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Abstract. This work is aimed at proposing an improved lumped differential approach for
ablative thermal protection, which involves the use of materials with low thermal diffusivity.
The results obtained by the proposed technique for an one-dimensional thermal ablation
problem in a finite slab are compared against those obtained by previously reported lumped
differential solutions. Benchmark results obtained through the integral transform technique
are utilized to verify the proposed solution in a realistic ablation problem consisting of a low
thermal diffusivity material subjected to a known aerodynamic heating.
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1. INTRODUCTION

The so-called coupled integral equations approach (CIEA) is a formulation simplification
technique for diffusion problems. A mixed lumped differential formulation is obtained
through the use of improved lumping procedures, such as Hermite-type approximations for
integrals, on the independent variables selected to be removed. Such approach, recently
reviewed by Cotta and Mikhailov (1997), has been already employed for the solution of
different classes of heat transfer problems (Aparecido and Cotta, 1988 and 1989; Scofano
Neto and Cotta, 1993; Cotta and Ramos, 1993), including the important class of non-linear
phase-change problems here under consideration (Cotta et al., 1990 and 1992; Romani et al.,
1995).

The most common thermal protection system used for ballistic hypersonic re-entries in
the atmosphere involves the addition of an ablative heat shield to the regular structure of re-
entry space vehicles. The accurate solution of the ablation problem is required for the proper
estimation of the required thickness of the thermal protection layer. Purely numerical methods
and hybrid numerical-analytical schemes have been previously employed to solve heat
conduction with ablation in finite slabs (Blackwell, 1988; Diniz et al., 1990). However, such
accurate approaches are too costly for the optimization of thermal protection systems, when



several simulations are required. In such a case, simple approximate formulations of the
energy equation in the slab, such as those offered by the CIEA, become imperative. The CIEA
was employed by Cotta et al. (1990) to solve a two-region phase-change problem, improving
the results obtained by the classical lumped system analysis (CLSA) for increasing Stefan
numbers. Nevertheless, such type of approach becomes less accurate when considering
materials with low thermal diffusivity properties, as those employed in ablative heat shields.

This work is aimed at proposing an improved lumped differential approach for ablative
thermal protection, which involves the use of materials with low thermal diffusivity. The
improved technique is based upon a heat penetration depth concept (Hogge and Gerrekens,
1982 and 1985) and a front tracking method. The results obtained by the proposed technique
for an one-dimensional thermal ablation problem in a finite slab are compared against those
obtained by previously reported lumped differential solutions (Cotta et al., 1992). Benchmark
results obtained through the integral transform technique (Diniz et al., 1990) are utilized to
verify the proposed solution in a realistic ablation problem consisting of a low thermal
diffusivity material subjected to an actual thermal load due to aerodynamic heating.

2. PROBLEM FORMULATION

We consider one-dimensional transient heat conduction with ablation in a planar layer,
with constant physical properties. Initially, the slab has an uniform temperature , T0, and a pre-
ablation period exists up to time t0, when the surface at x=0 reaches the phase-change
temperature, Tab. The initial condition for the ablation problem itself is, therefore, readily
obtained from solution of the linear heat conduction problem at time t0. Ablation is caused by
a prescribed heat flux at x=0, while the other surface is kept insulated during the whole
process. In dimensionless form the problem formulation is given by (Cotta et al., 1992):
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Ablation period.
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where the heat balance at the moving boundary at η =S(τ), is written as:
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with the initial condition
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and θ0(η) is the temperature profile within the slab at τ=τ0 obtained from the solution of
the pre-ablation problem. The various dimensionless groups are defined as follows:
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3. LUMPED DIFFERENTIAL SOLUTIONS

We seek an approximation for the partial differential system (2), through elimination of
the spatial dependence, offering an ordinary differential system for the spatially averaged
temperature. For this purpose, the integrals that define the average temperature and heat flux
within the slab are written as:
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In this section one recalls some already reported CIEA analysis for ablation problems
(Cotta et al., 1992). Here, an improved CIEA formulation is specially developed to solve
ablation problems for low thermal diffusivity materials. Herein, all the solutions are based on
Hermite-type approximations for the integrals in Eqs. (3.a,b). Different degrees of
approximation can be achieved, with increasing analytical involvement but also increasing
overall accuracy depending on the order of approximation for each Hermite integration of
Eqs. (3.a,b). The resulting systems of coupled ordinary differential equations and all the CIEA
results were obtained through mixed symbolic-numerical computation by using the
MATHEMATICA software system (Wolfram, 1996; Cotta and Mikhailov, 1997).



3.1 H0,0/H0,0 solution (Cotta et al., 1992)

The integrals in Eqs. (3.a,b) are approximated, both, through the trapezoidal rule (H0,0

formula) to yield:
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Equations (4.a,b) and (2.c,d) are solved through symbolic manipulation yielding a
solution for ( )θ τS, , ( )θ τ1, , ( )∂θ τ ∂ηS,  and ( )∂θ τ ∂η1,  with respect to ( )θ τav  and ( )S τ .

