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Abstract. The classical thermally driven square cavity problem, with adiabatic top and
bottom walls, offers challenging test cases for the co-validation of numerical methods. In this
work, the laminar steady-state streamfunction-only formulation of the flow equations and the
associated energy equation, under Boussinesq approximation, is employed to obtain accurate
results through Generalized Integral Transform Techinique (GITT) for high Rayleigh
numbers, where the very desirable hybrid characteristics of the GITT are explored in a
situation of strong non-linear effects. Results will be presented for two different values of the
Rayleigh number, 106 and 107, always for Prandtl number equal 0.71, and critical
comparisons against previously reported benchmark solutions will be then performed.
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1. INTRODUCTION

Laminar natural convection within square cavities, subjected to differentially heated
vertical walls and insulated horizontal surfaces is an interesting and permanent problem
because the resulting coupled formulation of the flow and energy equations offers a
sufficiently complete and complex model for evaluations on accuracy and performance of
each individual numerical scheme proposed in heat and fluid flow, as well as for critical
comparisons among the various alternatives. The establishment of reliable benchmark results,
inside the stability limit, then becomes of major interest in allowing for critical comparisons
among different scheme variants and computational implementation strategies. Within this
context, at the last 20 years many important contributions have been done by many
researchers. Among others references, the most relevant ones for the present work are the
classical work of de Vahl Davis (1983), the works of Saitoh & Hirose (1989), Hortmann et al.
(1990) and Le Quéré (1991). De Vahl Davis (1983) utilized the streamfunction-vorticity
formulation of the flow equations, and adopted the finite differences method with a false



transient technique to obtain solutions in the Rayleigh number range from 103 to 106. Non-
conservative second order differencing was employed, and Richardson’s extrapolation
strategy was invoked to generate the final benchmark results. Saitoh & Hirose (1989) made
use of the transient streamfunction-vorticity formulation as well, but with a non-conservative
fourth order differencing scheme, reporting numerical results for Ra= 104, 106 and only
graphical results for Ra= 107 and 108, Hortmann et al. (1990) employed the steady-state
primitive variables formulation, and applied a multigrid finite volume scheme for solving the
cases Ra= 104, 105 and 106. Le Quéré (1991) preferred the transient primitive variables
formulation, and through a pseudo-spectral method based on Chebyshev polynomials,
reported results for Ra= 106, 107 and 108.

Recently, a hybrid numerical-analytical approach, known as the Generalized Integral
Transform Technique (GITT), mainly reviewed by Cotta (1993) and Cotta and Mikhailov
(1997), has been progressively established as a powerful tool in benchmarking and
engineering applications for linear and nonlinear diffusion and convection-diffusion problems,
including heat and fluid problems formulated through the boundary layer and Navier-Stokes
equations. More specifically it is worth mentioning the integral transform solutions of the
Navier-Stokes equations under streamfunction-only formulation, for incompressible flow
within cavities, Pérez Gurrero and Cotta (1992), and natural convection under Boussinesq
approximation inside rectangular enclosures for both, transient and steady states, respectively
Leal (1998) and Leal et al. (1999). Leal (1998) investigated the transient behavior of the
phenomena for three different values of the Rayleigh number range from 103 to 105.
Benchmark steady state results were presented by Leal at al. (1999) for Ra= 103, 104, 105 and
106. Fortran77 codes were utilized by Leal to perform the transient and steady state results. In
addition, natural convection within porous rectangular enclosures was accurately solved
through the integral transform method, Baohua and Cotta (1993).

The hybrid nature of this approach allows for the automatic global error control along the
solution process, towards an user prescribed accuracy target, making it particularly suitable in
obtaining reference results for test-problems, which can then be employed in the validation of
purely numerical approaches. The aim of the present work is reproducing accurate results
through GITT for high Rayleigh numbers in the classical problem of natural convection inside
enclosures, in this case Ra=106 and 107, always for Prandtl number equal 0.71. A Fortran 90
code was constructed and a new parametrization strategy was adopted in the computational
algorithm to the solution of the transformed ODE system.

2. PROBLEM FORMULATION

Steady laminar natural convection of a Newtonian fluid inside a square enclosure is
considered. The lateral walls are differentially heated, while the top and the bottom walls are
kept insulated. The Boussinesq approximation for the buoyancy effect is invoked, and this
coupled heat and fluid flow problem is formulated via vorticity transport equation in
streamfunction-only formulation, and the associated energy equation, in dimensionless form
as:
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The remaining dimensionless variables are given by:
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where "*" identifies the dimensional variables, L is the cavity length, while Th and Tc are the
uniform temperatures at hot and cold walls. The Rayleigh and Prandtl numbers are defined,
respectively by:

Ra =
−g T Th cβ
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(3.a,b)

where the associated equation operators are given by:
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3. SOLUTION METHODOLOGY

