1‖

2
A

< ‖rk‖
2
A

, implying that pk is also a decreasing sequence, although it decreases slower than it would in the
standard CG method (for which the inequality ‖pk+1‖

2
A

< ‖rk+1‖
2
A

was obtained). This confirms the conventional
wisdom that Gauss-Seidelization is conducive to faster convergence.

A block diagram representation is helpful in order to interpret what has just been done, both in terms of the taxonomy
of iterative methods proposed as well as in terms of making the controller structure explicit. Comparing the block diagrams
of Figures 5 and 4, it becomes clear that, although the box representing the plant (i.e., problem or equation to be solved)
has remained the same, the box representing the controller (i.e., solution method) is considerably more sophisticated with
respect to the simple controllers studied in section 4. It is, in fact, a dynamic time-varying or nonstationary controller. The
upshot of the increased sophistication is that the method (conjugate gradient) is more efficient. In fact, it is well known
that, in infinite precision, CG is actually a direct method (converges in n steps for an n × n matrix A) (Kelley, 1995).
In control terms, this last observation can be rephrased by saying that the “CG controller” achieves so called dead beat
control in n steps.

The continuous version of the CG algorithm and its connection to the well known backpropagation with momentum
method (much used in neural network training) is discussed in Bhaya and Kaszkurewicz, 2004.

Finally, the interested reader is invited to compare the control approach developed above with other didactic ap-
proaches to the conjugate gradient algorithm, such as Schönauer and Weiss, 1995; Shewchuk, 1994, or an analysis from
a z-transform signal processing perspective (Chang and Willson, 2000). In our view, the control approach is natural and
this is borne out by its simplicity.

5. Concluding remarks

The block diagram representation has the virtue of allowing us to make a clear separation between the problem and
the algorithm, making it easy to classify as well as generalize the strategies used in the algorithm. Taking the example of
linear iterative methods, we see a progression of successively more complex controllers – constant (α), nonstationary or
time-varying (αkI), multivariable (K), multivariable time-varying (αkKk) and dynamic, leading to most of the standard
iterative methods in a natural manner. For linear iterations, the results of this paper lead to a ‘dictionary’ relating controller
choice to numerical algorithm that we present in Table 2, which makes reference to Figure 3, and uses the terminology of
Kelley, 1995; Saad and van der Vorst, 2000.

The standardized control Liapunov function (CLF) analysis technique leads to the conventional choices of control
parameters. It is worthy of note that 2-norms, possibly weighted with a diagonal or positive definite matrix, usually work
as CLFs. This is in sharp contrast with the situation for an arbitrary nonlinear dynamical system, for which, as a rule,
considerable ingenuity is required to find a suitable CLF. Another consequence of the relative ease in finding quadratic
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Table 2: Taxonomy of linear iterative methods from a control perspective, with reference to Figure 3. Note that P =
{I, I,A,0} in all cases.

Controller C Controller Type Class of method Specific methods
{0,0, 0, I} Static, Richardson

stationary
{0,0, 0, αkI} static, Adaptive Chebyshev

nonstationary Richardson
{0,0, 0,K} static, Preconditioned Jacobi, Gauss-Seidel,

stationary Richardson SOR, extrap. Jacobi
{0,0, 0, αkKk} static, Adaptive

nonstationary Preconditioned
Richardson

{0,0, 0, αk(rk)I} static, Steepest Orthomin(1)
nonstationary descent

{βkI − αkA, I, I, 0}, Dynamic, Conjugate CG, Orthomin(2),
in variables pk,xk nonstationary Gradient Orthodir
αk, βk , Proportional-derivative, Conjugate CG, Orthomin,
in variables rk,xk nonstationary Gradient Orthodir
{αkI, I, βkI,0} Dynamic, Second order

nonstationary Richardson Frankel

CLFs is that each of these leads to a different algorithm, so that there is scope for devising new algorithms, showing that
the CLF approach has an inherent richness. The control Liapunov approach is easily generalizable to a Hilbert space
setting, following the work on iterative methods for operators by Kantorovich and Akilov, 1982, Krasnosel’skii et al.,
1989 and others.

This paper has concentrated on showing that variable parameters such as step size or ‘gains’ (e.g., αk, βk in the CG
method) are fruitfully interpreted as control inputs to be chosen by a CLF analysis. Of course, other control techniques for
analysis and design of controllers are also available, opening up the possibility for further work on subjects not touched
on in this paper, such as the second order Richardson methods (last entry in Table 2) or Chebyshev iterative methods,
which use a precomputed sequence of αks (second entry in Table 2).

There is much scope for other applications of control theory in the design and analysis of numerical algorithms. A
classic example of this is due to Gustafsson et al., 1988, where a control model leads to an improved integration routine
for ODEs. A feedback control based analysis of Gauss-Newton recursive methods that is similar to the one made in this
paper can be found in Rupp and Sayed, 1996. Many other applications could be cited but are omitted here for lack of
space.

Some disclaimers should also be made here. Although, the control approach provides guidelines for algorithm design,
it does not free the designer of the need for a careful analysis of issues such as roundoff error (robustness), computa-
tional complexity, order of convergence, etc. It should also be noted that many standard solutions of control problems
are infeasible in numerical analysis because they would involve more computation for their implementation than standard
numerical methods for the solution of the original problem. Here the challenge is for control theorists to develop limited
complexity controllers and, to some extent, driven by technological needs such as miniaturization and low energy con-
sumption, this is now being researched in control theory. Robust control theory has been well developed in the last few
decades and a natural follow up to the ideas in this paper would be to apply this theory to the analysis of robustness of
numerical algorithms to perturbations such as roundoff, truncation, etc.

In conclusion, a quote from Krasnosel’skii et al., 1989 is appropriate: Each class of iteration procedure has its
advantages, its drawbacks and its specific applications. The problem of choosing the optimal method for the approximate
solution of a concrete instance of an equation of the type (58) is not only far from being solved, but is even far from being
clearly posed.

Our hope is that this paper has made a contribution in the direction suggested by Krasnosel’skii in the above quote.
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