Following the formalism in the use of the CIEA for the approximate formulation of
phase-change problems (Cotta et al., 1990), the energy equation for the ablation period (Eq.
2.a) is integrated within the region ( )S τ η≤ ≤ 1 , to yield after application of Leibniz rule and

utilization of the above solution:
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The equation for the moving boundary is obtained from Eq. (2.e):
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Equations (5) and (6) are two coupled ordinary differential equations that are solved
simultaneously through the built in function NDSolve from MATHEMATICA (Wolfram,
1996), starting from the initial conditions:
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3.2 H1,1/H0,0 solution (Cotta et al., 1992)

The corrected trapezoidal rule (H1,1 formula) is employed in approximating the average
temperature integral, Eq. (3.a), and maintaining the H0,0 formula for the average heat flux
expression, Eq. (4.b):
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The same procedure adopted in Section 3.1 is followed to yield the ODE system:
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with the initial conditions given by Eqs. (7).

3.3 H1,1/H1,1 solution

The corrected trapezoidal rule (H1,1 approximation) is also employed on the average heat
flux integral expression. Eq. (4.b) is then substituted by:
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The second derivatives with respect to η in Eq. (10) are evaluated from the partial
differential equation itself, Eq. (2.a), to yield:
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Equations (8) and (2.c,d) are solved through symbolic manipulation yielding a solution
for ( )θ τS, , ( )∂θ τ ∂ηS,  and ( )∂θ τ ∂η1,  with respect to ( )θ τav , ( )θ τ1,  and ( )S τ .

The ODE´s corresponding to ( )θ τav , ( )θ τ1,  and ( )S τ  are obtained from Eqs. (11), (2.e)

and from the integration of Eq. (2.a). The resulting ODE system is given by:
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with the initial conditions given by Eq. (7) and ( ) ( )11 00 θτθ =, .



3.4 Improved H1,1/H0,0 solution

In this section one proposes an improved CIEA for the solution of such ablation
problems, where the internal temperature gradients near the wall can range within the
magnitude of several hundred degrees per millimeter.

Although in the solution of parabolic partial differential equations such as Eq. (2.a) the
influence of any perturbation at one point is felt instantaneously by any other point in the
domain, one can assume that there is a distance from the boundary beyond which the
temperature within the domain is practically unaffected in one-dimensional situations. This
distance is the so-called penetration depth (PD) (Hogge and Gerrekens, 1982 and 1985) which
is located at η=δ(τ).

Herein, one considers zero temperature and heat flux at η=δ(τ). This condition allows to
state an equation for a second moving boundary, which occurs between the pre-ablation
period and the time before the PD reaches the second boundary (τ=τδ). We propose here a new
solution for this period of time, hereafter called PD H1,1/H0,0 solution.

The PD corresponding to the beginning of the ablation period can be determined from
Hogge and Gerrekens (1982):
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The integrals that define the average temperature and heat flux within the slab are re-
written considering the new space domain for δτττ <<0 :
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The improved H1,1/H0,0 approximation is derived following the same steps in Section 3.2.
The corrected trapezoidal rule (H1,1 formula) is employed in approximating the average
temperature integral and using the H0,0 formula for the average heat flux expression:
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where ( ) 1, =τθ S , from Eq. (2.d), ( ) 0, =τδθ  and ( ) 0, =∂ητδ∂θ .



The solution of Eqs. (15.a,b) with the above boundary conditions yields:
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The corresponding ODE system for ( )τS  and ( )τδ  is obtained by introducing Eq. (16.b)
into Eq. (2.e) and from the integration of Eq. (2.a):
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with the initial conditions given by:

( ) 00 δτδ = and ( )S τ 0 0=   (17.b)

The time for which the PD reaches the second boundary (τ=τδ) is determined by solving
the following transcendental equation:

( ) 01=−τδ     (18)

For τ>τδ one recalls Eqs. (9.a,b) to predict the average temperature and the moving
boundary position, with the initial conditions ( ) 31=δτθav  and ( )

δτδτ SS = .

4. RESULTS AND DISCUSSION

A test-case was chosen in order to evaluate the performance of the proposed solution in
the simulation of the thermal protection behavior for a typical re-entry flight situation under
severe aerodynamic heating, Fig. 1. The relevant data for the application here considered are
as follows (Blackwell, 1988; Cotta et al., 1992):

L= 0.0065 m; k=0.22 W/(m K); ρ= 1922 kg/m3; cp=1256 J/(kg K); H=2326 kJ/kg;
Tab= 833 K; T0= 416 K

The CIEA results obtained through the MATHEMATICA software system, are shown in
Fig. 2.a, for the moving boundary position, and in Fig. 2.b, for the rejected surface heat flux,

( ) ( ) ττντ ddSQr = . In order to verify the CIEA solutions, a computer program was
developed in Fortran 77 language to provide benchmark results employing the generalized
integral transform technique (GITT) (Diniz et al., 1990). The converged results, shown in
Figs. 2.a and 2.b, were obtained considering a 400 terms series expansion. One can observe



from Figs. 2.a and 2.b that the results provided by the PD H1,1/H0,0 solution are far more
accurate than those obtained by the other lumped formulations, showing a very good
agreement with the benchmark results. More than 10% relative difference is found between
the results of both H1,1/H0,0 approximations at certain times in Figs. 2.a and 2.b.
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Figure 1 – Prescribed aerodynamic heating rate.
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Figure 2 – Comparison of CIEA solutions for: (a) moving boundary position; (b) rejected
surface heat flux.