The integral transform approach is based on the eigenfunction expansion of the potentials,
in this case, temperature and streamfunction. For this purpose, the boundary conditions on the
coordinate variable to be eliminated through integral transformation, are first made
homogenous, so as to coincide with the boundary conditions of the eigenvalue problem to be
proposed. Thus, a filtering solution for the temperature field is developed, in the form:

T x y T x y T xp( , ) ( , ) ( )*= + (5.a)

where the filter Tp is the solution of the pure conduction problem in the cavity, readily
obtained as:



T x xp ( ) = −1 (5.b)

which results in producing a new temperature problem, for T*, with homogenous boundary
conditions, and the final filtered system is rewritten as:
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with now homogeneous boundary conditions:
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The next step is then the choice of the eigenfunctions for the dependent variables
expansions. The “x” direction is selected to be eliminated through integral transformation, and
the eigenvalue problem of biharmonic-type, previously studied in Pérez Guerrero et al. (1992),
is adopted for the streamfunction representation. The related eigenfunctions are given by:
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where the eigenvalues are obtained from the transcendental equation:
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and the normalization integral is evaluated as unity, i.e.,  ,1=iN for i= 1, 2, 3,....



For the temperature expansion, the classical second order diffusion operator yields a
Sturm-Liouville-type problem, readily solved with the appropriate boundary conditions of first
kind, at the lateral walls, to yield the eigenfunctions and the related eigenvalues as follows:

xsinx mm βφ  )( =     and      ,... = m           ;  mm 3 2, 1,forπβ = (9.a,b)

and the norm evaluation yields:
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The normalized eigenfunction 
~φm  then becomes:
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The solution methodology proceeds towards the proposition of the integral transform pair
for the potentials, the integral transformation itself and the inversion formula.

For the streamfunction field:

ψ ψi iy X x x y( ) ~ ( ) ( , )= ∫     dx, 
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and for the temperature field:
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The integral transformation process is now employed through operation of Eq.(6.a) with

~X (x) dx i 
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∫ , to find the transformed streamfunction system:
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Similarly, Eq.(6.b) is operated on with 
~φm 

(x) dx 
0
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∫ , to yield the transformed temperature
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Then, the resulting coupled infinite system of ordinary differential equations with
boundary conditions at two points, for the transformed potentials, is described by Eqs.(13 and
14), together with the integral transformed boundary conditions:
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The related coefficients ijkA , ijkB , ijkC , ijD , imE , iF , jmnQ , jmnS and jmP  are obtained

analytically through Mathematica software system of symbolic manipulation, Wolfram
(1991), and automatically generated in Fortran form. More details can be seen in Leal (1998),
Leal et al. (1999) and Cotta and Mikhailov (1997).

4. COMPUTATIONAL PROCEDURE

For computational purposes, the expansions are truncated to NV and NT terms,
respectively, streamfunction and temperature fields, towards the user prescribed accuracy
target. A Fortran 90 code was constructed and implemented on a PC Pentium 266-128Mb.
The subroutine DBVPFD from the IMSL Library (1989) was employed as the boundary value

problem solver, with an automatic local relative error selected to be 10
-4 (i.e. ±1 in the fourth

significant digit). An air-filled square cavity (Pr= 0.71) is considered with Rayleigh numbers
equals to 106 and 107. An artificial parametrization over the source term in Eq. (15),
controlled by the user, was performed in order to achieve convergence to the four significant
digits required.

Once the transformed potentials, ψ i  and Tm , have been numerically evaluated under
controlled accuracy, the inversion formula, together with the filtering solution, are recalled to
provide explicit analytical expressions, in the “y” direction, for the original potentials ψ(x,y)
and T(x,y).

For comparison purpose two different definitions of Nusselt numbers are employed, as in
the related literature. The maximum (or minimum) Nusselt number at the hot wall (x=0), is
determined from the expression below:
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which is analytically represented after invoking the inversion formula (12.b) and the filtering
solution, Eqs.(5.a,b), to yield:
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And the overall average Nusselt number a cross-section is obtained from de Vahl Davis
(1983) as:
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The integrations required in Eq. (17) were numerically performed by making use of the
appropriate subroutines in the IMSL Library (1989).

5. RESULTS AND DISCUTION

For low values of Rayleigh number, full convergence to four digits can be achieved at
quite low truncation orders. As this parameter is increased, the inertia and convection terms
which act as source functions within the proposed diffusion-based expansions, gain relative
importance and, as typical in this type approach, slow to a certain extent convergence rates.
Thus, for severe cases as Ra= 106 and 107, the user requested precision limit is reached at the
expense of additional computational effort, as the truncation orders are increased further by
the algorithm.

Table 1 brings some comparison of the present integral transform results against
previously reported benchmark results, obtained through different approaches. The following
values were employed in these comparative table:

ψ MED  - streamfunction modulus at the cavity center (x = y = 1/2).

ψ MAX  - maximum streamfunction modulus and respective location x and y.

