Intelligent Adaptive Fluid-Structure Interaction Systems

R. Ohayon¹, J. F. Deü¹, W. Larbi¹, A. C. Galucio¹, S. Carra^{1, 2, 3}, J. S. Schotté³

¹ Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Métiers (CNAM) - 2, rue Conté, F-75003 Paris, France. Tel: (33) 1 58 80 84 37 - Fax: (33) 1 40 27 27 16 - ohayon@cnam.fr

² University of Parma, Department of Industrial Engineering, Italy

³ Office National d'Etudes et de Recherches Aérospatiales - 92320 Châtillon, France - schotte@onera.fr

Abstract: It is proposed to review various computational methodologies for linear fluid-structure dynamic (vibrations/transient problems) occuring for instance in liquid-propelled launch vehicles or in wing tanks of aircraft flexible structures. After an analysis of free surface gravity/incompressibility effects in tanks partially filled with an inviscid liquid using the concept of elastogravity operators, we examine the compressibility effects and its interaction with gravity. Reduction procedues (component modes/dynamic substructuring extended to weak and strong interaction of physical subsystems) are then reviewed. Those reduction methodologies are of prime importance for hybrid passive/active interface treatment for dynamic attenuation problems. In a first step, dissipative viscous model is introduced, then we present various hybrid passive-viscoelastic/activepiezoelectric interface analysis treatment.