Tables 1 and 2 present the results obtained through the use of the GITT with different
truncation orders, and those provided by the PD H1,1/H0,0 solution, for the moving boundary
position and for the rejected surface heat flux, respectively, at different times. One can notice
that in the worst cases the PD H1,1/H0,0 results are close to those obtained by the GITT with



N=20. The PD H1,1/H0,0 is very accurate for intermediate times, loosing accuracy when the
temperature gradient becomes very pronounced at the second boundary (t>44.5 s).

Table 1 – Comparison of moving boundary position (m) through the PD H1,1/H0,0

approximation against GITT solutions with different truncation orders, N.

Time (s) N=5 N=10 N=20 N=50 N=100 N=200 N=400 PD
30.09 5.395E-5 4.742E-5 4.558E-5 4.498E-5 4.483E-5 4.477E-5 4.474E-5 4.334E-5
33.24 3.489E-4 3.346E-4 3.289E-4 3.258E-4 3.248E-4 3.243E-4 3.240E-4 3.265E-4
35.87 9.545E-4 9.263E-4 9.110E-4 9.014E-4 8.981E-4 8.963E-4 8.955E-4 9.166E-4
39.02 2.665E-3 2.588E-3 2.531E-3 2.489E-3 2.473E-3 2.465E-3 2.461E-3 2.469E-3
42.18 5.323E-3 5.161E-3 5.036E-3 4.942E-3 4.908E-3 4.890E-3 4.881E-3 4.859E-3
44.80 6.296E-3 6.107E-3 5.972E-3 5.872E-3 5.835E-3 5.817E-3 5.807E-3 5.786E-3
45.85 6.390E-3 6.183E-3 6.037E-3 5.931E-3 5.894E-3 5.875E-3 5.865E-3 5.860E-3

Table 2 – Comparison of rejected heat flux density at the surface (W/m2) through the PD
H1,1/H0,0 approximation against GITT solutions with different truncation orders, N.

Time (s) N=5 N=10 N=20 N=50 N=100 N=200 N=400 PD
30.09 2.287E5 2.177E5 2.145E5 2.125E5 2.119E5 2.115E5 2.113E5 2.090E5
33.24 6.716E5 6.570E5 6.478E5 6.417E5 6.396E5 6.385E5 6.380E5 6.520E5
35.87 1.482E6 1.445E6 1.419E6 1.399E6 1.392E6 1.389E6 1.387E6 1.436E6
39.02 3.498E6 3.385E6 3.285E6 3.204E6 3.174E6 3.158E6 3.150E6 3.089E6
42.18 3.064E6 2.998E6 2.954E6 2.922E6 2.911E6 2.904E6 2.901E6 2.893E6
44.80 6.271E5 5.065E5 4.691E5 4.576E5 4.548E5 4.538E5 4.540E5 4.802E5
45.85 2.248E5 1.955E5 1.438E5 1.169E5 1.100E5 1.069E5 1.055E5 1.863E5

5. CONCLUSIONS

In this work, we present two already reported CIEA formulations for ablation problems
(Cotta et al., 1992), the Hermite’s H0,0/H0,0 and H1,1/H0,0 approximations, and a more involved
solution, the H1,1/H1,1 approximation. A new H1,1/H0,0 solution, based on a penetration depth
concept, appropriate to solve ablation problems for low thermal diffusivity materials, is
proposed. A test-case was chosen in order to evaluate the performance of the approximate
solutions in the simulation of the thermal protection behavior for a typical re-entry flight
situation under severe aerodynamic heating, and the results were compared against
benchmarks obtained through the generalized integral transform technique (GITT). The results
provided by the PD H1,1/H0,0 solution are far more accurate than those obtained by the other
lumped formulations, showing a very good agreement with the benchmark results. The PD
H1,1/H0,0 solution was also compared against GITT solutions with different truncation orders,
showing that in the worst cases the PD H1,1/H0,0 results are close to those obtained with a
lower order eigenfunction expansion. Since high order GITT solutions involve the
simultaneous solution of several coupled ODEs, a substantial reduction in computational
effort is obtained when considering the PD H1,1/H0,0 approach, which requires the solution of
an ordinary differential system with only two coupled equations. The results show that the
proposed approximation can be utilized as a fast engineering tool for the thermal design of
space vehicles, motivating further developments of this technique to study the thermal
ablation of more complex structures.
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