Nu - overall average Nusselt number across the cavity.
It should be observed in Table 1 an excellent agreement between the results presented

through integral transform and those reported by other referred authors. At Ra=106, a fully
coincidence can be noted against Le Quéré (1991) and GITT results. For the case of Ra=107,
some scattering among the solution methodologies becomes more apparent, confirming the
simulation difficulties encountered in this situation of high Rayleigh number.

The convergence behavior of the local Nusselt number along the hot wall (x=0), for
different truncation orders, is illustrated in Figure 1. It can be observed that in the situation of
Ra= 106 the convergence processes is completely achieved with NV=NT=50 terms. Even in the
more severe case of Ra= 107 the convergence is attained in positions above y=0.05 with
NV=NT=60 terms. It is noticeable that the necessity of highest truncation orders can be just
motivated by the convergence behavior in regions very close by the bottom wall.

Tables 2 and 3, respectively Ra= 106 and 107, show temperature values at different
positions within the cavity, for increasing pairs of truncation order NV/NT. It should be noticed
that the user requested precision limit of ±1 in the fourth significant digit is reached in all
selected positions for Ra= 106, unless in the opposite corners at x=y=0.1 and x=y=0.9. Table 3,



Table 1. Comparison of the cavity center stream function, maximum stream function and
global Nusselt number for the two different values of Ra with available results.

Ra ψMED
ψ MAX  (x / y) Nu

106

GITT - Present work
De Vahl Davis (1983)
Saitoh & Hirose (1989)
Hortmann et al.(1990)
Le Quéré (1991)

16.39
16.32
16.379

-
16.386

16.81 (0.15/0.55)
16.75 (0.151/0.547)

-
-

16.811 (0.150/0.547)

8.825
8.800
8.7956
8.8251
8.825

107

GITT - Present work
Le Quéré (1991)

29.33
29.36

30.12 (0.09/0.55)
30.16 (0.086/0.556)

16.52
16.523
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Figure 1. The convergence behavior of the local Nusselt number along the hot wall.
(a) Ra= 106, (b) Ra= 107.

Table 2. Convergence of the temperature field (x10-1) for Ra = 106.

Ra = 106   ;   Pr = 0.71

NV/NT
x=0.1
y=0.1

x=0.1
y=0.5

x=0.1
y=0.9

x=0.5
y=0.1

x=0.5
y=0.5

x=0.5
y=0.9

x=0.9
y=0.1

X=0.9
y=0.5

x=0.9
y=0.9

10/10
20/20
30/30
40/40
50/50

2.373
2.226
2.199
2.187
2.192

4.880
4.782
4.793
4.791
4.791

7.743
8.013
8.028
8.026
8.027

2.238
1.791
1.762
1.761
1.762

5.000
5.000
5.000
5.000
5.000

7.762
8.209
8.238
8.239
8.238

2.257
1.987
1.972
1.974
1.973

5.120
5.218
5.207
5.209
5.209

7.627
7.774
7.801
7.813
7.808



shows a convergence of ±7 in the fourth digit for Ra= 107 in the worst selected positions,
x=y=0.1 and x=y=0.9, confirming some difficulty in reaching the prescribed convergence for
very high Rayleigh numbers in regions very close by the vertical enclosure wall, what is
related to thinner boundary layers, as can be illustrated in Figures 6 and 7.

Table 3. Convergence of the temperature field (x10-1) for Ra = 107.

Ra = 107   ;   Pr = 0.71

NV/NT
x=0.1
y=0.1

x=0.1
y=0.5

x=0.1
y=0.9

x=0.5
y=0.1

x=0.5
y=0.5

x=0.5
y=0.9

x=0.9
y=0.1

x=0.9
y=0.5

x=0.9
y=0.9

20/20
30/30
40/40
50/50
60/60

2.226
1.823
1.845
1.833
1.826

4.782
4.917
4.919
4.923
4.921

8.013
7.388
7.419
7.422
7.420

1.791
1.723
1.701
1.696
1.695

5.000
5.000
5.000
5.000
5.000

8.209
8.277
8.299
8.304
8.305

1.987
2.612
2.581
2.578
2.580

5.218
5.083
5.081
5.077
5.079

7.774
8.177
8.155
8.167
8.174
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Figure 6- Streamlines and isotherms for Ra=106.
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Figure 7- Streamlines and isotherms for Ra=107.



6. CONCLUSIONS

The Integral transform approach was successfully used to perform accurate results for
high Rayleigh numbers, as 106 and 107. The utilization of a Fortran 90 code with a new
parametrization strategy controlled by the user were fundamentals to attain the work purpose.

One can also verify that in the asymptotic limit of Ra→∞, the thermal layers into the
cavity are characterized by vertical thermal boundary layers very close by the verticals walls,
which difficult the convergence processes in these regions.

The next step is to make use of a supercomputer to achieve benchmark results for the very
high Rayleigh number 108.
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